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Abstract

In this paper, we discuss some qualitative properties of the positive solutions to the fol-
lowing rational nonlinear difference equation xn+1 =

αxn−m+ηxn−k+σxn−l+δxn
β+γxn−kxn−l(xn−k+xn−l)

, n = 0,1,2, . . .
where the parameters α,β ,γ,δ ,η ,σ ∈ (0,∞), while m,k, l are positive integers, such that
m < k < l. The initial conditions x−m, . . . ,x−k, . . . ,x−l , . . . ,x−1, . . . ,x0 are arbitrary positive
real numbers. We will give some numerical examples to illustrate our results.

1. Introduction

The study of solution of nonlinear rational recursive sequence of high order is quite challenging and rewarding. Every
dynamical system an+1 = f (an) determines a difference equation and vice versa. An interesting class of nonlinear difference
equations is the class of solvable difference equations, and one of the interesting problems is to find equations that belong to
this class and to solve them in closed form or in explicit form [1–25]. Note that most of these equation often show increasingly
complex behavior such as the existence of a bounded. The qualitative study of difference equations is a fertile research area
and increasingly attracts many mathematicians. This topic draws its importance from the fact that many real life phenomena
are modeled using difference equations. The applications of these difference equations can be found on the economy, biology
and so on. It is known that nonlinear difference equations are capable of producing a complicated behavior regardless its order.
The objective of this article is to investigate some qualitative behavior of the solutions of the nonlinear difference equation

xn+1 =
αxn−m +ηxn−k+σxn−l+δxn

β + γxn−kxn−l (xn−k + xn−l)
, n = 0,1,2, . . . (1.1)

where the parameters α,β ,γ,δ ,η ,σ ∈ (0,∞), while m,k, l are positive integers, such that m < k < l. The initial conditions
x−m, . . . ,x−k, . . . ,x−l , . . . ,x−1, . . . ,x0 are arbitrary positive real numbers equation (1.1) has been discussed in [26] when
m = 1,k = 2 and l = 4, and in [27] when δ = 0, where some global behavior of the more general nonlinear rational difference
equation (1.1), we need the following well-known definitions and results [28–34].

Definition 1.1. A difference equation of order (k+1) is of the form

xn+1 = F(xn,xn−1, . . . ,x−k), n = 0,1,2, . . . (1.2)
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where F is a continuous function which maps some set Jk+1 into J and J is a set of real numbers. An equilibrium point
x̃ of this equation is a point that satisfies the condition x̃ = F (x̃, x̃, . . . , x̃) . That is, the constant sequence {xn}∞

n=−k with
xn = x̃ f or all n≥−k is a solution of that equation.

Definition 1.2. Let x̃ ∈ (0,∞) be an equilibrium point of the difference equation (1.2). Then

(i) An equilibrium point x̃ of the difference equation (1.2) is called locally stable if for every ε > 0 there exists δ > 0 such
that, if x−k,. . . , x−1, x0 ∈ (0,∞) with |x−k− x̃|+ . . .+ |x−1− x̃|+ |x0− x̃|< δ , then |xn− x̃|< ε for all n≥−k.

(ii) An equilibrium point x̃ of the difference equation (1.2) is called locally asymptotically stable if it is locally stable and
there exists γ > 0 such that, if x−k, . . . , x−1, x0 ∈ (0,∞) with |x−k− x̃|+ . . .+ |x−1− x̃|+ |x0− x̃|< γ , then

lim
n→∞

xn = x̃.

(iii) An equilibrium point x̃ of the difference equation (1.2) is called a global attractor if for every
x−k, . . . ,x−1, x0 ∈ (0,∞) we have

lim
n→∞

xn = x̃.

(iv) An equilibrium point x̃ of the equation (1.2) is called globally asymptotically stable if it is locally stable and a global
attractor.

(v) An equilibrium point x̃ of the difference equation (1.2) is called unstable if it is not locally stable.

