Qualitative Behavior of the Difference Equation

$$
x_{n+1}=\frac{\alpha x_{n-m}+\eta x_{n-k}+\sigma x_{n-l}+\delta x_{n}}{\beta+\gamma x_{n-k} x_{n-l}\left(x_{n-k}+x_{n-l}\right)}
$$

Mohamed Abd El-Moneam
Mathematics Department, Faculty of Science, Jazan University, Kingdom of Saudi Arabia

Article Info

Keywords: Difference equations, Rational difference equations, qualitative properties of solutions of difference equations, Equilibrium, Oscillates, Prime period two solution, Globally asymptotically stable
2010 AMS: 39A10, 39A11, 39A99, 34 C99
Received: 19 January 2023
Accepted: 5 May 2023
Available online: 25 June 2023

Abstract

In this paper, we discuss some qualitative properties of the positive solutions to the following rational nonlinear difference equation $x_{n+1}=\frac{\alpha x_{n-m}+\eta x_{n-k}+\sigma x_{n-l}+\delta x_{n}}{\beta+\gamma x_{n-k} x_{n-l}\left(x_{n-k}+x_{n-l}\right)}, n=0,1,2, \ldots$ where the parameters $\alpha, \beta, \gamma, \delta, \eta, \sigma \in(0, \infty)$, while m, k, l are positive integers, such that $m<k<l$. The initial conditions $x_{-m}, \ldots, x_{-k}, \ldots, x_{-l}, \ldots, x_{-1}, \ldots, x_{0}$ are arbitrary positive real numbers. We will give some numerical examples to illustrate our results.

1. Introduction

The study of solution of nonlinear rational recursive sequence of high order is quite challenging and rewarding. Every dynamical system $a_{n+1}=f\left(a_{n}\right)$ determines a difference equation and vice versa. An interesting class of nonlinear difference equations is the class of solvable difference equations, and one of the interesting problems is to find equations that belong to this class and to solve them in closed form or in explicit form [1-25]. Note that most of these equation often show increasingly complex behavior such as the existence of a bounded. The qualitative study of difference equations is a fertile research area and increasingly attracts many mathematicians. This topic draws its importance from the fact that many real life phenomena are modeled using difference equations. The applications of these difference equations can be found on the economy, biology and so on. It is known that nonlinear difference equations are capable of producing a complicated behavior regardless its order. The objective of this article is to investigate some qualitative behavior of the solutions of the nonlinear difference equation

$$
\begin{equation*}
x_{n+1}=\frac{\alpha x_{n-m}+\eta x_{n-k}+\sigma x_{n-l}+\delta x_{n}}{\beta+\gamma x_{n-k} x_{n-l}\left(x_{n-k}+x_{n-l}\right)}, \quad n=0,1,2, \ldots \tag{1.1}
\end{equation*}
$$

where the parameters $\alpha, \beta, \gamma, \delta, \eta, \sigma \in(0, \infty)$, while m, k, l are positive integers, such that $m<k<l$. The initial conditions $x_{-m}, \ldots, x_{-k}, \ldots, x_{-l}, \ldots, x_{-1}, \ldots, x_{0}$ are arbitrary positive real numbers equation (1.1) has been discussed in [26] when $m=1, k=2$ and $l=4$, and in [27] when $\delta=0$, where some global behavior of the more general nonlinear rational difference equation (1.1), we need the following well-known definitions and results [28-34].

Definition 1.1. A difference equation of order $(k+1)$ is of the form

$$
\begin{equation*}
x_{n+1}=F\left(x_{n}, x_{n-1}, \ldots, x_{-k}\right), \quad n=0,1,2, \ldots \tag{1.2}
\end{equation*}
$$

where F is a continuous function which maps some set J^{k+1} into J and J is a set of real numbers. An equilibrium point \tilde{x} of this equation is a point that satisfies the condition $\tilde{x}=F(\tilde{x}, \tilde{x}, \ldots, \widetilde{x})$. That is, the constant sequence $\left\{x_{n}\right\}_{n=-k}^{\infty}$ with $x_{n}=\tilde{x}$ for all $n \geq-k$ is a solution of that equation.
Definition 1.2. Let $\widetilde{x} \in(0, \infty)$ be an equilibrium point of the difference equation (1.2). Then
(i) An equilibrium point \widetilde{x} of the difference equation (1.2) is called locally stable iffor every $\varepsilon>0$ there exists $\delta>0$ such that, if $x_{-k}, \ldots, x_{-1}, x_{0} \in(0, \infty)$ with $\left|x_{-k}-\widetilde{x}\right|+\ldots+\left|x_{-1}-\widetilde{x}\right|+\left|x_{0}-\widetilde{x}\right|<\delta$, then $\left|x_{n}-\tilde{x}\right|<\varepsilon$ for all $n \geq-k$.
(ii) An equilibrium point \widetilde{x} of the difference equation (1.2) is called locally asymptotically stable if it is locally stable and there exists $\gamma>0$ such that, if $x_{-k}, \ldots, x_{-1}, x_{0} \in(0, \infty)$ with $\left|x_{-k}-\widetilde{x}\right|+\ldots+\left|x_{-1}-\widetilde{x}\right|+\left|x_{0}-\widetilde{x}\right|<\gamma$, then

$$
\lim _{n \rightarrow \infty} x_{n}=\widetilde{x}
$$

(iii) An equilibrium point \tilde{x} of the difference equation (1.2) is called a global attractor if for every $x_{-k}, \ldots, x_{-1}, x_{0} \in(0, \infty)$ we have

$$
\lim _{n \rightarrow \infty} x_{n}=\widetilde{x}
$$

(iv) An equilibrium point \tilde{x} of the equation (1.2) is called globally asymptotically stable if it is locally stable and a global attractor.
(v) An equilibrium point \tilde{x} of the difference equation (1.2) is called unstable if it is not locally stable.

