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ABSTRACT 

It is easy to use possibility theory in modeling incomplete information. Robust optimization is an important tool 

when there is parameter uncertainty. Thus, in this study, we propose robust versions of the lower and upper 

possibilistic mean - variance (MV) models when there are multiple possibility distribution scenarios. Here, we use 

entropy as a diversification constraint. In addition, we reduce these robust versions to concave maximization 

problems. Furthermore, we generalize them for two periods portfolio selection problem by using fuzzy addition 

and multiplication. On the other hand, these generalizations are not concave maximization problems. Finally, we 

give an illustrative example by using different solvers in Gams modeling system. 

Keywords- Entropy, Fuzzy Arithmetic, Portfolio Selection, Possibility Theory, Robust Optimization 

 

ÖZ 

Tam olmayan bilgiyi modellemede olabilirlik teorisini kullanmak kolaydır. Parametre belirsizliği olduğunda 

dayanıklı optimizasyon önemli bir araçtır. Bu nedenle bu çalışmada, birden çok olabilirlik dağılımı senaryosu 

olduğunda alt ve üst olabilirlik ortalama - varyans (OV) modellerinin dayanıklı versiyonları önerilmiştir. Burada 

entropi çeşitlendirme kısıdı olarak kullanılmıştır. Bununla birlikte bu dayanıklı versiyonlar konkav maksimizasyon 

problemlerine indirgenmiştir. Üstelik bunlar, iki periyotlu portföy seçimi problemine bulanık toplama ve çarpma 

kullanılarak genelleştirilmiştir. Öte yandan bu genelleştirmeler, konkav maksimizasyon problemleri değildir. Son 

olarak, Gams modelleme sisteminde farklı çözücüler kullanılarak açıklayıcı bir örnek verilmiştir. 

Anahtar Kelimeler- Entropi, Bulanık Aritmetik, Portföy Seçimi, Olabilirlik Teorisi, Dayanıklı Optimizasyon 
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I.  INTRODUCTION 

Fuzzy set theory, which has a wide range of uses, is introduced by Zadeh in [1]. Possibility theory, which 

is one of them, is also proposed by Zadeh in [2] and enhanced by Dubois and Prade in [3]. Possibility theory is 

simpler than other uncertainty theories to deal with incomplete information [4]. Thus, it is widely used in many 

areas [5]. The possibilistic MV model is proposed in [6] for the one period case. Its variants, which are called as 

the lower and upper possibilistic MV models, are examined in [7,8]. There are also its different variants for the 

one period case such as two moments models proposed in [9] and a three moments model proposed in [10]. For 

the multi-period case, we list some of its variants in Table 1. Here, we also mention about the used fuzzy numbers 

for possibility distributions and whether entropy is used as a diversification constraint or not. 

Table 1. The variants of the possibilistic MV model for the multi-period case. 

Models Fuzzy Number Entropy 

The model in [11] Trapezoidal N/A 

The models in [12] Coherent trapezoidal N/A 

The models in [13] Trapezoidal N/A 

The models in [14] Triangular N/A 

The model in [15] LR type N/A 

The model in [16] Trapezoidal N/A 

The model in [17] Trapezoidal Shannon entropy 

The model in [18] Trapezoidal Shannon entropy 

The model in [19] Trapezoidal Possibilistic entropy 

The models in [20] Trapezoidal N/A 

The proposed robust versions Trapezoidal Shannon entropy 

The possibilistic mean - semi variance model is solved with the multiple particle swarm optimization 

[11]. The models solved with the genetic algorithm capture the heterogeneity of investor attitudes towards the 

stock market [12]. The models solved with the max-min approach consider several realistic constraints [13]. The 

models solved with the self adaptive differential evolution algorithm consider higher possibilistic moments [14]. 

The model solved with the hybrid differential evolution algorithm considers some real investment features [15]. 

The model solved with the multi-objective evolutionary algorithm considers the liquidity of stocks [16]. The model 

solved with the fuzzy goal programming considers investor’s different investment preferences [17]. The 

possibilistic mean - semi variance model is solved with the genetic algorithm [18]. The possibilistic mean - semi 

variance - entropy model is solved with the hybrid intelligent algorithm [19]. The models solved with genetic 

algorithm considers the possibilistic skewness [20].  

