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Abstract

In this paper, the orthogonal triangular functions are employed as a basis functions for solving the weakly
singular Volterra integral equations of the second kind. Powerful properties of these functions and some
operational matrices are utilized in a direct method to reduce the main singular integral equation to some
algebraic system. The presented method does not need any integration for obtaining the constant coe�cients.
The method is computationally attractive, and applications are demonstrated through illustrative examples.

1. Introduction

Weakly singular integral equations, or integral equations with singular kernels, are important class in
the integral equations. In 1896, Mach applied this class of equations in the study of compressible �ows
around axially symmetric bodies [1]. They have been used for mathematical modeling of many phenomena
in physics and engineering, such as; airfoils, contact radiations, fracture mechanics, molecular conductions,
and elastodynamics [2]-[4].
Historically, the study of integral equations was started by Abel's problem. The generalized Abel's integral
equations on a �nite segment appeared in the paper of Zeilon [5] for the �rst time. Due to increasing the
attention to fractional calculus, the study of singular integral equations is attracted more signi�cance. The
Riemann-Liouville integral and derivative fractional and Caputo fractional derivative operators have been
used in many studies [6]-[7], where de�ned by singular kernels.
The aim of this study is to present a high order computational method for solving a special case of singular
Volterra integral equations of the second kind, de�ned as follows:

y(x) = f(x)−
∫ x

a
K(x, t)|x− t|−αy(t)dt, (1)
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0 < α < 1, a ≤ x ≤ b,

where f(x) and K(x, t) are known functions and y(x) is the unknown function that to be determined.
The construction of high order methods for solving equation (1) is, however, not an easy task because of the
singularity in the weakly singular kernel. In fact, in this case the solution y is generally not di�erentiable
at the endpoints of the interval [8]-[11], and due to this, to the best of the authors' knowledge the best
convergence rate ever achieved remains only at polynomial order. For example, if we set uniform meshes
with n+1 grid points and apply the spline method so for order m, then the convergence rate is only O(n−2P )
at most [12]-[13], and it can not be improved by increasing m. One way of remedying this is to introduce
graded meshes [12]-[14]. Then the rate is improved to O(n−m) [14] which now depends on m, but still at
polynomial order.
Some numerical methods for solving weakly singular equations are; Bessel polynomials via collocation method
[15], Clenshaw-Curtis-Filon quadrature [16], Laguerre functions [17], B-spline Wavelet Galerkin method [18],
Block-pulse functions [19], Lagrange interpolation with Gauss Legendre quadrature nodes [20]. In this work
we assume that the K(x, t) ∈ [a, b]× [a, b], satis�es in Lipschitz condition, that is:

|K(x1, t)−K(x2, t)| ≤ Ls|x1 − x2|, (2)

and Ls is the Lipschitz constant. The techniques based on polynomials and wavelets are e�ective to obtain
the solution of integral equations. But calculating constant coe�cients requires the use of integration for-
mula. Deb et al. introduced a new complementary pair of orthogonal triangular functions (TFs) and their
applications to analysis of dynamic systems [21]-[22].
In this work,TFs are applied for solving weakly singular Volterra integral equations of the second kind.
The organization of this paper is arranged as follows. In section 2, we review these functions and their prop-
erties, also some operational matrices for these functions are introduced. In section 3, we apply these set of
orthogonal functions for approximating the solution of Volterra singular integral equation of the second kind.
Using the properties of TFs via Galerkin method, we reduce the singular integral equations to a algebraic
system, which can be solved easily using some iterative methods. Powerful search technique can be used to
�nd the optimal coe�cients for desirable approximation. In section 4, we illustrate some numerical examples
to show the e�ciency and accuracy of this method and section 5 contains our conclusion.

2. Brief review of orthogonal triangular functions

In this section, the de�nitions of TFs and their properties are reviewed [22]. We start with the de�nition
of Block-pulse functions (BPFs).

2.1. BPFs

De�nition 2.1. For M ∈ N, a M−set of BPFs in the [0, T ) is de�ned as [19]

Bi(x) =


1, ih ≤ x < (i+ 1)h

0, o.w.

where i = 0, 1, ...,M − 1 and h = T
M . BPFs have some signi�cant properties, such as; disjointness:

Bi(x)Bj(x) =


Bi(x), i = j

0, i ̸= j
i, j = 0, 1, ...,M − 1, (3)

orthogonality:

⟨Bi(t), Bj(t)⟩ =
∫ 1

0
Bi(t)Bj(t)dt =


1
M , i = j

0, i ̸= j
(4)

i, j = 0, 1, ...,M − 1.
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Figure 1: Construction of TFs by BPFs

2.2. Function approximation by BPFs

A square integrable f(x) may be expanded by BPF series in x ∈ [0, T ) as

f(x) =
M−1∑
j=0

cjBj(x) = CT
MBM (x), (5)

where the constant coe�cients cj are given by

cj =
1

h

∫ (j+1)h

jh
f(x)dx, BM (x) = [B0(x), ..., BM−1(x)]

T . (6)

Another important property of BPFs is completeness. In the other words, For every f ∈ L2[0, 1), when m
approaches to the in�nity, Parseval's identity holds, that is∫ T

0
f2(x)dx =

∞∑
j=0

c2j∥Bj(x)∥2.