Definition 1.3. A sequence $\left\{x_{n}\right\}_{n=-k}^{\infty}$ is said to be periodic with period p if $x_{n+p}=x_{n}$ for all $n \geq-k$. A sequence $\left\{x_{n}\right\}_{n=-k}^{\infty}$ is said to be periodic with prime period p if p is the smallest positive integer having this property.
Definition 1.4. We say that a sequence $\left\{x_{n}\right\}_{n=-l}^{\infty}$ is bounded and persisting if there exists positive constants m and M such that

$$
m \leq x_{n} \leq M \quad \text { for all } \quad n \geq-k
$$

Definition 1.5. A positive semicycle of $\left\{x_{n}\right\}_{n=-k}^{\infty}$ consists of "a string" of terms $x_{l}, x_{l+1}, \ldots, x_{m}$ all greater than or equal to \tilde{x}, with $l \geq-k$ and $m \leq \infty$ such that

$$
\text { either } \quad l=-k \quad \text { or } \quad l>-k \quad \text { and } \quad x_{l-1}<\tilde{x}
$$

and

$$
\text { either } m=\infty \quad \text { or } \quad m<\infty \quad \text { and } \quad x_{m+1}<\tilde{x} .
$$

A negative semicycle of $\left\{x_{n}\right\}_{n=-k}^{\infty}$ consists of "a string" of terms $x_{l}, x_{l+1}, \ldots, x_{m}$ all less than \tilde{x}, with $l \geq-k$ and $m \leq \infty$ such that

$$
\text { either } \quad l=-k \quad \text { or } \quad l>-k \quad \text { and } \quad x_{l-1} \geq \tilde{x}
$$

and

$$
\text { either } \quad m=\infty \quad \text { or } \quad m<\infty \quad \text { and } \quad x_{m+1} \geq \tilde{x}
$$

Definition 1.6. The linearized equation of equation (1.2) about the equilibrium point \tilde{x} is the linear difference equation

$$
\begin{equation*}
y_{n+1}=\sum_{i=0}^{k} \frac{\partial F(\widetilde{x}, \tilde{x}, \ldots, \tilde{x})}{\partial x_{n-i}} y_{n-i} \tag{1.3}
\end{equation*}
$$

Now assume that the characteristic equation associated with equation (1.3) is

$$
\begin{equation*}
p(\lambda)=p_{0} \lambda^{k}+p_{1} \lambda^{k-1}+\ldots+p_{k-1} \lambda+p_{k}=0 \tag{1.4}
\end{equation*}
$$

where

$$
p_{i}=\partial F(\widetilde{x}, \widetilde{x}, \ldots, \widetilde{x}) / \partial x_{n-i}
$$

Theorem 1.7. Assume that $p_{i} \in R, i=1,2, \ldots$, and $k \in\{0,1,2, \ldots\}$. Then

$$
\sum_{i=1}^{k}\left|p_{i}\right|<1
$$

is a sufficient condition for the asymptotic stability of the difference equation

$$
x_{n+k}+p_{1} x_{n+k-1}+\ldots+p_{k} x_{n}=0, \quad n=0,1,2, \ldots
$$

Theorem 1.8 (The Linearized Stability Theorem). Suppose F is a continuously differentiable function defined on an open neighbourhood of the equilibrium \tilde{x}. Then the following statements are true.
(i) If all roots of the characteristic equation (1.4) of the linearized equation (1.3) have an absolute value less than one, then the equilibrium point \tilde{x} is locally asymptotically stable.
(ii) If at least one root of equation (1.4) has an absolute value greater than one, then the equilibrium point \tilde{x} is unstable.

2. Change of Variables

By using the change of variables $x_{n}=\left(\frac{\beta}{\gamma}\right)^{\frac{1}{3}} y_{n}$, the equation (1.1) reduces to the following difference equation

$$
\begin{equation*}
y_{n+1}=\frac{r y_{n-m}+t y_{n-k}+u y_{n-l}+s y_{n}}{1+y_{n-k} y_{n-l}\left(y_{n-k}+y_{n-l}\right)}, \quad n=0,1,2, \ldots \tag{2.1}
\end{equation*}
$$

where $r=\frac{\alpha}{\beta}>0, s=\frac{\delta}{\beta}>0, u=\frac{\sigma}{\beta}>0, t=\frac{\eta}{\beta}>0$ and the initial conditions $y_{-l}, \ldots, y_{-k}, \ldots, y_{-m}, \ldots, y_{-l}, y_{0} \in(0, \infty)$. In the next section, we shall study the global behavior of equation (2.1).

