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Abstract 

This paper is concerned with the giving a generalization of statistically limit inferior and statistically limit 

superior defined in [15]. Properties of ∆- limsup𝑡→∞ 𝑓(𝑡) and ∆- liminf𝑡→∞ 𝑓(𝑡) is given for a function 

defined on time scale 𝕋. 
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1 Introduction 

The theory of statistical convergence has been in-

troduced in [1]. This concept become useful tool for 

some fundamental subjects of mathematics the last 

half of the century such as number theory [4], [5], 

trigono-metric series [6], summability theory [7], 

measure theory [8], optimization theory [9] and 

approximation theory [10]. Fridy progressed with 

the concept of statistically Cauchy sequence in [2] 

and proved that it is equivalent to statistical con-

vergence. Besides in [3], the notion of the statistical 

limit point is defined by him. 

 

The theory of time scales was first constructed by 

Hilger in his Ph. D. thesis in [11]. The concept of 

time scale is based on the aspect of unite discrete 

analysis  and continuous analysis. The time scale  𝕋 

is an arbit-rary nonempty closed subset of the real 

numbers ℝ. In fact,  𝕋 is a complete metric space 

with the usual met-ric. Throughout this paper we 

consider a time scale  𝕋 with the topology that 

inherits from the real numbers with the standart 

topology. For detailed information about time scale 

theory, one can see [12] and [13]. Measure theory on 

time scales has been introduced in [16], then further 

studies were made by in [17] and [18].  Deniz-

Ufuktepe defined Lebesgue-Stieltjes ∆ and ∇-

measures and by using these measures they de-

fined an integral which is adaptable  to the time 

scale, specifically Lebesgue-Stieltjes ∆-integral, in 

[19]. In the light of these studies, let us introduce 

some time scale and measure theoretic notations. 

The forward jump operator 𝜎: 𝕋 →  𝕋 for each 𝑡 ∈  𝕋 

by via formula, 
𝜎(𝑡): = inf{𝑠 ∈  𝕋: 𝑠 > 𝑡} 

For 𝑎, 𝑏 ∈  𝕋 with 𝑎 ≤ 𝑏 we define the interval [𝑎, 𝑏] 

in 𝕋  by 
[𝑎, 𝑏] = {𝑡 ∈  𝕋: 𝑎 ≤ 𝑡 ≤ 𝑏}. 

Open intervals and half-open intervals are defined 

similarly. Let 𝒮 be semiring of left-closed and 

right-open intervals and 𝑚∗ be Caratheodory 

extension of the Lebesgue set function 𝑚 

which is defined by 𝑚([𝑎, 𝑏)) = 𝑏 − 𝑎, associ-

ated with the family 𝒮  in the time scale 𝕋 as in 

the real case. Also let 𝔐(𝑚∗) be the 𝜎-algebra of all 

𝑚∗ measurable sets. Recall that 𝔐(𝑚∗)  consists of 

such a subset E has the property that  𝑚∗(𝐴) =

𝑚∗(𝐴 ∩ 𝐸) + 𝑚∗(𝐴 ∩ 𝐸𝑐)  for all  𝐴 ⊂ 𝕋. It is well 

known that the restriction of 𝑚∗ to 𝔐(𝑚∗) which 

we denote by 𝜇Δ is a countably additive measu-re 
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on 𝔐(𝑚∗). This measure called Lebesgue Δ-

measure.  The measurable subsets of 𝕋 is called Δ-

measurable and a function 𝑓: 𝕋 → ℝ is called Δ-

measu-rable function, if 𝑓−1(𝒪) ∈ 𝔐(𝑚∗) for every 

open subsets 𝒪 of ℝ. From [16] we know that if 

𝑎, 𝑏 ∈ 𝕋 and 𝑎 ≤ 𝑏 then 

𝜇Δ([𝑎, 𝑏)) = 𝑏 − 𝑎  ,   𝜇Δ((𝑎, 𝑏)) = 𝑏 − 𝜎(𝑎) 

If 𝑎, 𝑏 ∈ 𝕋 − {max 𝕋} and 𝑎 ≤ 𝑏 then 

𝜇Δ((𝑎, 𝑏]) = 𝜎(𝑏) − 𝜎(𝑎) ,   𝜇Δ([𝑎, 𝑏]) = 𝜎(𝑏) − 𝑎. 

