On the Concept of Limit Inferior and Limit Superior

M. Seyyit Seyyidoğlu¹, N. Özkan Tan^{2*}

¹Uşak University, Faculty of Science and Letters, Department of Mathematics, 1 Eylül Campus, Uşak, Turkey seyyit.seyyidoglu@usak.edu.tr

² Uşak University, Faculty of Science and Letters, Department of Mathematics, 1 Eylül Campus, Uşak, Turkey *Corresponding author

> Recieved: 15th June 2016 Accepted: 1st January 2017 DOI: 10.18466/cbayarfbe.302763

Abstract

This paper is concerned with the giving a generalization of statistically limit inferior and statistically limit superior defined in [15]. Properties of Δ -limsup_{$t\to\infty$} f(t) and Δ -liminf_{$t\to\infty$} f(t) is given for a function defined on time scale \mathbb{T} .

Keywords – Statistical limit, Cluster point, Limit point, Δ-convergence.

1 Introduction

The theory of statistical convergence has been introduced in [1]. This concept become useful tool for some fundamental subjects of mathematics the last half of the century such as number theory [4], [5], trigono-metric series [6], summability theory [7], measure theory [8], optimization theory [9] and approximation theory [10]. Fridy progressed with the concept of statistically Cauchy sequence in [2] and proved that it is equivalent to statistical convergence. Besides in [3], the notion of the statistical limit point is defined by him.

The theory of time scales was first constructed by Hilger in his Ph. D. thesis in [11]. The concept of time scale is based on the aspect of unite discrete analysis and continuous analysis. The time scale \mathbb{T} is an arbit-rary nonempty closed subset of the real numbers \mathbb{R} . In fact, \mathbb{T} is a complete metric space with the usual met-ric. Throughout this paper we consider a time scale \mathbb{T} with the topology that inherits from the real numbers with the standart topology. For detailed information about time scale theory, one can see [12] and [13]. Measure theory on time scales has been introduced in [16], then further studies were made by in [17] and [18]. Deniz-Ufuktepe defined Lebesgue-Stieltjes Δ and ∇ measures and by using these measures they defined an integral which is adaptable to the time scale, specifically Lebesgue-Stieltjes Δ -integral, in [19]. In the light of these studies, let us introduce some time scale and measure theoretic notations. The *forward jump operator* $\sigma: \mathbb{T} \to \mathbb{T}$ for each $t \in \mathbb{T}$ by via formula,

 $\sigma(t) := \inf\{s \in \mathbb{T} : s > t\}$

For $a, b \in \mathbb{T}$ with $a \le b$ we define the interval [a, b]in \mathbb{T} by

$$[a,b] = \{t \in \mathbb{T} : a \le t \le b\}.$$

Open intervals and half-open intervals are defined similarly. Let *S* be semiring of left-closed and right-open intervals and m^* be Caratheodory extension of the Lebesgue set function m which is defined by m([a, b)) = b - a, associated with the family *S* in the time scale **T** as in the real case. Also let $\mathfrak{M}(m^*)$ be the σ -algebra of all m^* measurable sets. Recall that $\mathfrak{M}(m^*)$ consists of such a subset *E* has the property that $m^*(A) = m^*(A \cap E) + m^*(A \cap E^c)$ for all $A \subset \mathbb{T}$. It is well known that the restriction of m^* to $\mathfrak{M}(m^*)$ which we denote by μ_{Δ} is a countably additive measure

on $\mathfrak{M}(m^*)$. This measure called Lebesgue Δ measure. The measurable subsets of \mathbb{T} is called Δ measurable and a function $f:\mathbb{T} \to \mathbb{R}$ is called Δ measu-rable function, if $f^{-1}(\mathcal{O}) \in \mathfrak{M}(m^*)$ for every open subsets \mathcal{O} of \mathbb{R} . From [16] we know that if $a, b \in \mathbb{T}$ and $a \leq b$ then

$$\mu_{\Delta}([a,b)) = b - a , \ \mu_{\Delta}((a,b)) = b - \sigma(a)$$

If $a, b \in \mathbb{T} - \{\max \mathbb{T}\}$ and $a \le b$ then

 $\mu_{\Delta}((a,b]) = \sigma(b) - \sigma(a), \ \mu_{\Delta}([a,b]) = \sigma(b) - a.$