3. The Dynamics of Equation (2.1)

The equilibrium points \tilde{y} of the equation (2.1) are the positive solutions of the equation

$$
\begin{equation*}
\tilde{y}=\frac{[r+s+t+u] \tilde{y}}{1+2 \tilde{y}^{3}} . \tag{3.1}
\end{equation*}
$$

Thus $\tilde{y}_{1}=0$ is always an equilibrium point of the equation (2.1). If $(r+s+t+u)>1$, then the only positive equilibrium point \tilde{y}_{2} of equation (2.1) is given by

$$
\begin{equation*}
\tilde{y}_{2}=\left(\frac{[r+s+t+u]-1}{2}\right)^{\frac{1}{3}} \tag{3.2}
\end{equation*}
$$

Let us introduce a continuous function $F:(0, \infty)^{4} \rightarrow(0, \infty)$ which is defined by

$$
\begin{equation*}
F\left(v_{0}, v_{1}, v_{2}, v_{3}\right)=\frac{r v_{0}+s v_{1}+t v_{2}+u v_{3}}{1+v_{2}^{2} v_{3}+v_{2} v_{3}^{2}} . \tag{3.3}
\end{equation*}
$$

Consequently, we get

$$
\begin{gathered}
\frac{\partial F\left(v_{0}, v_{1}, v_{2}, v_{3}\right)}{\partial v_{0}}=\frac{r}{1+v_{2}^{2} v_{3}+v_{2} v_{3}^{2}}, \\
\frac{\partial F\left(v_{0}, v_{1}, v_{2}, v_{3}\right)}{\partial v_{1}}=\frac{s}{1+v_{2}^{2} v_{3}+v_{2} v_{3}^{2}}, \\
\frac{\partial F\left(v_{0}, v_{1}, v_{2}, v_{3}\right)}{\partial v_{2}}=\frac{t\left(1+v_{2}^{2} v_{3}+v_{2} v_{3}^{2}\right)-\left(r v_{0}+s v_{1}+t v_{2}\right)\left(2 v_{2} v_{3}+v_{3}^{2}\right)}{\left(1+v_{2}^{2} v_{3}+v_{2} v_{3}^{2}\right)^{2}} \\
\frac{\partial F\left(v_{0}, v_{1}, v_{2}, v_{3}\right)}{\partial v_{3}}=\frac{u\left(1+v_{2}^{2} v_{3}+v_{2} v_{3}^{2}\right)-\left(r v_{0}+s v_{1}+t v_{2}+u v_{3}\right)\left(v_{2}^{2}+2 v_{2} v_{3}\right)}{\left(1+v_{2}^{2} v_{3}+v_{2} v_{3}^{2}\right)^{2}}
\end{gathered}
$$

At $\tilde{y}_{1}=0$, we have $\frac{\partial F(0,0,0,0)}{\partial v_{0}}=r, \frac{\partial F(0,0,0,0)}{\partial v_{1}}=s, \frac{\partial F(0,0,0,0)}{\partial v_{2}}=t, \frac{\partial F(0,0,0,0)}{\partial v_{3}}=u$, and the linearized equation of equation (2.1) about $\tilde{y}_{1}=0$, is the equation

$$
\begin{equation*}
z_{n+1}-\rho_{0} z_{n}-\rho_{1} z_{n-m}-\rho_{2} z_{n-k}-\rho_{3} z_{n-l}=0 \tag{3.4}
\end{equation*}
$$

where $\rho_{0}=s, \rho_{1}=r, \rho_{2}=t, \rho_{3}=u$. At $\tilde{y}_{2}=\left(\frac{[r+s+t+u]-1}{2}\right)^{\frac{1}{3}}$, we have

$$
\begin{gathered}
\frac{\partial F\left(\tilde{y}_{2}, \tilde{y}_{2}, \tilde{y}_{2}, \tilde{y}_{2}\right)}{\partial v_{0}}=\frac{r}{1+2 \tilde{y}_{2}^{3}}=\frac{r}{1+([r+s+t+u]-1)}=\frac{r}{[r+s+t+u]}, \\
\frac{\partial F\left(\tilde{y}_{2}, \tilde{y}_{2}, \tilde{y}_{2}, \tilde{y}_{2}\right)}{\partial v_{1}}=\frac{s}{1+2 \tilde{y}_{2}^{3}}=\frac{s}{1+([r+s+t+u]-1)}=\frac{s}{[r+s+t+u]}, \\
\frac{\partial F\left(\tilde{y}_{2}, \tilde{y}_{2}, \tilde{y}_{2}, \tilde{y}_{2}\right)}{\partial v_{2}}=\frac{2 t-3([r+s+t+u]-1)}{2[r+s+t+u]}
\end{gathered}
$$

$$
\frac{\partial F\left(\tilde{y}_{2}, \tilde{y}_{2}, \tilde{y}_{2}, \tilde{y}_{2}\right)}{\partial v_{3}}=\frac{2 u-3([r+s+t+u]-1)}{2[r+s+t+u]}
$$