Definition 1.3. A sequence {xn}∞

n=−k is said to be periodic with period p if xn+p = xn for all n≥−k. A sequence {xn}∞

n=−k is
said to be periodic with prime period p if p is the smallest positive integer having this property.

Definition 1.4. We say that a sequence {xn}∞
n=−l is bounded and persisting if there exists positive constants m and M such that

m≤ xn ≤M f or all n≥−k.

Definition 1.5. A positive semicycle of {xn}∞
n=−k consists of ”a string” of terms xl ,xl+1, . . . ,xm all greater than or equal to x̃,

with l ≥−k and m≤ ∞ such that

either l =−k or l >−k and xl−1 < x̃,

and

either m = ∞ or m < ∞ and xm+1 < x̃.

A negative semicycle of {xn}∞
n=−k consists of ”a string” of terms xl ,xl+1, . . . ,xm all less than x̃, with l ≥−k and m≤ ∞ such

that

either l =−k or l >−k and xl−1 ≥ x̃,

and

either m = ∞ or m < ∞ and xm+1 ≥ x̃.

Definition 1.6. The linearized equation of equation (1.2) about the equilibrium point x̃ is the linear difference equation

yn+1 =
k

∑
i=0

∂F (x̃, x̃, . . . , x̃)
∂xn−i

yn−i. (1.3)

Now assume that the characteristic equation associated with equation (1.3) is

p(λ ) = p0λ
k + p1λ

k−1 + . . .+ pk−1λ + pk = 0 (1.4)

where

pi = ∂F (x̃, x̃, . . . , x̃)/∂xn−i.

Theorem 1.7. Assume that pi ∈ R, i = 1,2, . . . , and k ∈ {0,1,2, . . .}. Then

k

∑
i=1
|pi|< 1

is a sufficient condition for the asymptotic stability of the difference equation

xn+k + p1xn+k−1 + . . .+ pkxn = 0, n = 0,1,2, . . .

Theorem 1.8 (The Linearized Stability Theorem). Suppose F is a continuously differentiable function defined on an open
neighbourhood of the equilibrium x̃. Then the following statements are true.

(i) If all roots of the characteristic equation (1.4) of the linearized equation (1.3) have an absolute value less than one, then
the equilibrium point x̃ is locally asymptotically stable.

(ii) If at least one root of equation (1.4) has an absolute value greater than one, then the equilibrium point x̃ is unstable.
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2. Change of Variables

By using the change of variables xn =
(

β

γ

) 1
3
yn, the equation (1.1) reduces to the following difference equation

yn+1 =
ryn−m+tyn−k+uyn−l+syn

1+yn−kyn−l (yn−k + yn−l)
, n = 0,1,2, . . . (2.1)

where r = α

β
> 0, s = δ

β
> 0, u = σ

β
> 0, t = η

β
> 0 and the initial conditions y−l , . . . ,y−k, . . . ,y−m, . . . ,y−l ,y0 ∈ (0,∞). In

the next section, we shall study the global behavior of equation (2.1).

3. The Dynamics of Equation (2.1)

The equilibrium points ỹ of the equation (2.1) are the positive solutions of the equation

ỹ =
[r+s+t +u]ỹ

1+2ỹ3 . (3.1)

Thus ỹ1 = 0 is always an equilibrium point of the equation (2.1). If (r+s+t +u)> 1, then the only positive equilibrium point
ỹ2 of equation (2.1) is given by

ỹ2 =

(
[r+s+t +u]−1

2

) 1
3
. (3.2)

Let us introduce a continuous function F : (0,∞)4→ (0,∞) which is defined by

F(v0,v1,v2,v3) =
rv0+sv1+tv2+uv3

1+ v2
2v3 + v2v2

3
. (3.3)

Consequently, we get

∂F(v0,v1,v2,v3)

∂v0
=

r
1+ v2

2v3 + v2v2
3
,

∂F(v0,v1,v2,v3)

∂v1
=

s
1+ v2

2v3 + v2v2
3
,

∂F(v0,v1,v2,v3)

∂v2
=

t(1+ v2
2v3 + v2v2

3)−(rv0+sv1+tv2)(2v2v3 + v2
3)

(1+ v2
2v3 + v2v2

3)
2 ,

∂F(v0,v1,v2,v3)

∂v3
=

u(1+ v2
2v3 + v2v2

3)−(rv0+sv1+tv2+uv3)(v2
2 +2v2v3)

(1+ v2
2v3 + v2v2

3)
2 .