2.3. TFs

To present a complementary pair of orthogonal TF sets and compare their basic properties with those of
BPF sets, we de�ne the m-set triangular functions. Suppose ψ0(x) be the �rst component of a M -set BPFs,
we put

B0(x) = T 1
0 (x) + T 2

0 (x),

where T 1
0 and T 2

0 functions are shown in Fig. 1.

De�nition 2.2. Two M -sets of triangular functions are de�ned over the interval [0, T ) as

T 1
i (x) =

{
1− x−ih

h , ih ≤ x < (i+ 1)h
0, o.w.

(7)

T 2
i (x) =

{
x−ih
h , ih ≤ x < (i+ 1)h

0, o.w.
(8)

where, i = 0, ...,M − 1 and h = T
M . In this paper, it is assumed that T = 1, so TFs are de�ned over [0, 1),

and h = 1
M .

From the de�nition of TFs, it is clear that they are disjoint and complete [22]. Also Tfs are orthogonal:∫ 1

0
T r
i (x)T

s
j (x)dt = δij∆r,s, (9)
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where δij is Kronecker delta and

∆r,s =

{
h
3 r = s ∈ {1, 2},
h
6 r ̸= s.

Now we put

TM (x) =
[
T 1
0 (x), ..., T

1
M−1(x), T

2
0 (x), ..., T

2
M−1(x)

]T
, (10)

TM (x) is called the 1D-TF vector. From the above representation and disjointness property, it is clear that

TM (x).TT
M (x) = diag {TM (x)} , (11)

where diag {TM (x)} is 2M × 2M diagonal matrix.

2.4. Function approximation by TFs

The expansion of a function f(x) ∈ L2[0, 1) with 1D-TFs is given by

f(x) ≃
M−1∑
j=0

αjT
1
j (x) +

M−1∑
j=0

βjT
2
j (x) = CT

MTM (x), (12)

where
CM = [α0, ..., αM−1, β0, ..., βM−1]

T , (13)

and the constant coe�cients αj and βj are the samples of function f(x) such that

αj = f(jh), βj = f((j + 1)h).

As a result there is no need for integration. The vector CM is called the 1D-TF coe�cient vector.

2.5. TFs Operational matrix of integration

In this section, we construct the operational matrix of integration for TFs. For this purpose, we put∫ x

0
T 1(t)dt = Θ1T

1(x) + Θ2T
2(x), (14)∫ x

0
T 2(t)dt = Θ1T

1(x) + Θ2T
2(x), (15)

where Θ1 and Θ2 are m×m square matrices, as:

Θ1 =
h

2


0 1 1 ... 1
0 0 1 ... 1
0 0 0 ... 1
...

...
...

. . .
...

0 0 0 0 0

 Θ2 =
h

2


1 1 1 ... 1
0 1 1 ... 1
0 0 1 ... 1
...

...
...

. . .
...

0 0 0 0 1


therefore we can write ∫ x

0
TM (t)dt = ΠTM (x), (16)

where, Π is operational matrix of integration that is given by

Π =

(
Θ1 Θ2

Θ1 Θ2

)
2M×2M

(17)

now the integral of every function f(x) by using triangular functions can be approximated by∫ x

0
f(t)dt =

∫ x

0
CT .TM (t)dt = CTΠTM (x). (18)
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2.6. Approximation of two variable function by TFs

Now, we apply TFs for approximating the two variable function ω(x, t). We obtain

ω(x, t) ≃ TM1(t)
TΩM1,M2TM2(x)

T , (19)

where ΩM1×M2 is 2M1 × 2M2 coe�cients matrix. According to TFs approximation, we can decompose it as
follows:

ΩM1×M2 =

(
W11 W12

W21 W22

)
T (t),

where, Wij , i, j = 1, 2, are M1 ×M2 matrices, can be computed by sampling the function ω(x, t) at the
nodes xi = ih1 and tj = jh2 as follows:[

W11

]
i,j

= ω (xi, tj)

∣∣∣∣j=0,...,M2−1

i=0,...,M1−1

,

[
W12

]
i,j

= ω (xi, tj)

∣∣∣∣j=1,...,M2

i=0,...,M1−1

,

[
W21

]
i,j

= ω (xi, tj)

∣∣∣∣j=0,...,M2−1

i=1,...,M1

,

[
W22

]
i,j

= ω (xi, tj)

∣∣∣∣j=1,...,M2

i=1,...,M1

.