And the linearized equation of equation (2.1) about $\tilde{y}_{2}=\left(\frac{[r+s+t+u]-1}{2}\right)^{\frac{1}{3}}$ is the equation

$$
\begin{equation*}
z_{n+1}-\rho_{0} z_{n}-\rho_{1} z_{n-m}-\rho_{2} z_{n-k}-\rho_{3} z_{n-l}=0 \tag{3.5}
\end{equation*}
$$

where $\rho_{0}=\frac{s}{[r+s+t+u]}, \rho_{1}=\frac{r}{[r+s+t+u]}, \rho_{2}=\frac{2 t-3([r+s+t+u]-1)}{2[r+s+t+u]}, \rho_{3}=\frac{2 u-3([r+s+t+u]-1)}{2[r+s+t+u]}$.
Theorem 3.1. (i) If $[r+s+t+u]<1$, then the equilibrium point $\tilde{y}_{1}=0$ is locally asymptotically stable.
(ii) If $[r+s+t+u]>1$, then the equilibrium point $\tilde{y}_{1}=0$ is unstable.
(iii) If $[r+s+t+u]>1,2 t>3([r+s+t+u]-1)$, then the equilibrium point $\tilde{y}_{2}=\left(\frac{[r+s+t+u]-1}{2}\right)^{\frac{1}{3}}$ is unstable.

Proof. With reference to Theorem 1.7, we deduce from equation (3.5) that $\left|\rho_{0}\right|+\left|\rho_{1}\right|+\left|\rho_{2}\right|+\left|\rho_{3}\right|=[r+s+t+u]<1$, and then the proof of parts (i), (ii) follow. Also, from equation (3.5) we deduce for $[r+s+t+u]>1$ that $\left|\rho_{0}\right|+\left|\rho_{1}\right|+\left|\rho_{2}\right|+\left|\rho_{3}\right|=$ $1+\frac{3([r+s+t+u]-1)}{[r+s+t+u]}>1$, and hence the proof of part (iii) follows.

Theorem 3.2. Assume that $[r+s+t+u]>1$, and let $\left\{y_{n}\right\}_{n=-l}^{\infty}$ be a solution of equation (2.1) such that

$$
\begin{align*}
& y_{-l}, y_{-l+2}, \ldots, y_{-l+2 n}, \ldots, y_{-k}, y_{-k+2}, \ldots, y_{-k+2 n}, \ldots, \\
& y_{-m+1}, y_{-m+3}, \ldots, y_{-m+2 n+1}, \ldots, y_{0} \geq \tilde{y}_{2} \\
& \text { and } \tag{3.6}\\
& y_{-l+1}, y_{-l+3}, \ldots, y_{-l+2 n+1}, \ldots, y_{-k+1}, y_{-k+3}, \ldots, \\
& y_{-k+2 n+1}, \ldots, y_{-m}, y_{-m+2}, \ldots, y_{-m+2 n}, \ldots, y_{-1}<\tilde{y}_{2} .
\end{align*}
$$

Then $\left\{y_{n}\right\}_{n=-l}^{\infty}$ oscillates about $\tilde{y}_{2}=\left(\frac{[r+s+t+u]-1}{2}\right)^{\frac{1}{3}}$ with a semicycle of length one.
Proof. Assume that (3.6) holds. Then

$$
y_{1}=\frac{r y_{-m}+s y_{0}+t y_{-k}+u y_{-l}}{1+y_{-k} y_{-l}\left(y_{-k}+y_{-l}\right)}<\frac{r y_{-m}+s y_{0}+t y_{-k}+u y_{-l}}{1+2 \tilde{y}_{2}^{3}}<\frac{[r+s+t+u] \tilde{y}_{2}}{1+([r+s+t+u]-1)}=\tilde{y}_{2}
$$

and

$$
y_{2}=\frac{r y_{-m+1}+s y_{1}+t y_{-k+1}+u y_{-l+1}}{1+y_{-k+1} y_{-l+1}\left(y_{-k+1}+y_{-l+1}\right)} \geq \frac{r y_{-m+1}+s y_{1}+t y_{-k+1}+u y_{-l+1}}{1+2 \tilde{y}_{2}^{3}} \geq \frac{[r+s+t+u] \tilde{y}_{2}}{1+([r+s+t+u]-1)}=\tilde{y}_{2}
$$

and hence the proof follows by induction.
Theorem 3.3. Assume that $[r+s+t+u]<1$, then the equilibrium point $\tilde{y}_{1}=0$ of equation (2.1) is globally asymptotically stable.

Proof. We have shown in Theorem 3.3 that if $[r+s+t+u]<1$ then the equilibrium point $\tilde{y}_{1}=0$ is locally asymptotically stable. It remains to show that $\tilde{y}_{1}=0$ is a global attractor. To this end, let $\left\{y_{n}\right\}_{n=-l}^{\infty}$ be a solution of equation (2.1). It suffics to show that $\lim _{n \rightarrow \infty} y_{n}=0$. Since

$$
0 \leq y_{n+1}=\frac{r y_{n-m}+s y_{n}+t y_{n-k}+u y_{n-l}}{1+y_{n-k} y_{n-l}\left(y_{n-k}+y_{n-l}\right)} \leq r y_{n-m}+s y_{n}+t y_{n-k}+u y_{n-l}<y_{n-k}
$$