On the other hand, to the best of our knowledge, there is not a multi-period model where the upper (lower) 

possibilistic mean and variance definitions given in [7,8] are used exactly. To fill this gap in the literature, we 

propose robust versions of the lower (upper) possibilistic MV model for the one period or two periods’ cases where 

we use Shannon entropy as a diversification constraint. Here, we assume that there are multiple possibility 

distribution scenarios unlike the multi-period models in Table 1. In the one period case, we see that portfolio 

selection problem is reduced to concave maximization problems. Thus, the proposed robust versions can be solved 

with the known algorithms in the literature. In the two periods case, we see that portfolio selection problem is 

given with general nonlinear maximization problems. Here, we use Gams/Octeract, which finds global optima 

[21]. 

Due to the linearity of the lower (upper) possibilistic mean - variance model, its solution can be derived 

analytically. On the other hand, the diversified optimal portfolios can not be uniquely derived with these models 

when there are not extra constraints [22]. In this study, by using multiple possibility distributions scenarios, we 

propose their robust versions to overcome this drawback. The main two motivations of this study is to get the 

diversified optimal portfolios with the proposed robust versions and to generalize these robust versions for the two 

periods case. The originality and main contribution of this study is that this is the first study considering multiple 

possibility distributions scenarios for two periods portfolio selection problem. The main limitation of the proposed 

robust versions is that they can not be effectively used when the asset weights are allowed to be negative. This 

drawback is also valid for the lower (upper) possibilistic mean - variance model. That is, the proposed robust 

versions may be preferable for real-world portfolio selection only when the short positions are not allowed in 

portfolios.   

We organize the remainder of paper as follows. Firstly, we formulate the robust versions of the upper and 

lower possibilistic MV models for the one period case by using only fuzzy addition. Then, we generalize them for 
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the two periods case by using fuzzy addition and multiplication. Secondly, we give an explanatory example to 

illustrate and compare the proposed robust versions. Then, we conclude the paper. 

II.  METHODS 

A. The Proposed Robust Versions for the One Period Case 

In this study, we use trapezoidal fuzzy numbers for possibility distributions as in [7]. The membership 

function of trapezoidal fuzzy number (a, b, α, β) is as below. 

 

1 ,

1,

1 ,

0,

a t
a t a

a t b
A t

t b
b t b

else








   


 

 
    





                                                                                                              (1) 

In Figure 1, its membership function is shown graphically. 

 

Figure 1. The membership function of trapezoidal fuzzy number [23]. 

Let ri be defined as 1 plus simple return of ith asset. Let the possibility distribution of ri be (ai, bi, αi, βi). 

Then, the lower possibilistic mean and standard deviation of the portfolio are found as below where  pE   and 

 pSD   are the lower possibilistic mean and standard deviation operators respectively [7].  
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          (2a) 

The upper possibilistic mean and standard deviation of the portfolio are found as below where  pE   

and  pSD   are the upper possibilistic mean and standard deviation operators respectively [7]. 
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              (2b) 

Let c vary on [0,1]. Based on (2a), the lower possibilistic MV model can be given with the following 

linear maximization problem [22]. 
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                                                                                       (3a) 
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Based on (2b), the upper possibilistic MV model can be given with the following linear maximization 

problem [22]. 

 
1 1
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3 3 2

. 1
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i

i i

i
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w
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
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                                                                                       (3b) 

Shannon entropy, which is an uncertainty measure is defined with the following concave function. Its 

main advantage is to form well-diversified portfolios. Its unique minimum is achieved with zero value when the 

weight of an asset is equal to 1. Its unique maximum is achieved with ln(n) value when the weights of all assets 

are equal [24].  

 
1

ln
n

i i

i

SE w w w


                                                                                                                                (4) 

We use (4) as a diversification constraint in the proposed robust versions. Then, the feasible set is as 

below in the one period case. Here, w is the weight vector of assets and wi is the weight of ith asset. 

 
1

l
: 1 0 ln

2

n

i i

i

S w w and w and SE w n


 
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 

                                                                                (5) 

Let the possibility distribution of ri be (ai,k, bi,k, αi,k, βi,k) according to the kth expert. We define the robust 

version of (3a) as below. 

 , ,

,
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max min 1
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                                                                                    (6a) 

We define the robust version of (3b) as below. 
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We reduce (6a) to the following concave maximization problem. 
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                                                                               (7a) 

We reduce (6b) to the following concave maximization problem. 

 , ,

,
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z
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                                                                               (7b) 

In the one period case, the local maximums of (7a) and (7b) are also the global maximums of them since 

(7a) and (7b) are concave maximization problems. In this study, we use Gams/Conopt4 to find the local (global) 

maximums. 