In [14], the concept of Δ-density which is generali-

zation of the of concept natural density by using 

measu-re theoretic approach is given. If 𝐴 is a Δ-

measurable subset of 𝕋 and  𝑎 = min 𝕋 , the Δ-

density of 𝐴 in 𝕋 is defined by 

lim
𝑠→∞

𝜇Δ(𝐴(𝑠))

𝜎(𝑠) − 𝑎
 

(if this limit exists) where 𝐴(𝑠) = {𝑡 ∈ 𝐴: 𝑡 ≤ 𝑠}. The 

Δ-density function can be considered as a probabil-

istic finite additive measure on the algebra of sub-

set of  𝕋 which have a Δ-density. By using the Δ-

density we obtained a new type of convergence 

which is generalization of the natural statistical 

convergence and statistical Cauchy sequences defi-

nitions. In [20], 

the concepts of the Δ-limit and the Δ-cluster point 

are given. These concepts are generalization of the 

concept of the statistical limit and statistical cluster 

point defining in [3]. Let us remember some of 

these notions. A  Δ-measurable function 𝑓 is called 

Δ-convergent to the number 𝐿 if 

𝛿Δ (𝑓−1((𝐿 − 𝑠, 𝐿 + 𝑠))) = 1 

for all 𝑠 > 0.  A measurable set 𝐾 is called Δ-non 

thin subset of 𝕋  if it may have a positive Δ-density 

or may not have even a Δ-density and a measurable 

set 𝐾 is called a Δ-null  subset of 𝕋 if 𝛿Δ(𝐾) = 0.  A 

measurable function 𝑓: 𝕋 → ℝ is called Δ-bounded 

if there exists a real number 𝑟 such that 𝛿Δ({𝑡 ∈

𝕋: |𝑓(𝑡)| ≤ 𝑟}) = 1. The number 𝐿 is called Δ-cluster 

point of a measurable function 𝑓 if 𝛿Δ(𝑓−1((𝐿 −

𝑠, 𝐿 + 𝑠)))  is a Δ-non thin subset of 𝕋. We will use 

the symbol Γ𝑓  to denote all Δ-cluster points of a Δ-

measurable function 𝑓. The set  Γ𝑓 is closed subset 

of 𝕋. 

The main purpose  of the present paper is to extend 

the notions of statistical limit inferior and statistical 

limit superior point defined in [15] by using real 

valued functions defined on time scale. 

2 𝚫-limit superior and 𝚫-limit inferior 

In this section, we introduce the notion of Δ-limit 

superior a Δ-limit inferior for a Δ-measurable func-

tion defined on 𝕋. We will further with properties 

of these concepts and we will give the some rela-

tions with the Δ-cluster points defined in [20] and 

classical limit inferior and limit superior points 

concepts. 

Definition 2.1 Let 𝑓: 𝕋 → ℝ be a Δ-measurable 

function. If we consider the following subsets of  : 

𝐴(𝑓) ≔ {𝑦 ∈ ℝ: 𝑓−1((−∞, 𝑦)) is a Δ-non thin set} 

𝐵(𝑓) ≔ {𝑦 ∈ ℝ: 𝑓−1((𝑦,∞)) is a Δ-non thin set}  

Then the following extended real number 

Δ- limsup
𝑡→∞

𝑓(𝑡): = sup 𝐵(𝑓) 

is called Δ-limit supreior of the function 𝑓 

whenever 𝑡 → ∞. Similarly follwing extended 

number 

Δ- liminf
𝑡→∞

𝑓(𝑡): = inf 𝐴(𝑓) 

is called Δ-limit inferior of the function 𝑓 whenever 

𝑡 → ∞. Let us start with the expecting property of 

Δ- limsup 𝑓(𝑡) and Δ- liminf 𝑓(𝑡) . 