Then we have $\lim _{n \rightarrow \infty} y_{n}=0$. This completes the proof.
Theorem 3.4. Assume that $[r+s+t+u]>1$, then equation (2.1) possesses an unbounded solution.
Proof. With the aid of Theorem 3.2, we have

$$
\begin{aligned}
y_{2 n+2} & =\frac{r y_{-m+2 n+1}+s y_{2 n+1}+t y_{-k+2 n+1}+u y_{-l+2 n+1}}{1+y_{-k+2 n+1} y_{-l+2 n+1}\left(y_{-k+2 n+1}+y_{-l+2 n+1}\right)}>\frac{r y_{-m+2 n+1}+s y_{2 n+1}+t y_{-k+2 n+1}+u y_{-l+2 n+1}}{1+2 \tilde{y}_{2}^{3}} \\
& >\frac{r y_{-m+2 n+1}+s y_{2 n+1}+t y_{-k+2 n+1}+u y_{-l+2 n+1}}{1+([r+s+t+u]-1)}=\frac{r y_{-m+2 n+1}+s y_{2 n+1}+t y_{-k+2 n+1}+u y_{-l+2 n+1}}{[r+s+t+u]}
\end{aligned}
$$

and

$$
\begin{aligned}
y_{2 n+3} & =\frac{r y_{-m+2 n+2}+s y_{2 n+2}+t y_{-k+2 n+2}+u y_{-l+2 n+2}}{1+y_{-k+2 n+2} y_{-l+2 n+2}\left(y_{-k+2 n+2}+y_{-l+2 n+2}\right)} \leq \frac{r y_{-m+2 n+2}+s y_{2 n+2}+t y_{-k+2 n+2}+u y_{-l+2 n+2}}{1+2 \tilde{y}_{2}^{3}} \\
& \leq \frac{r y_{-m+2 n+2}+s y_{2 n+2}+t y_{-k+2 n+2}+u y_{-l+2 n+2}}{1+([r+s+t+u]-1)}=\frac{r y_{-m+2 n+2}+s y_{2 n+2}+t y_{-k+2 n+2}+u y_{-l+2 n+2}}{[r+s+t+u]}
\end{aligned}
$$

From which it follows that

$$
\lim _{n \rightarrow \infty} y_{2 n}=\infty \quad \text { and } \quad \lim _{n \rightarrow \infty} y_{2 n+1}=0
$$

Hence, the proof of Theorem 3.4 is now completed.
Theorem 3.5. (i) If m is odd, and k, l are even, equation (2.1) has prime period two solution if $(r-[s+t+u])<1$ and has not prime period two solution if $(r-[s+t+u]) \geq 1$.
(ii) If m is even and k, l are odd, equation (2.1) has not prime period two solution.
(iii) If all m, k, l are even, equation (2.1) has prime period two solution.
(iv) If all m, k, l are odd, equation (2.1) has prime period two solution if $(r-[s+t+u])>1$, and has not prime period two solution if $(r-[s+t+u]) \leq 1$.
(v) If m, k are even and l is odd, equation (2.1) has not prime period two solution if $[r+s+t]+1>u$.
(vi) If m, k are odd and l is even, equation (2.1) has prime period two solution if $([r+t]-[s+u])>1$, and has not prime period two solution if $([r+t]-[s+u]) \leq 1$.
(vii) If m, l are odd and k is even, equation (2.1) has prime period two solution if $([r+u]-[s+t])>1$, and has not prime period two solution if $([r+u]-[s+t]) \leq 1$.
(viii) If m, l are even and k is odd, equation (2.1) has not prime period two solution.

Proof. Assume that there exists distinct positive solutions

$$
\ldots, \phi, \psi, \phi, \psi, \ldots
$$

of prime period two of equation (2.1).
(i) If m is odd, and k, l are even, then $y_{n+1}=y_{n-m}$ and $y_{n}=y_{n-k}=y_{n-l}$. It follows from equation (2.1) that

$$
\phi=\frac{r \phi+[s+t+u] \psi}{1+2 \psi^{3}}, \quad \psi=\frac{r \psi+[s+t+u] \phi}{1+2 \phi^{3}} .
$$

Consequently, we have

$$
\begin{equation*}
0<2 \phi \psi(\phi+\psi)=1-(r-[s+t+u]) . \tag{3.7}
\end{equation*}
$$

We deduce that (3.7) is always true if $(r-[s+t+u])<1$ and hence equation (2.1) has prime period two solution. If $(r-[s+t+u]) \geq 1$, we have a contradiction, and hence equation (2.1) has not prime period two solution.
(ii) If m is even, and k, l are odd, then $y_{n}=y_{n-m}$, and $y_{n+1}=y_{n-k}=y_{n-l}$. It follows from equation (2.1) that

$$
\phi=\frac{[t+u] \phi+[r+s] \psi}{1+2 \phi^{3}}, \quad \psi=\frac{[t+u] \psi+[r+s] \phi}{1+2 \psi^{3}} .
$$

Consequently, we have

$$
\begin{equation*}
0<2(\phi+\psi)\left(\phi^{2}+\psi^{2}\right)=-([r+s+t+u]+1) \tag{3.8}
\end{equation*}
$$