B. The Proposed Robust Versions for the Two Periods Case 

In the two periods case, the feasible set is as below. Here, w (ω) is the weight vector in the first (second) 

period. 
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 
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                                                                     (8) 

Let r1,i be 1 plus simple return of ith asset in the first period and r2,i be 1 plus simple return of ith asset in 

the second period with the possibility distribution (a1,i,k, b1,i,k, α1,i,k, β1,i,k) and (a2,j,k, b2,j,k, α2,j,k, β2,j,k) respectively. 

Then, we find the lower possibilistic mean and standard deviation of portfolio as below respectively due to the 

linearity in (2a). 
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               (9) 

For positive two trapezoidal fuzzy numbers, we have the following results [25]. 
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 (10)                                  

Example: The fuzzy addition of (5, 5, 1, 2) and (6, 6, 3, 4) is equal to (11, 11, 4, 6). The fuzzy 

multiplication of them is approximately equal to (a, b, α, β) where a=5*6=30, b=5*6=30, α=5*3+1*6-1*3=18 and 

β=5*4+2*6+2*4=40. Notice that a-α is equal to (5-1)*(6-3)=12 while b+β is equal to (5+2)*(6+4)=70. 

We have the following results according to the kth expert based on (2a) and (10). 
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                                         (11a) 

We also have the following results according to the kth expert based on (2b) and (10). 
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We derive the lower possibilistic mean and standard deviation of portfolio as below respectively 

according to the kth expert based on (9) and (11a) where Γk
 and Πk

 are the square matrices. 
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                                                                                                                      (12) 

We determine transaction costs function as below similar to [14]. 
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 
1

, 0.001
n

i i

i

TC w w 


                                                                                                        (13) 

Based on (12) and (13), we generalize (7a) for the two periods case as below. 

 

,
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. . 1 ,
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i i
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Similarly, we generalize (7b) for the two periods case as below where Φk and Ωk are the square matrices, 

of which elements are as in (11b). 

 

,
1
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.  . 1 ,

n

i i
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T T

k k

z w
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


 




 

    


                                                                                      (14b) 

(14a) and (14b) are general nonlinear maximization problems. Hence, we find the global maximums of 

them by using Gams/Octeract. 

III.  RESULTS AND DISCUSSION 

In this section, we examine the proposed robust versions when there are four risky assets (A1, A2, A3 

and A4) and two experts. Possibility distributions for the first period are as below according to the first expert. 

   

   

1,1,1 1,2,1

1,3,1 1,4,1
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r r

r r

 

 
            (15) 

Possibility distributions for the first period are as below according to the second expert. 

   

   
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r r

r r

 

 
           (16) 

Possibility distributions for the second period are as below according to the first expert. 

   

   

2,1,1 2,2,1

2,3,1 2,4,1
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r r

r r

 

 
              (17) 

Possibility distributions for the second period are as below according to the second expert. 

   

   

2,1,2 2,2,2

2,3,2 2,4,2

1.0135,1.0135,0.0135, 0.0105 1.013,1.013,0.013, 0.019

1.0125,1.0125, 0.0125, 0.0095 1.0115,1.0115, 0.0115, 0.0085

r r

r r

 

 
             (18) 

In this study, we define O1 (O2) as the optimal solution of (7a) or (7b) for the first (second) period when 

there is not an entropy constraint, EO1 (EO2) as the optimal solution of (7a) or (7b) for the first (second) period 

when there is an entropy constraint, TEO1 (TEO2) as the optimal solution of (14a) or (14b) for the first (second) 

period when there is an entropy constraint. 

A. The One Period Case 

We find the unique optimal solution of (7a) as in Table 2 for two periods separately if c is equal to 0. 
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Table 2. Optimal solution of (7a) when c is equal to 0. 

Assets O1 EO1 O2 EO2 

A1 0.5714 0.5708 0 0 

A2 0 0 0.5714 0.5708 

A3 0.4286 0.4277 0 0.0015 

           A4 0 0.0015 0.4286 0.4277 

We find the unique optimal solution of (7a) as in Table 3 for two periods separately if c is equal to 0.5 or 

1. 

Table 3. Optimal solution of (7a) when c is equal to 0.5 or c=1. 