Proposition 1. Let H be a 2M × 2M matrix. It can be concluded that

TT
M (t)HTM (t) ≃ ĤTM (t), (20)

in which, Ĥ is a 2M -vector with elements equal to the diagonal entries of matrix H.
Proposition 2. Let X be a 2M -dimensional column vector. So, it can be similarly concluded that

TT
M (t)TM (t)X ≃ X̃TM (t), (21)

where, X̃ = diag(X) is 2M × 2M diagonal matrix.
Inner product of triangular functions in the interval [0, 1] can be written in matrix form as∫ 1

0
TM (t).TT

M (t)dt = R, (22)

where R is de�ned as

R =

 h
3 IM

h
6 IM

h
6 IM

h
3 IM

 , (23)

and IM is M -dimensional identity matrix.
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3. Description of the numerical method

In this section, we solve the singular integral equation (1) by triangular functions. First by using Lipschitz
condition of kernel function, we tarnsform the singular integral equation to a nonsingular integral equation.
For this purpose, the integral term in equation (1) can be written as:∫ x

0
K(x, t)|x− t|−αy(t)dt =

∫ x

0

(
K(x, t)−K(x, x)

)
|x− t|−αy(t)dt

+K(x, x)

∫ x

0
|x− t|−αy(t)dt,

and ∫ x

0
|x− t|−αy(t)dt =

∫ x

0
|x− t|−α

(
y(t)− y(x)

)
dt+ y(x)

∫ x

0
|x− t|−αdt,

thus we have∣∣∣∣∫ x

0
(K(x, t)−K(x, x)) (x− t)−αy(t)dt

∣∣∣∣ ≤ ∫ x

0

∣∣∣∣K(x, t)−K(x, x)

∣∣∣∣ |x− t|−α
∣∣y(t)∣∣dt

≤
∫ x

0
Ls|x− t|1−α|y(t)|dt,

now as x→ t, ∣∣∣∣∫ x

0
(K(x, t)−K(x, x)) (x− t)−αy(t)dt

∣∣∣∣ → 0. (24)

On the other hand ∣∣∣∣∫ x

0
(x− t)−α

(
y(t)− y(x)

)
dt

∣∣∣∣ ≤ ∫ x

0
|x− t|−α

∣∣y(t)− y(x)
∣∣dt

≤ y′(ξ)

∫ x

0
|x− t|1−αdt

≤ y′(ξ)
|x− t|2−α

2− α
,

so, as x→ t ∣∣∣∣∫ x

0
(x− t)−α (y(t)− y(x)) dt

∣∣∣∣ → 0. (25)

Now we introduce the function H(x, t),

H(x, t) =

{
K(x, t)(x− t)−α x ̸= t

0 x = t.
(26)

So the integral term of equation (1) can be written as:∫ x

0
K(x, t)(x− t)−αy(t)dt =

∫ x

0
H(x, t)y(t)dt, (27)

and we note that the new kernel function is not singular in [0, 1]. Thus the integral equation 1 can be
rewritten as follows:

y(x) = f(x) +

∫ x

0
H(x, t)y(t)dt. (28)

For solving current equation, the unknown and known functions in equation (1) are expanded in terms of
the triangular functions as follows:

y(x) ≃ yM (x) = CT
MTM (x) = TT

M (x)CM , (29)
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f(x) ≃ fM (x) = F T
MTM (x) = TT

M (x)FM , (30)

and two variable kernel function H(x, t) can be written as

H(x, t) = TT
M (x)HM,MTM (t),

by substituting these relations in equation (1), we get

CT
MTM (x) = F T

MTM (x) +

∫ x

0
TT

M (x)HM,MTM (t)TT
M (t)CMdt, (31)

considering equation (20), the current equation is written as

CT
MTM (x) = F T

MTM (x) +TT
M (x)HM,M C̃M

∫ x

0
TM (t)dt, (32)

also by substituting equation (15) in equation (16), we have

CT
MTM (x) = F T

MTM (x) +TT
M (x)HM,M C̃MPTM (x), (33)

putting HM,M C̃MP = ΛM and applying equation (20), we get

CT
MTM (x) = F T

MTM (x) + Λ̂MTM (x). (34)

On the other hand Λ̂M can be written as
Λ̂M = CT

M∆M , (35)

where ∆M is 2M × 2M matrix, de�ned as follows

[∆M ]i,j = Pik [HM,M ]jk , i, j, k = 1, 2, ..., 2M,

therefore in equation (27), we get

CT
MTM (x) = F T

MTM (x) + CT
M∆MTM (x), (36)

so the Volterra integral equation (1) is reduced into a linear algebraic system as

CT
M (I −∆M ) = F T

M , (37)

by solving this system, the unknown vector CM is obtained and consequently y(x) is approximated.