Since $[r+s+t+u]>0$, we have a contradiction. Hence equation (2.1) has not prime period two solution.
(iii) If all m, k, l are even, then $y_{n}=y_{n-m}=y_{n-k}=y_{n-l}$. It follows from equation (2.1) that

$$
\phi=\frac{[r+s+t+u] \psi}{1+2 \psi^{3}}, \quad \psi=\frac{[r+s+t+u] \phi}{1+2 \phi^{3}} .
$$

Consequently, we get

$$
\begin{equation*}
0<2 \phi \psi(\phi+\psi)=[r+s+t+u]+1 \tag{3.9}
\end{equation*}
$$

Since $[r+s+t+u]>0$, the formula (3.9) is always true. Hence equation (2.1) has prime period two solution.
(iv) If all m, k, l are odd, then $y_{n+1}=y_{n-m}=y_{n-k}=y_{n-l}$. It follows from equation (2.1) that

$$
\phi=\frac{r \psi+[s+t+u] \phi}{1+2 \phi^{3}}, \quad \psi=\frac{r \phi+[s+t+u] \psi}{1+2 \psi^{3}}
$$

Consequently, we get

$$
\begin{equation*}
0<2(\phi+\psi)\left(\phi^{2}+\psi^{2}\right)=(r-[s+t+u])-1 . \tag{3.10}
\end{equation*}
$$

If $(r-[s+t+u])>1$, the formula (3.10) is always true, and hence equation (2.1) has prime period two solution. If $(r-[s+t+u]) \leq 1$, we have a contradiction and hence equation (2.1) has not prime period two solution.
(v) If m, k are even, and l is odd, then $y_{n}=y_{n-k}=y_{n-m}$, and $y_{n+1}=y_{n-l}$. It follows from equation (2.1) that

$$
\phi=\frac{[r+s+t] \psi+u \phi}{1+\psi^{2} \phi+\psi \phi^{2}}, \quad \psi=\frac{[r+s+t] \phi+u \psi}{1+\phi^{2} \psi+\phi \psi^{2}} .
$$

Consequently, we have

$$
\begin{equation*}
0<\phi \psi(\phi+\psi)=u-([r+s+t]+1) \tag{3.11}
\end{equation*}
$$

Since $[r+s+t]+1>u$, we have a contradiction. Hence equation (2.1) has not a prime period two solution.
(vi) If m, k are odd, and l is even, then $y_{n+1}=y_{n-m}=y_{n-k}$, and $y_{n}=y_{n-l}$. It follows from equation (2.1) that

$$
\phi=\frac{[r+t] \phi+[s+u] \psi}{1+\phi \psi(\phi+\psi)}, \quad \psi=\frac{[r+t] \psi+[s+u] \phi}{1+\phi \psi(\phi+\psi)} .
$$

Consequently, we have

$$
\begin{equation*}
0<\phi \psi(\phi+\psi)=([r+t]-[s+u])-1 \tag{3.12}
\end{equation*}
$$

If $([r+t]-[s+u])>1$, the formula (3.12) is always true, and hence equation (2.1) has prime period two solution. If $([r+t]-[s+u]) \leq 1$, we have a contradiction. Hence equation (2.1) has not a prime period two solution.
(vii) If m, l are odd, and k is even, then $y_{n+1}=y_{n-m}=y_{n-l}$, and $y_{n}=y_{n-k}$. It follows from equation (2.1) that

$$
\phi=\frac{[r+u] \phi+[s+t] \psi}{1+\phi \psi(\phi+\psi)}, \quad \psi=\frac{[r+u] \psi+[s+t] \phi}{1+\phi \psi(\phi+\psi)} .
$$

Consequently, we have

$$
\begin{equation*}
0<\phi \psi(\phi+\psi)=([r+u]-[s+t])-1 \tag{3.13}
\end{equation*}
$$

If $([r+u]-[s+t])>1$, the formula (3.13) is always true, and hence equation (2.1) has prime period two solution. If $([r+u]-[s+t]) \leq 1$, we have a contradiction. Hence equation (2.1) has not a prime period two solution.
(viii) If m, l are even, and k is odd, then $y_{n}=y_{n-m}=y_{n-l}$, and $y_{n+1}=y_{n-k}$. It follows from equation (2.1) that

$$
\phi=\frac{[r+s+u] \psi+t \phi}{1+\psi^{2} \phi+\psi \phi^{2}}, \quad \psi=\frac{[r+s+u] \phi+t \psi}{1+\phi^{2} \psi+\phi \psi^{2}}
$$

Consequently, we have

$$
\begin{equation*}
0<\phi \psi(\phi+\psi)=t-([r+s+u]+1) \tag{3.14}
\end{equation*}
$$

Since $[r+s+u]+1>t$, we have a contradiction. Hence equation (2.1) has not a prime period two solution. Hence the proof of Theorem (3.5) is now completed.

4. Numerical Examples

In order to illustrate the results of the previous section and to support our theoretical discussions, we consider some numerical examples in this section. These examples represent different types of qualitative behavior of solutions of equation (2.1).

Example 4.1. Figure 4.1 shows that the solution of equation (2.1) is bounded if $x_{-3}=1, x_{-2}=2, x_{-1}=3, x_{0}=4, m=1$, $k=2, l=3, r=0.1, s=0.2, t=0.3, u=0.25$, i.e. $[r+s+t+u]<1$.