In [14], the concept of Δ -density which is generalization of the of concept natural density by using measu-re theoretic approach is given. If *A* is a Δ -measurable subset of \mathbb{T} and $a = \min \mathbb{T}$, the Δ -density of *A* in \mathbb{T} is defined by

$$\lim_{s\to\infty}\frac{\mu_{\Delta}(A(s))}{\sigma(s)-a}$$

(if this limit exists) where $A(s) = \{t \in A : t \le s\}$. The Δ -density function can be considered as a probabilistic finite additive measure on the algebra of subset of \mathbb{T} which have a Δ -density. By using the Δ -density we obtained a new type of convergence which is generalization of the natural statistical convergence and statistical Cauchy sequences definitions. In [20],

the concepts of the Δ -limit and the Δ -cluster point are given. These concepts are generalization of the concept of the statistical limit and statistical cluster point defining in [3]. Let us remember some of these notions. A Δ -measurable function *f* is called Δ -convergent to the number *L* if

$$\delta_{\Delta}\left(f^{-1}((L-s,L+s))\right) = 1$$

for all s > 0. A measurable set K is called Δ -non thin subset of \mathbb{T} if it may have a positive Δ -density or may not have even a Δ -density and a measurable set K is called a Δ -null subset of \mathbb{T} if $\delta_{\Delta}(K) = 0$. A measurable function $f: \mathbb{T} \to \mathbb{R}$ is called Δ -bounded if there exists a real number r such that $\delta_{\Delta}(\{t \in \mathbb{T}: |f(t)| \le r\}) = 1$. The number L is called Δ -cluster point of a measurable function f if $\delta_{\Delta}(f^{-1}((L - s, L + s)))$ is a Δ -non thin subset of \mathbb{T} . We will use the symbol Γ_f to denote all Δ -cluster points of a Δ measurable function f. The set Γ_f is closed subset of \mathbb{T} .

The main purpose of the present paper is to extend the notions of statistical limit inferior and statistical limit superior point defined in [15] by using real valued functions defined on time scale.

2 Δ -limit superior and Δ -limit inferior

In this section, we introduce the notion of Δ -limit superior a Δ -limit inferior for a Δ -measurable function defined on T. We will further with properties of these concepts and we will give the some relations with the Δ -cluster points defined in [20] and classical limit inferior and limit superior points concepts.

Definition 2.1 Let $f: \mathbb{T} \to \mathbb{R}$ be a Δ -measurable function. If we consider the following subsets of :

$$A(f) \coloneqq \{ y \in \mathbb{R} : f^{-1}((-\infty, y)) \text{ is a } \Delta \text{-non thin set} \}$$
$$B(f) \coloneqq \{ y \in \mathbb{R} : f^{-1}((y, \infty)) \text{ is a } \Delta \text{-non thin set} \}$$

Then the following extended real number

$$\Delta - \limsup_{t \to \infty} f(t) := \sup B(f)$$

is called Δ -limit supreior of the function *f* whenever $t \rightarrow \infty$. Similarly following extended number

$$\Delta - \liminf_{t \to \infty} f(t) := \inf_{t \to \infty} A(f)$$

is called Δ -limit inferior of the function f whenever $t \rightarrow \infty$. Let us start with the expecting property of Δ -limsup f(t) and Δ -liminf f(t).