Proposition 2.2 Let 𝑓: 𝕋 → ℝ be a Δ-measurable 

function. Then we have 

Δ- limsup𝑡→∞ 𝑓(𝑡) = − Δ-liminf𝑡→∞(− 𝑓(𝑡)). 

Proof From definition of 𝐴(𝑓) and 𝐵(𝑓) we have, 

𝐴(−𝑓) = {𝑦 ∈ ℝ: 𝛿Δ̅({𝑡 ∈ 𝕋: 𝑓(𝑡) > −𝑦}) > 0}  

and 

−𝐴(−𝑓) = {−𝑦 ∈ ℝ: 𝛿Δ̅({𝑡 ∈ 𝕋: 𝑓(𝑡) > −𝑦}) > 0}  

         = {𝑦 ∈ ℝ: 𝛿Δ̅({𝑡 ∈ 𝕋: 𝑓(𝑡) > 𝑦}) > 0} 

                      = 𝐵(𝑓). 

So that we have, 

− sup 𝐵(𝑓) = − sup(−𝐴(−𝑓)) = inf 𝐴(−𝑓). 

Desired equality is easily obtained from above 

equality. 

The following two theorems tell us a necessary and 

sufficient condition for being a finite valued Δ-limit 

supreior point and Δ-limit inferior point of a 

function defined on time scale 𝕋. 
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Theorem 2.3 Let 𝑓: 𝕋 → ℝ be a Δ-measurable func-

tion. The real number 𝐿 is Δ-limit supreior point of 

the function 𝑓 if and only if for all 𝑠 > 0, 

i)  𝑓−1((𝐿 − 𝑠, ∞)) is a Δ-non thin subset of 𝕋, 

ii) 𝑓−1((𝐿 + 𝑠, ∞)) is a Δ-null subset of 𝕋. 

Proof We will show that (i) and (ii) hold for all 

𝑠 > 0. Since  Δ- limsup𝑡→∞ 𝑓(𝑡) = 𝐿 ∈ ℝ then 

𝐵(𝑓) ≠ ∅. From sup properties of real numbers, for 

all 𝑠 > 0 there exists 𝑦 ∈ 𝐵(𝑓) such that 𝐿 − 𝑠 < 𝑦. 

Since  𝑓−1((𝑦, ∞)) ⊂  𝑓−1((𝐿 − 𝑠, ∞)) and 

𝑓−1((𝑦, ∞)) is a Δ-non thin subset of 𝕋 then 

𝑓−1((𝐿 − 𝑠, ∞)) is a Δ-non thin subset of 𝕋. Now 

assume that (ii) does not hold. Then there exists 

𝑠 > 0 such that 𝑓−1((𝐿 + 𝑠, ∞)) is a Δ-non thin 

subset of 𝕋. That means 𝐿 + 𝑠 ∈ 𝐵(𝑓). This 

contrdicts with 𝐿 = sup 𝐵(𝑓). Therefore (i) and (ii) 

hold for all 𝑠 > 0. Now we will show that 

Δ- limsup𝑡→∞ 𝑓(𝑡) = 𝐿 ∈ ℝ. From (ii) the real 

number 𝐿 is an upper bound of 𝐵(𝑓). If 𝑀 is 

another upper bound of 𝐵(𝑓) then from (i) it 

should be greater than or equal to 𝐿. So that  

sup 𝐵(𝑓) = 𝐿. 

Theorem 2.4 Let 𝑓: 𝕋 → ℝ be a Δ-measurable func-

tion. The real number 𝐿 is Δ-limit inferior point of 

the function 𝑓 if and only if for all 𝑠 > 0, 

i)  𝑓−1((−∞, 𝐿 + 𝑠)) is a Δ-non thin subset of 𝕋, 

ii) 𝑓−1((−∞, 𝐿 − 𝑠)) is a Δ-null subset of 𝕋. 

Proof It is easily obtained from Proposition 2.2 and 

Theorem 2.3. 

Theorem 2.5 Let 𝑓: 𝕋 → ℝ be a Δ-measurable func-

tion. The real number 𝐿 is Δ-limit supreior of the 

function 𝑓 if and only if = sup Γ𝑓 . 