Figure 4.1: The solution of equation (2.1) is bounded.

Example 4.2. Figure 4.2 shows that the solution of equation (2.1) is unbounded if $x_{-3}=1, x_{-2}=2, x_{-1}=3, x_{0}=4$, $m=1$, $k=2, l=3, r=1, s=2, t=3, u=4$, i.e. $[r+s+t+u]>1$.

Figure 4.2: The solution of equation (2.1) is unbounded.

Example 4.3. Figure 4.3 shows that equation (2.1) is globally asymptotically stable if $x_{-4}=1, x_{-3}=2, x_{-2}=3, x_{-1}=4$, $x_{0}=5, m=2, k=3, l=4, r=0.1, s=0.5, t=0.2, u=0.25$, i.e. $[r+s+t+u]<1$.

Figure 4.3: The solution of equation (2.1) is globally asymptotically stable.

Example 4. Figure 4.4 shows that equation (2.1) has no positive prime period two solutions if $x_{-3}=1, x_{-2}=2, x_{-1}=3$, $x_{0}=4, m=2, k=1, l=3, r=100, s=300, t=400, u=500$.

Figure 4.4: The solution of equation (2.1) has no positive prime period two solutions.

5. Conclusions

In this article, we have shown that equation (2.1) has two equilibrium points $\tilde{y}_{1}=0$ and $\tilde{y}_{2}=\left(\frac{[r+s+t+u]-1}{2}\right)^{\frac{1}{3}}$. If $[r+s+t+u]<1$, we have proved that $\tilde{y}_{1}=0$ is globally asymptotically stable, while if $[r+s+t+u]>1$, the solution of equation (2.1) oscillates about the point $\tilde{y}_{2}=\left(\frac{[r+s+t+u]-1}{2}\right)^{\frac{1}{3}}$ with a semicycle of length one. When $[r+s+t+u]>1$, we have proved that the solution of equation (2.1) is unbounded. The periodicity of the solution of equation (2.1) has been discussed in details in Theorem 3.5.

Article Information

Acknowledgements: The author thank the referees for valuable comments and suggestions which improved the presentation of this paper.

Author's Contributions: The article has a single author. The author has seen the final version of the article and approved its publication.

Conflict of Interest Disclosure: No potential conflict of interest was declared by the author.
Copyright Statement: Author own the copyright of their work published in the journal and their work is published under the CC BY-NC 4.0 license.

Supporting/Supporting Organizations: No grants were received from any public, private or non-profit organizations for this research.

Ethical Approval and Participant Consent: It is declared that during the preparation process of this study, scientific and ethical principles were followed and all the studies benefited from are stated in the bibliography.

Plagiarism Statement: This article was scanned by the plagiarism program. No plagiarism detected.
Availability of Data and Materials: Not applicable.

