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1. Introduction 
Proportional integral derivative (PID) control which 

depends on a common feedback form is one of the earlier 

control types (Ang et al., 2005). The first usage of the PID 

controller was pneumatic devices and solid-state 

electronics where the traces are found in the 1940s, 

before arriving at today’s implementation of computer 

structures (Verma and Padhy, 2020). It is very popular in 

control system theory and applications because of its 

simple control structure, algorithm, good robustness, and 

stability. However, the PID controller has disadvantages 

in that it is not suitable for non-linear and long-time-

delay systems since the arrangement and investigation of 

suitable P, I, and D parameters and their combination is a 

cumbersome process. In the last few decades, by evolving 

computer technology and control theories, it was 

possible to incorporate the innovations of estimation 

algorithms and neural networks into the area of control 

problems (Guo et al., 2009; Hernández-Alvarado et al., 

2016; Adar, 2021).  

Adaptive algorithms, which can globally stabilize systems 

having spike noises, bounded external disturbances, and 

time-varying parameters with no limitation on signals in 

the closed-loop system, still exist in many commercial 

control systems (Huo and Xiong, 2019). Among them, the 

adaptive PID controllers are the most popular (Bolton, 

2015). An adaptive PID controller adapts to the process 

conditions on-line by making necessary changes in the 

values of Kp and Ki (Conker and Baltacioglu, 2020). This 

type of controller benefits from several advantages, such 

as the ability to ensure system stability, not excessively 

relying on models, achieving a given system target 

asymptotically, and improving itself in response to 

changes in system dynamics. 

Backpropagation neural network (BPN) is one of the 

most well-known and common methods which is used to 

minimize the error of possible objective functions 

(Oztekin and Ozgan, 2012; Chen and Gu, 2020). Although 

this approach seems suitable for control system 

identification problems, however, it has some drawbacks 

in real-time applications because of long training time 

and slow performance issues (Orozco-Tupacyupanqui et 

al., 2016). Another well-known approach in literature for 

minimizing the error is the LMS algorithm. This 

algorithm is generally used in detection and estimation 

theory (Antony Dhas and Chandrasekaran, 2019; Zayyani 

and Javaheri, 2021). It is also possible to use this 

algorithm for minimizing the error of the objective 

function (Akhyar and Omatu, 1993; Guo et al., 2009; 

Hernández-Alvarado et al., 2016). One of the main 

drawbacks of LMS is that it is sensitive to the input 

function, and this leads very difficultly to determine the 

learning rate that guarantees stability (Haykin, 2005). 

Further normalization of input power solves this 

problem (Haykin and Widrow, 2003). The adaptive 

neural network PID controller and adaptive least mean 

square PID controller, which are new kinds of controller 

have been offered and developed in order to get rid of the 

above-mentioned problems (Guo et al., 2009; Bai and 

Zhang, 2018). 

The integration of more than one algorithm has also 

demonstrated promising results in many adaptive 
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control problems, and further research is required in this 

direction. Different types and combinations of hybrid 

algorithms have been developed in many papers (Qiao et 

al., 2017; Mahmoodabadi et al., 2018; Moayedi et al., 

2019; Pandey et al., 2021; Carvalho et al., 2021; Tamer et 

al., 2021; Alkrwy et al., 2021, El-Nagar et al., 2022) to find 

gains of different controller types to enhance the system 

transient response as well as to ensure the robustness 

and stability of the system. Text detection and character 

recognition are successfully achieved by weighted naïve 

Bayes classifier and deep neural network (DNN)-based 

adaptive galactic swarm optimization (GSO) (Pandey et 

al., 2021). A hybrid neuro particle-based optimization 

(PSO) of the artificial neural network (ANN) is 

investigated for slope stability calculation (Moayedi et al., 

2019). A control optimization system based on hybrid 

intelligent technology is proposed to obtain the minimum 

energy consumption in the wastewater treatment 

process (Qiao et al., 2017). Compared to the traditional 

PID and data-driven adaptive optimal controller 

(DDAOC) methods, the simulation results of the proposed 

method show better performance. Another hybrid 

controller based on the robust decoupled sliding mode 

and adaptive feedback linearization is being studied 

(Mahmoodabadi et al., 2018). A control algorithm based 

on the weighting sum of the feedback linearization (FBL) 