4. Illustrative Examples

In this section, for showing the accuracy and e�ciency of the described method, we present some exam-
ples, then we compare the results of our methods with the results of some other methods.

Example 1.

Consider the following singular integral equation of the second kind

y(x) +

∫ x

0

y(t)

(x− t)1/2
dt = x2 +

16

15
x5/2,

with the exact solution y(x) = x2. The numerical solutions for y(x) are obtained for m = 5, 10, 20 and
results are tabulated in table 1. Figure 2 shows the exact and approximated solutions (M = 10) of example
1, where the continuous line is the plot of exact solution and the numerical solution is plotted by discreet
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Figure 2: Exact and numerical solutions of example 1 for M = 10.

Table 1: Exact and approximate solutions of example 1 for di�erent values of M.

x M = 5 M = 10 M = 20 Exact

0 0 0 0 0
0.1 0.099156 0.010064 0.010001 0.01
0.2 0.041086 0.040052 0.040000 0.04
0.3 0.0884362 0.090012 0.090003 0.09
0.4 0.167382 0.160038 0.160005 0.16
0.5 0.254899 0.250049 0.250007 0.25
0.6 0.368320 0.360066 0.360002 0.36
0.7 0.491981 0.490015 0.490000 0.49
0.8 0.642579 0.640084 0.640001 0.64
0.9 0.811309 0.810033 0.640005 0.81
1 1.007747 1.000045 1.000000 1

Table 2: Exact and approximate solutions of example 2 for M = 5, 10, 20.

x M = 5 M = 10 M = 20 Exact

0 0 0 0 0
0.1 0.032544 0.031695 0.031622 0.0316228
0.2 0.0896607 0.0894410 0.0894427 0.0894427
0.3 0.161052 0.164373 0.164317 0.164317
0.4 0.253317 0.252986 0.252982 0.252982
0.5 0.353488 0.353502 0.353553 0.353553
0.6 0.469214 0.464760 0.464758 0.464758
0.7 0.581139 0.585631 0.585662 0.585662
0.8 0.717351 0.715596 0.715542 0.715542
0.9 0.856024 0.853849 0.853815 0.853815
1 1.002064 1.000082 1.000004 1

plot markers for xj = 0.5j, j = 0, 1, ..., 19.
Example 2. Consider the following singular integral equation

u(x)−
∫ x

0

u(t)

(x− t)1/2
dt = x3/2 − 3

8
πx2, (38)

with the exact solution u(x) = x
3
2 .
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The solution for y(x) is obtained by the method in section 3 for m = 5, 10 and 20. In Table 2, we present
exact and approximate solutions of example 2 in some arbitrary points.
Example 3. Consider the equation

y(x) =
1√
x+ 1

+
π

8
− 1

4
arcsin(

1− x

1 + x
)− 1

4

∫ x

0

y(t)√
x− t

dt,

with exact solution y(x) = 1√
x+1

. The solution for y(x) is obtained by the method in section 3 for m = 5, 10

and 20. In Table 3, we report the exact and approximate solutions of example 3 and compare with the
numerical results of [19] (BPFs method) for k = 16 and [23] (Legendre wavelets method) for k = 1,M = 5
in some arbitrary points.
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Figure 3: Exact and numerical solutions of example 3 for M = 20.

Table 3: Comparison of approximate solutions of example 3 for M = 10, 20 and BPFs for k = 16 and Legendre wavelets for
k = 1,M = 5.

x M = 10 M = 20 [19] k = 16 [23] k = 1,M = 5 Exact

0 1.000048 1.000000 0.99734 0.999432 1
0.1 0.953471 0.953463 � � 0.953463
0.2 0.912860 0.912871 0.911748 0.91232 0.912871
0.3 0.877000 0.877058 � � 0.877058
0.4 0.845167 0.845159 0.848041 0.8453212 0.845154
0.5 0.816484 0.816497 � � 0.816497
0.6 0.790522 0.790569 0.788293 0.7905387 0.790569
0.7 0.766904 0.766960 � � 0.766965
0.8 0.745316 0.745356 0.746027 0.745342 0.745356
0.9 0.725499 0.725476 � � 0.725476
1 0.707137 0.707106 0.70423 0.707163 0.707107

5. Conclusions

In this paper, we proposed an advanced numerical model in solving Volterra Abel integral equation of
the second kind by means of orthogonal triangular functions. The approach can be extended to nonlinear
singular integral equations with little additional work. Further research along these lines is under progress
and will be reported in due time.
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