Proposition 2.2 Let $f: \mathbb{T} \to \mathbb{R}$ be a Δ -measurable function. Then we have

$$\Delta\operatorname{-limsup}_{t\to\infty} f(t) = -\Delta\operatorname{-liminf}_{t\to\infty}(-f(t)).$$

Proof From definition of A(f) and B(f) we have,

$$A(-f) = \left\{ y \in \mathbb{R} : \bar{\delta}_{\Delta}(\{t \in \mathbb{T} : f(t) > -y\}) > 0 \right\}$$

and

$$-A(-f) = \{-y \in \mathbb{R}: \overline{\delta}_{\Delta}(\{t \in \mathbb{T}: f(t) > -y\}) > 0\}$$
$$= \{y \in \mathbb{R}: \overline{\delta}_{\Delta}(\{t \in \mathbb{T}: f(t) > y\}) > 0\}$$
$$= B(f).$$

So that we have,

$$-\sup B(f) = -\sup(-A(-f)) = \inf A(-f).$$

Desired equality is easily obtained from above equality.

The following two theorems tell us a necessary and sufficient condition for being a finite valued Δ -limit supreior point and Δ -limit inferior point of a function defined on time scale T.

Theorem 2.3 Let $f: \mathbb{T} \to \mathbb{R}$ be a Δ -measurable function. The real number *L* is Δ -limit supreior point of the function *f* if and only if for all s > 0,

i) f⁻¹((L − s, ∞)) is a Δ-non thin subset of T,
ii) f⁻¹((L + s, ∞)) is a Δ-null subset of T.

Proof We will show that (i) and (ii) hold for all Δ -limsup_{$t\to\infty$} $f(t) = L \in \mathbb{R}$ then s > 0. Since $B(f) \neq \emptyset$. From sup properties of real numbers, for all s > 0 there exists $y \in B(f)$ such that L - s < y. $f^{-1}((y,\infty)) \subset f^{-1}((L-s,\infty))$ Since and $f^{-1}((y,\infty))$ is a Δ -non thin subset of \mathbb{T} then $f^{-1}((L-s,\infty))$ is a Δ -non thin subset of \mathbb{T} . Now assume that (ii) does not hold. Then there exists s > 0 such that $f^{-1}((L + s, \infty))$ is a Δ -non thin subset of \mathbb{T} . That means $L + s \in B(f)$. This contrdicts with $L = \sup B(f)$. Therefore (i) and (ii) hold for all s > 0. Now we will show that Δ -limsup_{$t\to\infty$} $f(t) = L \in \mathbb{R}$. From (ii) the real number L is an upper bound of B(f). If M is another upper bound of B(f) then from (i) it should be greater than or equal to L. So that $\sup B(f) = L.$

Theorem 2.4 Let $f: \mathbb{T} \to \mathbb{R}$ be a Δ -measurable function. The real number *L* is Δ -limit inferior point of the function *f* if and only if for all s > 0,

i) $f^{-1}((-\infty, L + s))$ is a Δ -non thin subset of \mathbb{T} ,

ii) $f^{-1}((-\infty, L - s))$ is a Δ -null subset of \mathbb{T} .

Proof It is easily obtained from Proposition 2.2 and Theorem 2.3.

Theorem 2.5 Let *f* : $\mathbb{T} \to \mathbb{R}$ be a Δ-measurable function. The real number *L* is Δ-limit supreior of the function *f* if and only if = sup Γ_{*f*}.

Proof We will show that $\sup B(f) = \sup \Gamma_f$. If Γ_f is an unbounded subset of \mathbb{R} then the set B(f) is also unbounded then equality holds. Now let define $\sup \Gamma_f = L_1$ and $\sup B(f) = L_2$ then since the real number L_2 is the Δ -limit supreior of the function f, from Theorem 2.3-(i), $f^{-1}((L_2 - s, \infty))$ is a Δ -non thin and $f^{-1}((L_2 + s, \infty))$ is a Δ -null subset of \mathbb{T} . If we subtract a Δ -null set from a Δ -non thin set then we obtain a Δ -non thin set. Therefore