and decoupled sliding mode control (DSMC) methods is 

proposed, as the main idea of this is to enhance efficiency 

and robustness against uncertainties. The results show 

that the dynamic responses obtained from the proposed 

hybrid controller are much faster than those obtained 

from the FBL, DSMC, and other approaches considered in 

the literature. In (Alkrwy et al., 2021), a new method for 

adjustment of the PID parameters to improve the 

tracking performance of DC motors also provides optimal 

stability by creating a hybrid PID - Crow search algorithm 

(CSA) predictive model for tuning parameters of the PID 

controller of DC motors. The presented results proved 

that the proposed hybrid system provides the best set of 

transient responses (rise time, stability time, and 

minimization in settling time and eliminating steady-

state error) specifications compared to four different CSA 

releases based on various performance response 

indicators. Moreover, it is compared with other tuning 

methods such as PSO-based console, and Ziegler Nichols 

tuning method. To handle a nonlinear system, a new 

hybrid deep learning neural network controller 

(HDLNNC) is proposed based on a self-organizing map of 

the Kohonen procedure and Hebbian learning (El-Nagar 

et al., 2022). It can be concluded that the robustness of 

the proposed hybrid controller has better performance 

and faster recovery ability from parameter variations 

and disturbance signals as compared to multilayer feed-

forward neural network controllers. In (Carvalho et al., 

2021), the development of a Fuzzy-PID hybrid controller 

to control a quadrotor Unmanned Aerial Vehicles’ (UAV) 

height stability is discussed. The performances of 

traditional PID and the proposed hybrid controller are 

also given. From the results, both PID and Fuzzy-PID 

controllers could perform the attitude control of the UAV. 

However, the hybrid control strategy obtained some 

advantages, such as self-adjustment through system 

variations. The PSO algorithm is implemented to 

optimize and tune PI controller parameters of DC bus 

voltage control of the shunt active power filter (Tamer et 

al., 2021). The reference current is obtained using an 

adaptive linear neuron. These networks are trained 

online using the LMS algorithm. The proposed hybrid 

control algorithm presents higher efficiency in terms of 

harmonic current mitigation, power factor correction, 

and DC-link voltage regulation. The comparison of hybrid 

algorithms compared to their origin algorithms is 

summarized in Table 1. 

The aim of this paper is the presentation of a novel 

hybrid scheme for the adaptive PID controller by 

combining two traditional algorithms which are BPN and 

LMS, to take advantage of both. These algorithms have 

not been previously combined in the literature not only 

for optimization but also for control problems. Generally, 

the proposed hybrid algorithm improves the transient 

response and has a much higher probability of 

convergence than that of BPN and it is faster than LMS  

 

Table 1. Performance of hybrid algorithms compared to their origin algorithms 

Hybridized Methods Performance comparisons 

DNN-GSO (Pandey et al. 2021) Improved precision, accuracy, and F1-score 

ANN-PSO (Moayedi et al. 2019) Improved R2 and lower RMSE 

PID-DDAOC (Qiao et al. 2017) Energy consumption decreased by 13.6% 

DMSC-FBL (Mahmoodabadi et al. 2018) Improved robustness and effectiveness 

CSA-PID (Alkrwy et al. 2021) 
Improved the steady-state error, step response stability, overshoot, rising 

time, and settling time 

HDLNNC (El-Nagar et al. 2022) Fast learning, stable controller, reduced system uncertainties 

Fuzzy-PID (Carvalho et al. 2021) Reduced overshoots and undershoots 

PSO-LMS-PI (Tamer et al. 2021) Higher efficiency, improved power factor 

 

It differs in a certain way from the aforementioned 

studies by using simultaneous weight vector updates to 

assign new PID gains. The performance metrics of the 

proposed method are found superior to the origin 

algorithms. The results also verify that this methodology 

provides a better response in periodic incremental and 
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decremental systems. However, it is difficult to guarantee 

its effectiveness in the first step response of some 

scenarios, because the hybrid algorithm essentially 

depends on the success of origin algorithms. 

To summarize, the main contributions of this paper are: 

 A hybrid framework is proposed, consisting of BPN 

and LMS algorithms, for improving the transient 

response of a linear system. 

 The performance of each algorithm and comparison 

with the hybrid algorithm is identified. 

 Different scenarios are tested to figure out the 

sensitivity of the hybrid algorithm. 

 A weighting coefficient is assigned to adjust the 

hybridization level, and the performances of 

different hybridizations are compared. 