Assets O1 EO1 O2 EO2 

A1 0 0 0.6667 0.6606 

A2 0.6667 0.6606 0 0 

A3 0.3333 0.3272 0 0.0122 

           A4 0 0.0122 0.3333 0.3272 

We find the unique optimal solution of (7b) as in Table 4 for two periods separately if c is equal to 0. 

Table 4. Optimal solution of (7b) when c is equal to 0. 

Assets O1 EO1 O2 EO2 

A1 0 0.0076 0.6667 0.635 

A2 0.6667 0.635 0 0.0076 

A3 0.3333 0.3574 0 0.3574 

         A4 0 0 0.3333 0 

We find the unique optimal solution of (7b) as in Table 5 for two periods separately if c is equal to 0.5. 

Table 5. Optimal solution of (7b) when c is equal to 0.5. 

Assets O1 EO1 O2 EO2 

A1 0 0.0012 0.5653 0.5635 

A2 0.5653 0.5635 0 0.0012 

A3 0 0 0.4347 0.4353 

           A4 0.4347 0.4353 0 0 

We find the unique optimal solution of (7b) as in Table 6 for two periods separately if c is equal to 1.  

Table 6. Optimal solution of (7b) when c is equal to 1. 

Assets O1 EO1 O2 EO2 

A1 0.4231 0.422 0 0.0018 

A2 0 0.0018 0.4231 0.422 

A3 0 0 0.5769 0.5762 

           A4 0.5769 0.5762 0 0 

Based on the tables given in this subsection, we can say that O1 (O2) and EO1 (EO2) are nearly the same 

and the proposed robust versions give sufficiently diversified optimal portfolios even if there is not an entropy 

constraint.  

B. The Two Periods Case 

We find the optimal solution of (14a) as in Table 7 when c is equal to 0. 

Table 7. Optimal solution of (14a) when c is equal to 0. 

Assets TEO1 EO1 TEO2 EO2 

A1 0.2585 0.5708 0.2585 0 

A2 0.2415 0 0.2415 0.5708 

A3 0.2969 0.4277 0.2969 0.0015 

           A4 0.2031 0.0015 0.2031 0.4277 

We find the optimal solution of (14a) as in Table 8 when c is equal to 0.5. 

 



BŞEÜ Fen Bilimleri Dergisi / BSEU Journal of Science, 2023, 10(2): 373-382 

F. Göktaş 

 

 380 

 

Table 8. Optimal solution of (14a) when c is equal to 0.5. 

Assets TEO1 EO1 TEO2 EO2 

A1 0.3661 0 0.3661 0.6606 

A2 0.1339 0.6606 0.1339 0 

A3 0.1518 0.3272 0.1518 0.0122 

           A4 0.3482 0.0122 0.3482 0.3272 

We find the optimal solution of (14a) as in Table 9 when c is equal to 1. 

Table 9. Optimal solution of (14a) when c is equal to 1. 

Assets TEO1 EO1 TEO2 EO2 

A1 0.1190 0 0.1190 0.6606 

A2 0.3809 0.6606 0.3809 0 

A3 0.25 0.3272 0.25 0.0122 

           A4 0.25 0.0122 0.25 0.3272 

We find the optimal solution of (14b) as in Table 10 when c is equal to 0. 

Table 10. Optimal solution of (14b) when c is equal to 0. 

Assets TEO1 EO1 TEO2 EO2 

A1 0.5 0.0076 0.5 0.635 

A2 0.0002 0.635 0.0002 0.0076 

A3 0 0.3574 0 0 

           A4 0.4998 0 0.4998 0.3574 

We find the optimal solution of (14b) as in Table 11 when c is equal to 0.5. 

Table 11. Optimal solution of (14b) when c is equal to 0.5. 

Assets TEO1 EO1 TEO2 EO2 

A1 0.3889 0.0012 0.3889 0.5635 

A2 0.1112 0.5635 0.1112 0.0012 

A3 0.2962 0 0.2962 0.4353 

           A4 0.2037 0.4353 0.2037 0 

We find the optimal solution of (14b) as in Table 12 when c is equal to 1. 

Table 12. Optimal solution of (14b) when c is equal to 1. 

Assets TEO1 EO1 TEO2 EO2 

A1 0.2202 0.422 0.2202 0.0018 

A2 0.2798 0.0018 0.2798 0.422 

A3 0.1756 0 0.1756 0.5762 

           A4 0.3244 0.5762 0.3244 0 

Based on the tables given in this subsection, we can say that TEO1 (TEO2) and EO1 (EO2) are not close 

to each other whereas TEO1 and TEO2 are nearly the same. This is because, there are the effects of transaction 

costs and fuzzy multiplication in the two periods case. We also note that TEO1 (TEO2) is more diversified than 

EO1 (EO2). For these reasons, the use of (14a) or (14b) is a better choice than the use of (7a) or (7b) for two 

periods separately especially when the experts have different predictions about two consecutive periods. 