At ỹ1 = 0, we have ∂F(0,0,0,0)
∂v0

= r, ∂F(0,0,0,0)
∂v1

= s, ∂F(0,0,0,0)
∂v2

= t, ∂F(0,0,0,0)
∂v3

= u, and the linearized equation of equation (2.1)
about ỹ1 = 0, is the equation

zn+1−ρ0zn−ρ1zn−m−ρ2zn−k−ρ3zn−l = 0 (3.4)

where ρ0 = s, ρ1 = r, ρ2 = t, ρ3 = u. At ỹ2 =
(
[r+s+t+u]−1

2

) 1
3
, we have

∂F(ỹ2, ỹ2, ỹ2, ỹ2)

∂v0
=

r
1+2ỹ3

2
=

r
1+([r+s+t +u]−1)

=
r

[r+s+t +u]
,

∂F(ỹ2, ỹ2, ỹ2, ỹ2)

∂v1
=

s
1+2ỹ3

2
=

s
1+([r+s+t +u]−1)

=
s

[r+s+t +u]
,

∂F(ỹ2, ỹ2, ỹ2, ỹ2)

∂v2
=

2t−3([r+s+t +u]−1)
2 [r+s+t +u]

,
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∂F(ỹ2, ỹ2, ỹ2, ỹ2)

∂v3
=

2u−3([r+s+t +u]−1)
2 [r+s+t +u]

.

And the linearized equation of equation (2.1) about ỹ2 =
(
[r+s+t+u]−1

2

) 1
3

is the equation

zn+1−ρ0zn−ρ1zn−m−ρ2zn−k−ρ3zn−l = 0, (3.5)

where ρ0 =
s

[r+s+t+u] , ρ1 =
r

[r+s+t+u] , ρ2 =
2t−3([r+s+t+u]−1)

2[r+s+t+u] , ρ3 =
2u−3([r+s+t+u]−1)

2[r+s+t+u] .

Theorem 3.1. (i) If [r+s+t +u]< 1, then the equilibrium point ỹ1 = 0 is locally asymptotically stable.

(ii) If [r+s+t +u]> 1, then the equilibrium point ỹ1 = 0 is unstable.

(iii) If [r+s+t +u]> 1, 2t > 3([r+s+t +u]−1) , then the equilibrium point ỹ2 =
(
[r+s+t+u]−1

2

) 1
3

is unstable.

Proof. With reference to Theorem 1.7, we deduce from equation (3.5) that |ρ0|+ |ρ1|+ |ρ2|+ |ρ3|= [r+s+t +u]< 1, and
then the proof of parts (i), (ii) follow. Also, from equation (3.5) we deduce for [r+s+t +u]> 1 that |ρ0|+ |ρ1|+ |ρ2|+ |ρ3|=
1+ 3([r+s+t+u]−1)

[r+s+t+u] > 1, and hence the proof of part (iii) follows.

Theorem 3.2. Assume that [r+s+t +u]> 1, and let {yn}∞
n=−l be a solution of equation (2.1) such that

y−l ,y−l+2, . . . ,y−l+2n, . . . ,y−k,y−k+2, . . . ,y−k+2n, . . . ,

y−m+1,y−m+3, . . . ,y−m+2n+1, . . . ,y0 ≥ ỹ2

and

y−l+1,y−l+3, . . . ,y−l+2n+1, . . . ,y−k+1,y−k+3, . . . ,

y−k+2n+1, . . . ,y−m,y−m+2, . . . ,y−m+2n, . . . ,y−1 < ỹ2.