 

2. Material and Methods 
2.1. System Structure and PID Controller 

The PID controller which combines the parallel 

connection of P, I, and D types of the controller is an 

essential element of a feedback control system. Even 

though different combinations of these control types 

exist such as P, I, D, PI, PD, and PID controllers, pure I and 

D controller are not recommended. The PID controllers 

are given relatively better results compared to the other 

type of controllers for a linear system (Jaleel and Thanvy, 

2013). 

The structure which is shown in Figure 1 is a closed loop 

of the discrete-time system. In this system, r(n) is input, 

e(n) is error signal, u(n) is control input, y(n) is output, 

and the plant is a controllable process. In our system, all 

variables are in the discrete-time domain. 

The equation (1) of the digital incremental PID controller 

is given as follows (Guo et al., 2009): 

 

 

 

 

 

Figure 1. Structure of the discrete-time system. 

 

𝑢(𝑛) = 𝑢(𝑛 − 1) + 𝐾𝑝(𝑒(𝑛) − 𝑒(𝑛 − 1))

+ 𝐾𝑖  𝑒(𝑛)

+ 𝐾𝑑(𝑒(𝑛) − 2𝑒(𝑛 − 1)

+  𝑒(𝑛 − 2)) 

(1) 

 

where Kp is proportional, Ki is integral, and Kd is the 

derivative gains of the PID controller. These parameters 

should be auto-adjusted. Three parameters describe the 

whole system adjustment, in this work, it will be 

mentioned how those should be adjusted in three 

different approaches. 

The implementation is applied to the linear system using 

MATLAB. The linear model of the system was given in 

equation 2: 

  

𝑦(𝑛 +  1)  =  0.998𝑦(𝑛) +  0.232𝑢(𝑛) (2) 

Where the system is a single input single output of a 

temperature control process for a water bath. The details 

of the plant and results of experiments on a physical 

system can be found in (Akhyar and Omatu, 1993). The 

experiments were carried out when the volume of a 

water bath was 7 liters, the power of the electric heater 

was 600 W, the references were 40 °C, and the sampling 

time was 30 seconds. The control input was limited to 

between 0 and 5 volts. They used a pure BPN-based 

adaptive PID controller and reported successful results 

for both simulation and implementation. 

This work adds a parallel running LMS algorithm to the 

previous version of the work (Akhyar and Omatu, 1993), 

providing efficient improvements in weight updates. To 

investigate the sensitivity of the hybrid algorithm, the 

simulations are repeated for different initial PID gains, 

learning rates, targets, and hybridization levels. It is 

important to note that the initial settings of PID are 

determined to make the system stable. The PID gains are 

not limited, because it is difficult and time-consuming, 

sometimes impossible to converge, for the proposed 

learning algorithms. 

2.2. Back Propagation Neural Network Algorithm 

A Back-Propagation neural network (BPN) is a multilayer 

feed-forward neural network algorithm. It is called a 

multilayer network since, in addition to the input layer 

and output layer, the model contains a hidden layer with 

a definitive amount of processing elements heavily 

connected to both layers. This hidden layer provides 

adaptivity between input and output in a nonlinear 

fashion. The feed-forward structure explains the learning 

scheme which feeds the signal from the input to the 

output layer through the hidden layer and provides a 

possible output signal. The difference between the output 

and the expected signal is fed backwardly through the 

network in order to arrange the weight parameters using 

the gradient descent algorithm (Dogo et al., 2018). In this 

paper, the neural net consists of an input layer of 3 inputs 

and 3 outputs at the output layer where the PID 

parameters are obtained.  

The algorithm of BPN is shown as follows: wij is the 

hidden layer’s weight value, xj (j=1,2,…. m) is the input of 

the network. Equations 3 and 4 are described as the 

hidden layer’s input and output relations. 