$$f^{-1}((L_2 - s, L_2 + s)) = f^{-1}((L_2 - s, \infty)) - f^{-1}([L_2 + s, \infty))$$

is a Δ -non thin subset of \mathbb{T} . So that L_2 is a Δ -cluster point of f and we have $L_1 \ge L_2$. Now we assume that $L_1 > L_2$ and $s_1 \coloneqq L_1 - L_2 > 0$. Since

$$f^{-1}\left(\left(L_1 - \frac{s_1}{2}, L_1 + \frac{s_1}{2}\right)\right) \subset f^{-1}\left(\left(L_2 + \frac{s_1}{2}, \infty\right)\right)$$

and Theorem 2.3 (ii), $f^{-1}\left(\left(L_1 - \frac{s_1}{2}, L_1 + \frac{s_1}{2}\right)\right)$ is a Δ null subset of \mathbb{T} . This contradicts with closedness of Γ_f . That means $L_1 \leq L_2$ and so $L_1 = L_2$.

Theorem 2.6 Let *f* : \mathbb{T} → \mathbb{R} be a Δ-measurable function. The real number *L* is Δ-limit inferior of the function *f* if and only if = inf Γ_{*f*}.

Proof It is easily obtained from Proposition 2.2 and Theorem 2.5.

Theorem 2.7 Let $f: \mathbb{T} \to \mathbb{R}$ be a Δ -measurable function. Then we have $\liminf_{t \to \infty} f(t) \leq \Delta$ - $\liminf_{t \to \infty} f(t) \leq \Delta$ - $\liminf_{t \to \infty} f(t) \leq \dim_{t \to \infty} f(t)$.

Proof The case of Δ -limsup_{$t\to\infty$} $f(t) = \infty$ or Δ -liminf_{$t\to\infty$} $f(t) = -\infty$ are obvious. Now, assume that Δ -limsup_{$t\to\infty$} $f(t) = L_1 \in \mathbb{R}$ and Δ -liminf_{$t\to\infty$} $f(t) = L_2 \in \mathbb{R}$. From Theorem 2.3 (ii), for any s > 0, the set $f^{-1}((L_1 + s, \infty))$ is a Δ -null subset of \mathbb{T} then $f^{-1}((-\infty, L_1 + s))$ is a Δ -non thin subset of \mathbb{T} . From this, we have $L_2 \leq L_1 + s$ for all s > 0. Therefore

 $\Delta\operatorname{-liminf}_{t\to\infty} f(t) \leq \Delta\operatorname{-limsup}_{t\to\infty} f(t).$

Now, first inequality is easily obtained from Proposition 2.2.

Example Let $\mathbb{T} = [0, \infty)$ and (M_n) strictly increasing unbounded sequence in \mathbb{T} . Take a sequence (s_n) such that $0 < s_n < M_{n+1} - M_n$ and $s_n \to 0$. One can easily see that $A := \bigcup_{n \in \mathbb{N}} [M_n, M_n + s_n]$ is a Δ -null set. If we define $f: \mathbb{T} \to \mathbb{R}$

$$f(t) \coloneqq \begin{cases} L' \ , \ t \in A \\ L \ , \ t \in \mathbb{T} - A \end{cases}$$

where *L* and *L'* fixed real numbers such that L < L'then we have Δ -limsup_{$t\to\infty$} f(t) = L and limsup_{$t\to\infty$} f(t) = L'.