(3.6)

Then {yn}∞
n=−l oscillates about ỹ2 =

(
[r+s+t+u]−1

2

) 1
3

with a semicycle of length one.

Proof. Assume that (3.6) holds. Then

y1 =
ry−m+sy0+ty−k+uy−l

1+ y−ky−l(y−k + y−l)
<

ry−m+sy0+ty−k+uy−l

1+2ỹ3
2

<
[r+s+t +u] ỹ2

1+([r+s+t +u]−1)
= ỹ2

and

y2 =
ry−m+1+sy1+ty−k+1+uy−l+1

1+ y−k+1y−l+1(y−k+1 + y−l+1)
≥ ry−m+1+sy1+ty−k+1+uy−l+1

1+2ỹ3
2

≥ [r+s+t +u] ỹ2

1+([r+s+t +u]−1)
= ỹ2

and hence the proof follows by induction.

Theorem 3.3. Assume that [r+s+t +u]< 1, then the equilibrium point ỹ1 = 0 of equation (2.1) is globally asymptotically
stable.

Proof. We have shown in Theorem 3.3 that if [r+s+t +u] < 1 then the equilibrium point ỹ1 = 0 is locally asymptotically
stable. It remains to show that ỹ1 = 0 is a global attractor. To this end, let {yn}∞

n=−l be a solution of equation (2.1). It suffics to
show that lim

n→∞
yn = 0. Since

0≤ yn+1 =
ryn−m+syn+tyn−k+uyn−l

1+ yn−kyn−l(yn−k + yn−l)
≤ ryn−m+syn+tyn−k+uyn−l < yn−k.

Then we have lim
n→∞

yn = 0. This completes the proof.

Theorem 3.4. Assume that [r+s+t +u]> 1, then equation (2.1) possesses an unbounded solution.

Proof. With the aid of Theorem 3.2, we have

y2n+2 =
ry−m+2n+1+sy2n+1+ty−k+2n+1+uy−l+2n+1

1+ y−k+2n+1 y−l+2n+1(y−k+2n+1 + y−l+2n+1)
>

ry−m+2n+1+sy2n+1+ty−k+2n+1+uy−l+2n+1

1+2ỹ3
2

>
ry−m+2n+1+sy2n+1+ty−k+2n+1+uy−l+2n+1

1+([r+s+t +u]−1)
=

ry−m+2n+1+sy2n+1+ty−k+2n+1+uy−l+2n+1

[r+s+t +u]
,
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and

y2n+3 =
ry−m+2n+2+sy2n+2+ty−k+2n+2+uy−l+2n+2

1+ y−k+2n+2 y−l+2n+2(y−k+2n+2 + y−l+2n+2)
≤ ry−m+2n+2+sy2n+2+ty−k+2n+2+uy−l+2n+2

1+2ỹ3
2

≤ ry−m+2n+2+sy2n+2+ty−k+2n+2+uy−l+2n+2

1+([r+s+t +u]−1)
=

ry−m+2n+2+sy2n+2+ty−k+2n+2+uy−l+2n+2

[r+s+t +u]
.

From which it follows that

lim
n→∞

y2n = ∞ and lim
n→∞

y2n+1 = 0.

Hence, the proof of Theorem 3.4 is now completed.

Theorem 3.5. (i) If m is odd, and k, l are even, equation (2.1) has prime period two solution if (r− [s+t +u])< 1 and has
not prime period two solution if (r− [s+t +u])≥ 1.

(ii) If m is even and k, l are odd, equation (2.1) has not prime period two solution.
(iii) If all m,k, l are even, equation (2.1) has prime period two solution.
(iv) If all m,k, l are odd, equation (2.1) has prime period two solution if (r− [s+t +u])> 1, and has not prime period two

solution if (r− [s+t +u])≤ 1.
(v) If m,k are even and l is odd, equation (2.1) has not prime period two solution if [r+s+t]+1 > u.