 

𝑛𝑒𝑡ℎ(𝑛) = ∑ 𝑤𝑗𝑖𝑥𝑗

𝑚

𝑗=1

 (3) 

 

𝑂𝑢𝑡𝑜ℎ(𝑛) =  𝑓(𝑛𝑒𝑡ℎ(𝑛))        ℎ = 1,2, … . . 𝑚 (4) 

 

The activation function of the hidden layer and the 

output layer is the sigmoid function. The equations of the 

neural network were given in equations 5, 6, and 7 (Guo 

et al., 2009): 

 

𝑓(𝑥) =
1

1 + 𝑒−𝑥 (5) 



Black Sea Journal of Engineering and Science 

BSJ Eng Sci / Mustafa DEMİRTAŞ                                                       90 
 

 

𝑛𝑒𝑡𝑜(𝑛) = ∑ 𝑤𝑖𝑘𝑂𝑢𝑡𝑜ℎ        ℎ = 1,2, … . 𝑚

𝑚

𝑘=1

 (6) 

 

𝑂𝑢𝑡𝑜𝑜(𝑛) = 𝑔(𝑛𝑒𝑡𝑜(𝑛)) (7) 

 

One of the BPN approaches for adapting the system 

parameters in different control structures has been 

described in (Akhyar and Omatu, 1993). In this approach, 

the plant is controlled and adopted using a BPN 

algorithm as it has been shown in Figure 2. Inputs of the 

neural network are time-delay added PID controller 

output, time-delay added plant output, and reference 

input. Three inputs of the PID controller are BPN outputs 

which are Kp, Ki, and Kd parameters, the other is a system 

error. In order to calculate the system error, reference 

input minus output is required. 

Normalized input data is used in the BPN algorithm. The 

numbers of reference nodes and neurons are 300 and 10, 

respectively. The learning parameter (µ) and momentum 

parameter are set as a variable. A sigmoidal function is 

used as an activation function for both the hidden layer 

and the output layer. 

2.3. Least Mean Square Algorithm 

The least mean square (LMS) algorithm is an adaptive 

algorithm based on the steepest descent method. It is a 

search algorithm which uses for estimating the gradient 

vector of the data. LMS algorithm has an iterative 

procedure for updating the weight vector which leads to 

determining the minimum mean square error.  It is 

widely used in various applications of adaptive filtering, 

detection, and estimation (Bai and Zhang, 2018; Spelta 

and Martins, 2020; Karchi and Kulkarni, 2021). 

LMS algorithm was given in equations 8, 9, and 10: 

 

𝑤(𝑛 + 1) = 𝑤(𝑛) + ∆𝑤(𝑛) (8) 

 

∆𝑤(𝑛) = 𝜇𝑒(𝑛)𝑥(𝑛) (9) 

 

𝑒(𝑛) = 𝑑(𝑛) − 𝑦(𝑛) (10) 

 

where xk is an input vector, wk is weight vector 

(k=0,1,…,N-1), e(n) is error signal, y(n) and d(n) are 

output and desired signal, respectively (Hernández-

Alvarado et al., 2016, Huo and Xiong, 2019). Equations 8, 

9, and 10 describe the process of the LMS algorithm. The 

μ is the learning rate and ∆w(n) is the updating 

difference of the weight vector which is produced in 

every cycle of the algorithm. The structure of PID based 

on the LMS controller was given in Figure 3. Every new 

weight vector multiplies with the PID parameters Kp, Ki, 

and Kd. 

 

 

 

 

 

 

 

 

 
 

Figure 2. System schematic of BPN-based PID. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Structure of adaptive LMS-based PID controller. 
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2.4. Hybrid Algorithm 

A hybrid algorithm is based on the parallel connection of 

the LMS and BPN algorithms. Each algorithm runs 

simultaneously and calculates its weight update value, 

then each result is multiplied with PID parameters Kp, Ki, 

and Kd at the same time. The structure of the hybrid 

adaptive PID (HAPID) algorithm was given in Figure. 4. 

The hybrid algorithm continues to run until the absolute 

value error is reduced to 1E-4. The resulting closed-loop 

system is necessarily stable for any randomly chosen 

initial weights in the range of [0, 1] and arbitrary PID 

gains within a specified range. However, with different 

system scenarios, the closed-loop system again must be 

stable, but the closed-loop performance is expected to 

vary within this entire stability region. In the hybrid 

update scheme, while the LMS weight update value is the 

same for each PID controller gain, BPN produces 

different update values for each PID controller gain. 