Proof We will show that sup 𝐵(𝑓) = sup Γ𝑓 . If Γ𝑓 is 

an unbounded subset of ℝ then the set 𝐵(𝑓) is also 

unbounded then equality holds. Now let define  

sup Γ𝑓 = 𝐿1 and sup 𝐵(𝑓) = 𝐿2 then since the real 

number 𝐿2 is the Δ-limit supreior of the function 𝑓, 

from Theorem 2.3-(i), 𝑓−1((𝐿2 − 𝑠, ∞)) is a Δ-non 

thin and  𝑓−1((𝐿2 + 𝑠, ∞)) is a Δ-null subset of 𝕋. If 

we subtract a Δ-null set from a Δ-non thin set then 

we obtain a Δ-non thin set. Therefore  

𝑓−1((𝐿2 − 𝑠, 𝐿2 + 𝑠)) = 𝑓−1((𝐿2 − 𝑠, ∞))

−  𝑓−1([𝐿2 + 𝑠, ∞)) 

is a Δ-non thin subset of 𝕋. So that 𝐿2 is a Δ-cluster 

point of 𝑓 and we have 𝐿1 ≥ 𝐿2.  Now we assume 

that  𝐿1 > 𝐿2 and 𝑠1 ≔ 𝐿1 − 𝐿2 > 0. Since 

𝑓−1 ((𝐿1 −
𝑠1

2
, 𝐿1 +

𝑠1

2
)) ⊂ 𝑓−1 ((𝐿2 +

𝑠1

2
, ∞)) 

and Theorem 2.3 (ii),  𝑓−1 ((𝐿1 −
𝑠1

2
, 𝐿1 +

𝑠1

2
)) is a Δ-

null subset of 𝕋.  This contradicts with closedness 

of Γ𝑓. That means 𝐿1 ≤ 𝐿2 and so 𝐿1 = 𝐿2. 

Theorem 2.6 Let 𝑓: 𝕋 → ℝ be a Δ-measurable func-

tion. The real number 𝐿 is Δ-limit inferior of the 

function 𝑓 if and only if = inf Γ𝑓 . 

Proof It is easily obtained from Proposition 2.2 and 

Theorem 2.5. 

Theorem 2.7 Let 𝑓: 𝕋 → ℝ be a Δ-measurable func-

tion. Then we have 

liminf𝑡→∞ 𝑓(𝑡) ≤ Δ- liminf𝑡→∞ 𝑓(𝑡) ≤

 Δ- limsup𝑡→∞ 𝑓(𝑡) ≤ limsup𝑡→∞ 𝑓(𝑡). 

Proof The case of Δ- limsup𝑡→∞ 𝑓(𝑡) = ∞ or 

Δ- liminf𝑡→∞ 𝑓(𝑡) = −∞ are obvious. Now, assume 

that Δ- limsup𝑡→∞ 𝑓(𝑡) = 𝐿1 ∈ ℝ and  

Δ- liminf𝑡→∞ 𝑓(𝑡) = 𝐿2 ∈ ℝ. From Theorem 2.3 (ii), 

for any 𝑠 > 0, the set 𝑓−1((𝐿1 + 𝑠, ∞)) is a Δ-null 

subset of 𝕋 then  𝑓−1((−∞, 𝐿1 + 𝑠)) is a Δ-non thin 

subset of 𝕋. From this, we have 𝐿2 ≤ 𝐿1 + 𝑠 for all 

𝑠 > 0.  Therefore  

Δ- liminf𝑡→∞ 𝑓(𝑡) ≤  Δ- limsup𝑡→∞ 𝑓(𝑡). 

Now, first inequality is easily obtained from Propo-

sition 2.2. 

Example Let 𝕋 = [0, ∞) and (𝑀𝑛) strictly increasing 

unbounded sequence in 𝕋. Take a sequence (𝑠𝑛) 

such that 0 < 𝑠𝑛 < 𝑀𝑛+1 − 𝑀𝑛 and 𝑠𝑛 → 0. One can 

easily see that 𝐴 ≔∪𝑛∈ℕ [𝑀𝑛, 𝑀𝑛 + 𝑠𝑛] is a Δ-null set. 