(vi) If m,k are odd and l is even, equation (2.1) has prime period two solution if ([r+t]− [s+u]) > 1, and has not prime
period two solution if ([r+t]− [s+u])≤ 1.

(vii) If m, l are odd and k is even, equation (2.1) has prime period two solution if ([r+u]− [s+t]) > 1, and has not prime
period two solution if ([r+u]− [s+t])≤ 1.

(viii) If m, l are even and k is odd, equation (2.1) has not prime period two solution.

Proof. Assume that there exists distinct positive solutions

. . . ,φ ,ψ,φ ,ψ, . . .

of prime period two of equation (2.1).

(i) If m is odd, and k, l are even, then yn+1 = yn−m and yn = yn−k = yn−l . It follows from equation (2.1) that

φ =
rφ +[s+t +u]ψ

1+2ψ3 , ψ =
rψ +[s+t +u]φ

1+2φ 3 .

Consequently, we have

0 < 2φψ(φ +ψ) = 1− (r− [s+t +u]) . (3.7)

We deduce that (3.7) is always true if (r− [s+t +u]) < 1 and hence equation (2.1) has prime period two solution. If
(r− [s+t +u])≥ 1, we have a contradiction, and hence equation (2.1) has not prime period two solution.

(ii) If m is even, and k, l are odd, then yn = yn−m,and yn+1 = yn−k = yn−l . It follows from equation (2.1) that

φ =
[t+u]φ +[r+s]ψ

1+2φ 3 , ψ =
[t+u]ψ +[r+s]φ

1+2ψ3 .

Consequently, we have

0 < 2(φ +ψ)(φ 2 +ψ
2) =−([r+s+t+u]+1) . (3.8)

Since [r+s+t+u]> 0, we have a contradiction. Hence equation (2.1) has not prime period two solution.
(iii) If all m,k, l are even, then yn = yn−m = yn−k = yn−l . It follows from equation (2.1) that

φ =
[r+s+t+u]ψ

1+2ψ3 , ψ =
[r+s+t+u]φ

1+2φ 3 .

Consequently, we get

0 < 2φψ(φ +ψ) = [r+s+t+u]+1. (3.9)

Since [r+s+t+u]> 0, the formula (3.9) is always true. Hence equation (2.1) has prime period two solution.
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(iv) If all m,k, l are odd, then yn+1 = yn−m = yn−k = yn−l . It follows from equation (2.1) that

φ =
rψ +[s+t +u]φ

1+2φ 3 , ψ =
rφ +[s+t +u]ψ

1+2ψ3 .

Consequently, we get

0 < 2(φ +ψ)(φ 2 +ψ
2) = (r− [s+t +u])−1. (3.10)

If (r− [s+t +u]) > 1, the formula (3.10) is always true, and hence equation (2.1) has prime period two solution. If
(r− [s+t +u])≤ 1, we have a contradiction and hence equation (2.1) has not prime period two solution.

(v) If m,k are even, and l is odd, then yn = yn−k = yn−m, and yn+1 = yn−l . It follows from equation (2.1) that

φ =
[r+s+t]ψ +uφ

1+ψ2φ +ψφ 2 , ψ =
[r+s+t]φ +uψ

1+φ 2ψ +φψ2 .

Consequently, we have

0 < φψ(φ +ψ) = u− ([r+s+t]+1). (3.11)

Since [r+s+t]+1 > u, we have a contradiction. Hence equation (2.1) has not a prime period two solution.

(vi) If m,k are odd, and l is even, then yn+1 = yn−m = yn−k, and yn = yn−l . It follows from equation (2.1) that

φ =
[r+t]φ +[s+u]ψ

1+φψ(φ +ψ)
, ψ =

[r+t]ψ +[s+u]φ
1+φψ(φ +ψ)

.

Consequently, we have

0 < φψ(φ +ψ) = ([r+t]− [s+u])−1. (3.12)

If ([r+t]− [s+u]) > 1,the formula (3.12) is always true, and hence equation (2.1) has prime period two solution. If
([r+t]− [s+u])≤ 1, we have a contradiction. Hence equation (2.1) has not a prime period two solution.