The updating algorithm (equations 11-16) of the hybrid 

scheme is given by: 

 

𝐾𝑝(𝑛) = 𝑃, 𝐾𝑖(𝑛) = 𝑖, 𝐾𝑑(𝑛) = 𝑑     𝑓𝑜𝑟      𝑛 = 0 (11) 

 

𝐿𝑀𝑆𝑢𝑝𝑑𝑎𝑡𝑒 = 𝑤𝑐 ∗ 𝑤(𝑛 + 1) (12) 

 

𝐵𝑃𝑁𝑢𝑝𝑑𝑎𝑡𝑒,𝑖 = 𝑤𝑐 ∗ 𝑂𝑢𝑡𝑜𝑜(𝑖),     𝑖 = 1 𝑡𝑜 3 (13) 

 

𝐾𝑝(𝑛 + 1) = 𝐾𝑝(𝑛) ∗ 𝐿𝑀𝑆𝑢𝑝𝑑𝑎𝑡𝑒 ∗ 𝐵𝑃𝑁𝑢𝑝𝑑𝑎𝑡𝑒,1 (14) 

 

𝐾𝑖(𝑛 + 1) = 𝐾𝑖(𝑛) ∗ 𝐿𝑀𝑆𝑢𝑝𝑑𝑎𝑡𝑒 ∗ 𝐵𝑃𝑁𝑢𝑝𝑑𝑎𝑡𝑒,2 (15) 

 

𝐾𝑑(𝑛 + 1) = 𝐾𝑑(𝑛) ∗ 𝐿𝑀𝑆𝑢𝑝𝑑𝑎𝑡𝑒 ∗ 𝐵𝑃𝑁𝑢𝑝𝑑𝑎𝑡𝑒,3 (16) 

 

where P, I, and D are initial values of PID gains, Kp, Ki, and 

Kd are adaptively updated PID gains in every cycle, wc is 

the weighting coefficient used to determine the 

hybridization level of HAPID, LMSupdate and BPNupdate are 

update vectors obtained because of LMS and BPN runs. 

The others parameters described in previous sections. 

3. Results and Discussion 
The response of all algorithms was systematically 

investigated using different parameters. Firstly, the 

learning rate of all algorithms was changed. In this case, 

the number of neurons, inputs, and momentum 

parameters that affect the BPN-based PID algorithm was 

kept constant. Thus, the learning rate effect was analyzed 

for each scenario. Moreover, the effect of the different 

initial system parameters for Kp, Ki, and Kd was observed 

for the learning rate at 0.9. Furthermore, different inputs 

are also implemented in Scenario 4. In scenarios 1 

through 4, the full effect (100%) of the LMS and BPN 

algorithm is used. Other scenarios (between Scenarios 5 

and 12) are created to test the first four scenarios with 

different hybridization levels. Two different levels of 

hybridization which are “50% BPN+50% LMS” and “25% 

BPN+75% LMS” are implemented. The variables of all 

scenarios are given in Table 2. 

The algorithm needs to have a good initial PID parameter 

set to start with in order to exhibit satisfactory 

performance. Thus, the PID parameters used in Scenario 

1 are initially determined by the Ziegler–Nichols tuning 

method (Patel, 2020). In other words, the current values 

of the Kp, Ki, and Kd gains are increased or decreased 

utilizing the proposed algorithms. Initial system 

parameters are then changed to show the effectiveness of 

the algorithm within stability limits. 

All algorithms have improved responses when the 

learning rate increases. In particular, the improvement of 

the LMS-based PID and the HAPID algorithm responses is 

more compared to BPN-based PID. Figure 5 shows the 

overall system and step response of all proposed 

algorithms for Scenario 1, respectively. The LMS-based 

PID and HAPID algorithm responses have an under-

damped response. The BPN-based PID algorithm has a 

deadbeat response. The rise of the LMS-based PID and 

HAPID algorithms is almost the same and is less 

compared to the BPN-based PID algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Structure of the HAPID algorithm. 
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Table 2. The system parameters for performance analysis 

 Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 

𝐾𝑝  1.4 1.4 1.4 1.4 1.4 1.4 

𝐾𝑖  0.05 0.05 0.5 0.5 0.05 0.05 

𝐾𝑑 0.01 0.01 0.01 0.01 0.01 0.01 

𝜇 0.5 0.9 0.9 0.9 0.5 0.5 

Inputs 1,2,3 1,2,3 1,2,3 2,4,3 1,2,3 1,2,3 

Hybrid 

Level 

LMS %100 %100 %100 %100 %50 %75 

BPN %100 %100 %100 %100 %50 %25 

 Scenario 7 Scenario 8 Scenario 9 Scenario 10 Scenario 11 Scenario 12 

𝐾𝑝  1.4 1.4 1.4 1.4 1.4 1.4 

𝐾𝑖  0.05 0.05 0.5 0.5 0.5 0.5 

𝐾𝑑 0.01 0.01 0.01 0.01 0.01 0.01 

𝜇 0.9 0.9 0.9 0.9 0.9 0.9 

Inputs 1,2,3 1,2,3 1,2,3 1,2,3 2,4,3 2,4,3 

Hybrid 

Level 

LMS %50 %75 %50 %75 %50 %75 

BPN %50 %25 %50 %25 %50 %25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Overall system response of scenario 1 (inset: 2nd-step response). 