If we define 𝑓: 𝕋 → ℝ  

𝑓(𝑡) ≔ {
𝐿′  ,   𝑡 ∈ 𝐴        
𝐿   ,   𝑡 ∈ 𝕋 − 𝐴

 

where 𝐿 and 𝐿′ fixed real numbers such that 𝐿 < 𝐿′ 

then we have Δ- limsup𝑡→∞ 𝑓(𝑡) = 𝐿 and 

limsup𝑡→∞ 𝑓(𝑡) = 𝐿′ . 

Theorem 2.8 Let 𝑓: 𝕋 → ℝ be a Δ-bounded function. 

The function 𝑓 is Δ-converge to the real number 𝐿 if 

and only if 
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Δ- liminf𝑡→∞ 𝑓(𝑡) =  Δ- limsup𝑡→∞ 𝑓(𝑡). 

Proof If 𝑓 is Δ-converge to the real number 𝐿 then 

𝛿Δ (𝑓−1((𝐿 − 𝑠, 𝐿 + 𝑠))) = 1 for all 𝑠 > 0. This im-

plies that both of 𝑓−1((𝐿 + 𝑠, ∞)) and 𝑓−1((−∞, 𝐿 −

𝑠)) are Δ-null subsets of 𝕋 for all 𝑠 > 0. By same 

argument both of 𝑓−1((−∞, 𝐿 + 𝑠)) and  𝑓−1((𝐿 −

𝑠, ∞)) are Δ-non thin subset of 𝕋 for all 𝑠 > 0. 

Therefore from Theorem 2.3 and Theorem 2.4 we 

have, 

Δ- liminf𝑡→∞ 𝑓(𝑡) =  Δ- limsup𝑡→∞ 𝑓(𝑡) = 𝐿. 

Now let Δ- liminf𝑡→∞ 𝑓(𝑡) =  Δ- limsup𝑡→∞ 𝑓(𝑡) = 𝐿. 

From Theorem 2.3 and Theorem 2.4 we have 

𝛿Δ (𝑓−1((𝐿 − 𝑠, 𝐿 + 𝑠))) = 1. 

 

3 References 

[1] Fast, H. Sur La Convergence Statistique. Collog. Math. 

1951; 2, 241-244. 

[2] Fridy, J.A. On Statistical Convergence. Analysis, 1985; 

5, 301-313. 

[3] Fridy, J.A. Statistical Limit Points. Proc. Amer. Math. 

Soc. 1993; 118, 1187-1192. 

[4] Niven, I.; Zuckerman, H. S.; Montgomery, H. An In-

troduction to the Theory of Numbers. Fifth Ed. Wiley, 
New York, 1991. 

[5] Erdös, P.; Tenenbaum, G. Sur Les Densities de Cer-

taines Suites D’Entries. Proc. London. Math. Soc. 1989; 

59, 417-438. 

[6] Zygmund, A. Trigonometric Series. 2nd Ed., Cam-

bridge Univ. Press, 1979. 
[7] Fridy, J.A.; Orhan, C. Lacunary Statistical Summabil-

ity. J. Math. Anal. Appl. 1993; 173. 

[8] Miller, H.I. A Measure Theoretical Subsequence Char-

acterization of Statistical Convergence. Trans. Amer. 

Math. Soc. 1995; 347, 1811-1819. 

[9] Pehlivan, S.; Mamedov, M. Statistical Cluster Points 
and Turnpike. Optimization, 2002; 48, 93-106. 

[10] Gadjiev, A.D.; Orhan, C. Some Appoximation Theo-

rems Via Statistical Convergence. Rocky Mountain J. 

Math. 2002; 32, 129-138. 

[11] Hilger, S. Ein Maßkettenkalkül mit Anwendung auf 

Zentrumsmannigfaltigkeiten. Ph.D. thesis, Universität 
Würzburg, 1988. 

[12] Bohner, M.; Peterson, A. Dynamic Equations on Time 
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