Theorem 2.8 Let *f* : \mathbb{T} → \mathbb{R} be a Δ-bounded function. The function *f* is Δ-converge to the real number *L* if and only if

CBÜ Fen Bil. Dergi., Cilt 13, Sayı 1, 2017, 181-184 s

$$\Delta\operatorname{-liminf}_{t\to\infty} f(t) = \Delta\operatorname{-limsup}_{t\to\infty} f(t).$$

Proof If *f* is Δ -converge to the real number *L* then $\delta_{\Delta}(f^{-1}((L-s,L+s))) = 1$ for all s > 0. This implies that both of $f^{-1}((L+s,\infty))$ and $f^{-1}((-\infty,L-s))$ are Δ -null subsets of \mathbb{T} for all s > 0. By same argument both of $f^{-1}((-\infty,L+s))$ and $f^{-1}((L-s,\infty))$ are Δ -non thin subset of \mathbb{T} for all s > 0. Therefore from Theorem 2.3 and Theorem 2.4 we have,

$$\Delta$$
-liminf_{t \to \infty} $f(t) = \Delta$ -limsup_{t \to \infty} $f(t) = L$.

Now let Δ -liminf_{$t\to\infty$} $f(t) = \Delta$ -limsup_{$t\to\infty$} f(t) = L. From Theorem 2.3 and Theorem 2.4 we have $\delta_{\Delta}(f^{-1}((L-s,L+s))) = 1$.

3 References

[1] Fast, H. Sur La Convergence Statistique. Collog. Math. 1951; 2, 241-244.

[2] Fridy, J.A. On Statistical Convergence. Analysis, 1985; 5, 301-313.

[3] Fridy, J.A. Statistical Limit Points. Proc. Amer. Math. Soc. 1993; 118, 1187-1192.

[4] Niven, I.; Zuckerman, H. S.; Montgomery, H. An Introduction to the Theory of Numbers. Fifth Ed. Wiley, New York, 1991.

[5] Erdös, P.; Tenenbaum, G. Sur Les Densities de Certaines Suites D'Entries. Proc. London. Math. Soc. 1989; 59, 417-438.

[6] Zygmund, A. Trigonometric Series. 2nd Ed., Cambridge Univ. Press, 1979.

[7] Fridy, J.A.; Orhan, C. Lacunary Statistical Summability. J. Math. Anal. Appl. 1993; 173.

[8] Miller, H.I. A Measure Theoretical Subsequence Characterization of Statistical Convergence. Trans. Amer. Math. Soc. 1995; 347, 1811-1819.

[9] Pehlivan, S.; Mamedov, M. Statistical Cluster Points and Turnpike. Optimization, 2002; 48, 93-106.

[10] Gadjiev, A.D.; Orhan, C. Some Appoximation Theorems Via Statistical Convergence. Rocky Mountain J. Math. 2002; 32, 129-138.

[11] Hilger, S. Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten. Ph.D. thesis, Universität Würzburg, 1988.

[12] Bohner, M.; Peterson, A. Dynamic Equations on Time Scales. Birkhäuser, Boston, 2001.

[13] Bohner, M.; Peterson, A. Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston, 2003.

[14] Seyyidoğlu, M.S.; Tan, N.Ö. A Note on Statistical Convergence on Time Scale. J. Inequal. Appl.,2012; 219.

[15] Fridy, J.A.; Orhan, C. Statistical Limit Superior and

Limit Inferior. Proc. Amer. Math. Soc. 1997; 125, 3625–3631.

[16] Guseinov, G. S. Integration on Time Scales. J. Math. Anal. Appl. 2003; 285, 107-127.

[17] Cabada, A.; Vivero, D. Expression of the Lebesgue Δ – Integral on Time Scales as a Usual Lebesgue Integral- Application to the Calculus of Δ - Antiderivatives. Math. Comput. Mo-del, 2006; 43, 194-207, 4, 291-310.

[18] Rzezuchowski, T. A Note on Measures on Time Scales. Demonstratio Mathematica, 2005; 38, 179-184.

[19] Deniz, A.; Ufuktepe, U. Lebesgue-Stieltjes Measure on Time Scales. Turk. J. Math. 2009; 33, 27-40.

[20] Seyyidoğlu, M.S.; Tan, N.Ö. On a Generalization of Statistical Cluster and Limit Points Advances in Difference Equations, 2015; 2015:55.