 

The steady-state time of HAPID and BPN-based PID is 

almost equal, however, HAPID is faster than BPN-based 

PID. Considering the 2nd and 3rd-step responses, the BPN-

based PID has almost the same overshoot and steady-

state time. The LMS-based PID algorithm exhibits under-

damped responses with lower overshoot and longer 

steady-state time than the BPN-based PID. The HAPID 

has a deadbeat response and less steady-state time 

compared to other algorithms. 

Overall system response and 2nd-step response for 

increased learning rate (Scenario 2) are shown in Figure 

6. When the learning rate is increased, the step response 

of HAPID turns from an under-damped response to a 

dead-beat response and a faster algorithm compared to 

others. The overshoot of LMS-based PID reduces but 

steady-state time is longer compared to others. The 

response of the BPN-based PID algorithm does not affect 

by the change in the learning rate. Figure 7 shows the 

overall system, 1st, and 3rd-step responses of Scenario 3. 

In Scenario 3, we change the initial integral parameter of 

the PID controller. Step and magnitudes of inputs are the 

same as in Scenarios 1 and 2.  An interesting result was 

observed. The BPN based PID controller has a good 1st-

step response compared to others, however, when the 

step number increases the LMS-based PID and HAPID 

responses suppress the oscillations and get better 

compared to the BPN-based PID. Particularly, the HAPID 

algorithm has the best response to the 3rd-step. 

Similarly, Figure 8 shows the overall system, 1st, and 3rd-

step response, respectively. Initial parameters, learning 

rate, and the number of inputs in Scenario 4 are the same 

as in Scenario 3. Initial input magnitudes are increased to 

two and decreased step input is added, thus we can 

observe the change in initial response and both increased 

and decreased step inputs. The HAPID improves the 1st-

step response for increased initial input. Overall results 

for Scenario 4 show that the HAPID has the best response 

for all step responses, especially for a decreased step 

input. All algorithms have under-damped response, but 

the HAPID exhibits less overshoot and steady-state time. 
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Figure 6. Overall system response of scenario 2 (inset:1st-step response). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Overall system response of scenario 3 (inset (a): 1st-step response, inset (b):3rd-step response). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Overall system response of scenario 4 (inset (a):1st-step response, inset (b):3rd-step response). 
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Apart from the individual performance of algorithms, 

change in the hybridization level of algorithms with 

different scenarios are shown in Figures 9-12. Results 

obtained with Scenarios 1, 5, and 6 are compared in 

Figure 9. The HAPID, which has a full effect on all step 

inputs, gives better results in all aspects i.e. in terms of 

undershoot, overshoot, and settling time. Although the 

HAPID with full effect at the 1st-step input makes a little 

overshoot, it has improved the response to the dead-beat 

after the 2nd-step input. Other hybrid levels tended to 

improve their response at each step input, respectively. 

Scenario 5 exhibits a better result than Scenario 6. This 

result supports that the LMS algorithm affects more than 

the BPN algorithm for given system parameters. 

Figure 10 shows the performance comparison of 

Scenarios 2, 7, and 9. It is seen that the proposed HAPID 

with full effect does not yield better performance in all 

step inputs compared to the different hybridization 

levels. In the first two-step inputs, Scenario 2 showed the 

best response, while in the 3rd-step, Scenario 7 showed a 

better performance than the others. Scenario 2 does not 

show any improvement depending on the number of step 

inputs, while the other two scenarios exhibit a noticeable 

improvement. It is proof that performance can be 

improved with different hybridization according to the 

input signal. 