C. Comparisons of the Existing Models and Their Proposed Robust Versions 

In this subsection, we compare the given results with the results of the lower (upper) possibilistic MV 

model where L1 is the optimal solution of (3a) or (3b) for the first period according to the first expert. That is, the 

possibility distributions are as in (15) for the existing models. For the other cases, we have the similar results. 

We find the unique optimal solution of (3a) as in Table 13 when c is equal to 0. 

 

 

 



BŞEÜ Fen Bilimleri Dergisi / BSEU Journal of Science, 2023, 10(2): 373-382 

F. Göktaş 

 

 381 

 

Table 13. Optimal solution of (3a) when c is equal to 0. 

Assets L1 O1 EO1 TEO1 

A1 1 0.5714 0.5708 0.2585 

A2 0 0 0 0.2415 

A3 0 0. 0.4277 0.2969 

           A4 0 0.4286 0.0015 0.2031 

We find the unique optimal solution of (3a) as in Table 14 when c is equal to 0.5. 

Table 14. Optimal solution of (3a) when c is equal to 0.5. 

Assets L1 O1 EO1 TEO1 

A1 0 0 0 0.3661 

A2 0 0.6667 0.6606 0.1339 

A3 1 0.3333 0.3272 0.1518 

           A4 0 0 0.0122 0.3482 

We find the unique optimal solution of (3a) as in Table 15 when c is equal to 1. 

Table 15. Optimal solution of (3a) when c is equal to 1. 

Assets L1 O1 EO1 TEO1 

A1 0 0. 0 0.1190 

A2 0 0.6667 0.6606 0.3809 

A3 1 0.3333 0.3272 0.25 

           A4 0 0 0.0122 0.25 

We find the unique optimal solution of (3b) as in Table 16 when c is equal to 0. 

Table 16. Optimal solution of (3b) when c is equal to 0. 

Assets L1 O1 EO1 TEO1 

A1 1 0 0.0076 0.5 

A2 0 0.6667 0.635 0.0002 

A3 0 0.3333 0.3574 0 

           A4 0 0 0 0.4998 

We find the unique optimal solution of (3b) as in Table 17 when c is equal to 0.5. 

Table 17. Optimal solution of (3b) when c is equal to 0.5. 

Assets L1 O1 EO1 TEO1 

A1 0 0 0.0012 0.3889 

A2 0 0.5653 0.5635 0.1112 

A3 0 0 0 0.2962 

           A4 1 0.4347 0.4353 0.2037 

We find the unique optimal solution of (3b) as in Table 18 when c is equal to 1. 

Table 18. Optimal solution of (3b) when c is equal to 1. 

Assets L1 O1 EO1 TEO1 

A1 0 0.4231 0.422 0.2202 

A2 0 0 0.0018 0.2798 

A3 0 0 0 0.1756 

           A4 1 0.5769 0.5762 0.3244 

Based on the tables given in this subsection, we can say that L1 is not diversified unlike O1, EO1 and 

TEO1. That is, by using the proposed robust versions, we get the diversified optimal portfolios, which are robust 

to the worst-case scenario by definition. Thus, we believe that the proposed robust versions are superior to the 

existing models especially for conservative investors. 

IV.  CONCLUSIONS 

In this study, we propose the robust versions of the lower (upper) possibilistic MV model for the one 

period or two periods’ cases when there are multiple possibility distribution scenarios based on the different expert 
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opinions. The main limitation of these models is that they can not be effectively used when the short positions are 

allowed in portfolios. It is sufficient to make local optimization in the one period case whereas it is necessary to 

make global optimization in the two periods case. Because we use only fuzzy addition in the one period case 

whereas we use fuzzy addition and multiplication in the two periods case. That is, two periods case should be 

preferred when applicable due to conveying higher information. In our illustrative example, we get diversified 

optimal portfolios even if there is not an entropy constraint. Furthermore, the diversified optimal portfolios are 

robust to the worst-case scenario by definition. For these reasons, we conclude that the proposed robust versions 

are more preferable alternatives especially for conservative investors.  
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