(vii) If m, l are odd, and k is even, then yn+1 = yn−m = yn−l , and yn = yn−k. It follows from equation (2.1) that

φ =
[r+u]φ +[s+t]ψ

1+φψ(φ +ψ)
, ψ =

[r+u]ψ +[s+t]φ
1+φψ(φ +ψ)

.

Consequently, we have

0 < φψ(φ +ψ) = ([r+u]− [s+t])−1. (3.13)

If ([r+u]− [s+t]) > 1, the formula (3.13) is always true, and hence equation (2.1) has prime period two solution. If
([r+u]− [s+t])≤ 1, we have a contradiction. Hence equation (2.1) has not a prime period two solution.

(viii) If m, l are even, and k is odd, then yn = yn−m = yn−l , and yn+1 = yn−k. It follows from equation (2.1) that

φ =
[r+ s+u]ψ + tφ
1+ψ2φ +ψφ 2 , ψ =

[r+ s+u]φ + tψ
1+φ 2ψ +φψ2 ,

Consequently, we have

0 < φψ(φ +ψ) = t− ([r+s+u]+1). (3.14)

Since [r+s+u]+1 > t, we have a contradiction. Hence equation (2.1) has not a prime period two solution. Hence the
proof of Theorem (3.5) is now completed.

4. Numerical Examples

In order to illustrate the results of the previous section and to support our theoretical discussions, we consider some numerical
examples in this section. These examples represent different types of qualitative behavior of solutions of equation (2.1).



134 Fundamental Journal of Mathematics and Applications

Example 4.1. Figure 4.1 shows that the solution of equation (2.1) is bounded if x−3 = 1, x−2 = 2, x−1 = 3, x0 = 4, m = 1,
k = 2, l = 3, r = 0.1, s = 0.2, t = 0.3, u = 0.25, i.e. [r+s+t+u]< 1.

Figure 4.1: The solution of equation (2.1) is bounded.

.

Example 4.2. Figure 4.2 shows that the solution of equation (2.1) is unbounded if x−3 = 1, x−2 = 2, x−1 = 3, x0 = 4, m = 1,
k = 2, l = 3, r = 1, s = 2, t = 3, u = 4, i.e. [r+s+t+u]> 1.

Figure 4.2: The solution of equation (2.1) is unbounded.

Example 4.3. Figure 4.3 shows that equation (2.1) is globally asymptotically stable if x−4 = 1, x−3 = 2, x−2 = 3, x−1 = 4,
x0 = 5, m = 2, k = 3, l = 4, r = 0.1, s = 0.5, t = 0.2, u = 0.25, i.e. [r+s+t+u]< 1.

Figure 4.3: The solution of equation (2.1) is globally asymptotically stable.
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Example 4. Figure 4.4 shows that equation (2.1) has no positive prime period two solutions if x−3 = 1, x−2 = 2, x−1 = 3,
x0 = 4, m = 2, k = 1, l = 3, r = 100, s = 300, t = 400, u = 500.

Figure 4.4: The solution of equation (2.1) has no positive prime period two solutions.

5. Conclusions

In this article, we have shown that equation (2.1) has two equilibrium points ỹ1 = 0 and ỹ2 =
(
[r+s+t+u]−1

2

) 1
3
. If [r+s+t+u]< 1,

we have proved that ỹ1 = 0 is globally asymptotically stable, while if [r+s+t+u]> 1, the solution of equation (2.1) oscillates

about the point ỹ2 =
(
[r+s+t+u]−1

2

) 1
3

with a semicycle of length one. When [r+s+t+u]> 1, we have proved that the solution
of equation (2.1) is unbounded. The periodicity of the solution of equation (2.1) has been discussed in details in Theorem 3.5.
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[18] T. F. İbrahim, Three-dimensional max-type cyclic system of difference equations, Int. J. Phys. Sci., 8(15) 2013, 629–634.
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