Convergence characteristics for Scenarios 3, 9, and 10 are 

shown in Figure 11. It is noted in simulation results that 

Scenario 3 performs better as compared to others, and 

only Scenario 3 can reach the zero steady-state error in 

the 1st-step response. As the effect of the algorithms 

decreases, fluctuations in their response increase. When 

the effect of the LMS and BPN algorithms is halved, the 

controller's response slows down, and the amount of 

overshoot and undershoot increases. Moreover, 

controller performance worsens when the effect of the 

BPN is increased and the LMS is decreased. The system 

with the same parameter has been simulated in the case 

of increased step amplitude and decremental input. The 

corresponding responses of Scenarios 4, 11, and 12 are 

given in Figure 12. In line with the results in Figure 11, 

Scenario 4 gives a very good response to suppress 

fluctuations. 

The performance comparison of HAPID is discussed 

below. However, hybridization based on LMS and BPN 

papers is found rare. Therefore, five different efficient 

and well-known optimization algorithms are 

implemented to test the effectiveness of this proposed 

algorithm. The results obtained by the proposed 

approach and existing LMS, BPN, GSO, CSA, and PSO-

based adaptive algorithms are shown in Table 3. The 

accuracy, precision, and F1-score of the proposed HAPID 

are found superior to the other five conventional 

optimization algorithms. 

The trade-off between computational complexity and 

accuracy is an important consideration for the LMS, BPN, 

and HAPID algorithms. The LMS algorithm has a lower 

computational complexity than the BPN algorithm. While 

it may be less powerful than the BPN algorithm, it is 

computationally efficient and suitable for applications 

with a large number of data samples. In contrast, the BPN 

algorithm is more computationally intensive than the 

LMS algorithm, but it is more powerful and versatile. The 

BPN algorithm can be used for various applications, 

which require higher accuracy and more complex 

decision-making. The HAPID algorithm, on the other 

hand, comes with a computational burden, as it adds 

more steps and parameters that increase the overall 

complexity of the algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Performance comparison between different hybridization levels for scenario 1, scenario 5, and scenario 6 

(inset (a):3rd-step response). 
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Figure 10. Performance comparison between different hybridization levels for scenario 2, scenario 7, and scenario 8 

(inset (a):3rd-step response). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 11. Performance comparison between different hybridization levels for scenario 3, scenario 9, and scenario 10 

(inset (a):3rd-step response). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 12. Performance comparison between different hybridization levels for scenario 4, scenario 11, and scenario 12 

(inset (a):3rd-step response). 
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Table 3. Performance comparison of different optimization algorithms with HAPID 

 Accuracy (%) Precision (%) F1-score (%) 

HAPID 97.2 93.6 94.0 

LMS 85.2 86.1 86.7 

BPN 90.3 91.3 86.9 

GSO 95.1 92.2 89.2 

CSA 94.0 92.4 91.7 

PSO 88.3 87.1 84.4 

 

The trade-off between computational complexity and 

accuracy for LMS, BPN, and HAPID depends on the 

specific application in question. For applications with a 

small number of data samples, the LMS algorithm may be 

more suitable due to its lower computational complexity. 

In contrast, for applications requiring high accuracy and 

complex decision-making, the BPN or HAPID algorithm 

may be necessary, even though they come with higher 

computational complexity. To summarize, balancing the 

trade-off between computational complexity and 

accuracy is critical when designing and evaluating LMS, 

BPN, and HAPID. A thorough evaluation of the 

algorithm's performance on benchmark datasets, 

including assessments of its accuracy, precision, speed, 

and scalability, can help determine whether the added 

complexity is justified in practice. 

 

4. Conclusion 
In this study, a novel hybrid approach for adaptively 

adjusting the Kp, Ki, and Kd parameters of the PID 

controller using parallel hybridization of LMS and BPN 

has been proposed for a linear system. Moreover, the 

effect of the learning rate, initial input, and decreased 

step has been investigated for overall system responses. 

Compared to other well-known algorithms, the accuracy, 

precision, and F1-score are efficiently improved by the 

proposed approach. The hybrid approach has shown 

better control performance for a high learning rate with 

less time than origin algorithms. The response of the 

hybrid approach is also better for a decreased step input. 

More comparisons between the different hybridization 

levels are also figured out. Overall, the HAPID is more 

adaptable in improving the steady-state error, the 

controller step response stability, overshoot, rising time, 

and settling time. Better performance can be obtained by 

defining a weighting coefficient to decide the 

contribution of algorithms for each step input. It can also 

experiment with running algorithms sequentially, such as 

first BPN then LMS, or by changing this order. One 

another idea for increasing the performance is the 

embedding of deep learning in such parallel 

hybridization. Other implementations and modifications 

of the BPN/LMS method are under investigation. 
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