References

[1] R. P. Agarwal, E. M. Elsayed, On the solution of fourth-order rational recursive sequence, Adv. Stud. Contemp. Math., 20(4) (2010), 525-545.
[2] A. M. Alotaibi, M. A. El-Moneam, On the dynamics of the nonlinear rational difference equation $x_{n+1}=\frac{\alpha x_{n-m}+\delta x_{n}}{\beta+\gamma x_{n-k} x_{n-l}\left(x_{n-k}+x_{n-l}\right)}$, AIMS Mathematics, 7(5) (2022), 7374-7384.
[3] R. Devault, W. Kosmala, G. Ladas, S. W. Schaultz, Global behavior of $y_{n+1}=\frac{p+y_{n-k}}{q y_{n}+y_{n-k}}$, Nonlinear Anal. Theory Methods Appl., 47 (2004), $83-89$.
[4] Q. Din, Dynamics of a discrete Lotka-Volterra model, Adv. Differ. Equ., 95 (2013).
[5] Q. Din, On a system of rational difference equation, Demonstratio Mathematica, (in press).
[6] E. M. Elabbasy, H. El-Metwally, E. M. Elsayed, On the difference equation $x_{n+1}=a x_{n}-\frac{b x_{n}}{c x_{n}-d x_{n-1}}$, Adv. Differ. Equ., (2006), Article ID 82579 ,
[7] ${ }^{1-10}$ H. Ei-Metwally, E. A. Grove, G. Ladas, and H.D.Voulov, On the global attractivity and the periodic character of some difference equations, J. Differ. Equations Appl., 7 (2001), 837-850.
[8] M. A. El-Moneam, On the dynamics of the higher order nonlinear rational difference equation, Math. Sci. Lett. 3(2) (2014), 121-129.
[9] M. A. El-Moneam, On the dynamics of the solutions of the rational recursive sequences, Br. J. Math. Comput. Sci., 5(5) (2015), 654-665.
[10] M. A. El-Moneam, S. O. Alamoudy, On study of the asymptotic behavior of some rational difference equations, DCDIS Series A: Mathematical Analysis, 21(2014), 89-109.
[11] M. A. El-Moneam, E. M. E. Zayed, Dynamics of the rational difference equation, Inf. Sci. Lett., 3(2) (2014), 1-9.
[12] M. A. El-Moneam, E. M. E. Zayed, On the dynamics of the nonlinear rational difference equation $x_{n+1}=A x_{n}+B x_{n-k}+C x_{n-l}+\frac{b x_{n-k}}{d x_{n-k}-e x_{n-l}}$, J. Egypt. Math. Soc., 23 (2015), 494-499.
[13] E. M. Elsayed, Solution and attractivity for a rational recursive sequence, Discrete Dyn. Nat. Soc., 2011, Article ID 982309, (2011).
[14] E. M. Elsayed, T. F. İbrahim, Solutions and periodicity of a rational recursive sequences of order five, (Accepted and to appear 2012-2013, Bull. Malaysian Math. Sci. Soc.).
[15] E. A. Grove, G. Ladas, Periodicities in Nonlinear Difference Equations, Chapman \& Hall / CRC, Vol. 4, 2005.
[16] T. F. İbrahim, Boundedness and stability of a rational difference equation with delay, Rev. Roum. Math. Pures Appl. 57 (2012), $215-224$.
[17] T. F. İbrahim, Periodicity and global attractivity of difference equation of higher order, J. Comput. Anal. Appl., 16, (2014).
[18] T. F. İbrahim, Three-dimensional max-type cyclic system of difference equations, Int. J. Phys. Sci., 8(15) 2013, 629-634.
[19] T. F. İbrahim, N. Touafek, On a third-order rational difference equation with variable coefficients, DCDIS Series B: Applications \& Algorithms (Dyn. Contin. Discret. I.) 20(2) (2013), 251-264.
[20] V. L. Kocic, G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic Publishers, Dordrecht, 1993.
[21] D. Şimsek, C. Çınar, İ. Yalçınkaya, On the recursive sequence $x_{n+1}=\frac{x_{n-3}}{1+x_{n-1}}$, Int. J. Contemp. Math. Sci., 1(10) (2006), 475-480.
[22] S. Stević ', Global stability and asymptotics of some classes of rational difference equations, J. Math. Anal. Appl., 316 (2006) 60-68.
[23] N. Touafek, E. M. Elsayed, On the solutions of systems of rational difference equations, Math. Comput. Modelling, 55 (2012), $1987-1997$.
[24] N. Touafek, E. M. Elsayed, On the periodicity of some systems of nonlinear difference equations, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sr 2012., 55(103), 217-224.
[25] İ. Yalçınkaya, On the max-type equation $\left.x_{(} n+1\right)=\max (1 / x(n), A(n) x(n-1))$, Discrete Dyn. Nat. Soc., 2012, Article ID 327437, (2012), 9 pages.
[26] M. E. Erdoğan, C. Çınar, İ. Yalçınkaya, On the dynamics of the recursive sequence $x_{n+1}=\frac{x_{n-1}}{\beta+\gamma x_{n-2}^{2} x_{n-4}+\gamma x_{n-2} x_{n-4}^{2}}$, Comput. Math. Appl., 61 (2011), 533-537.
[27] E. M. E. Zayed, On the dynamics of the nonlinear rational difference equation, DCDIS Series A: Mathematical Analysis, (to appear).
[28] E. M. E. Zayed, M. A. El-Moneam, On the rational recursive two sequences $x_{n+1}=a x_{n-k}+b x_{n-k} /\left(c x_{n}+\delta d x_{n-k}\right)$, Acta Math. Vietnamica, 35(2010), 355-369.
[29] E. M. E. Zayed, M. A. El-Moneam, On the global attractivity of two nonlinear difference equations, J. Math. Sci., 177 (2011), 487-499.
[30] E. M. E. Zayed, M. A. El-Moneam, On the rational recursive sequence $x_{n+1}=\left(A+\alpha_{0} x_{n}+\alpha_{1} x_{n-\sigma}\right) /\left(B+\beta_{0} x_{n}+\beta_{1} x_{n-\tau}\right)$, Acta Math. Vietnamica, 36 (2011), 73-87.
[31] E. M. E. Zayed, M. A. El-Moneam, On the global asymptotic stability for a rational recursive sequence, Iran J. Sci. Technol. Trans. A Sci., A4 (2011), 333-339.
[32] E. M. E. Zayed, M. A. El-Moneam, On the rational recursive sequence $x_{n+1}=\frac{\alpha_{0} x_{n}+\alpha_{1} x_{n-l}+\alpha_{2} x_{n-m}+\alpha_{3} x_{n-k}}{\beta_{0} x_{n}+\beta_{1} x_{n-l}+\beta_{2} x_{n-m}+\beta_{3} x_{n-k}}$, WSEAS Trans. Math., 11(5) (2012), 373-382.
[33] E. M. E. Zayed, M. A. El-Moneam, On the qualitative study of the nonlinear difference equation $x_{n+1}=\frac{\alpha x_{n-\sigma}}{\beta+\gamma x_{n-\tau}^{\rho}}$, Fasc. Math., 50 (2013), $137-147$.
[34] E. M. E. Zayed, M. A. El-Moneam, Dynamics of the rational difference equation $x_{n+1}=\gamma x_{n}+\frac{\alpha x_{n-l}+\beta x_{n-k}}{A x_{n-l}+B x_{n-k}}$, Comm. Appl. Nonl. Anal., 21 (2014), 43-53.

