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Abstract 

The purpose of this study was to compare the equating errors of item and ability parameters obtained by 

performing scale transformation methods to two multidimensional test forms under various conditions. Sample 

size (1000-2000), common item ratio (20% and 40%), correlation between dimensions (0.1-0.5-0.9) and 

parameter estimation model (2 parameter logistic model and 3 parameter logistic model) were taken as research 

conditions. Root Mean Squared Error (RMSE) was used to examine the accuracy of the scale transformation 

results. It was observed that the RMSE value generally decreased as the sample size and common item ratio 

increased and the correlation between dimensions decreased. Higher equating errors were obtained when the 

mean-sigma method was used. In the estimation of the discrimination parameter, lower RMSE values were 

obtained in 2PLM for all methods. In the estimation of difficulty and ability parameters, lower RMSE values 

were obtained in 2PLM for Stocking-Lord method and in 3PLM for mean-mean and mean-sigma methods. 

Key words: Multidimensionality, Scale transformation, Mean-mean, Mean-sigma, Stocking-lord 

 

Introduction 

Tests in the field of education and psychology are used for various purposes such as determining the learning 

deficiencies of individuals, selection and placement of individuals in an educational institution or a job. The 

decisions to be taken about individuals can be accurate and fair only if the tests are valid and reliable. In many 

large-scale test applications applied at national and international level, different test forms are used for purposes 

such as ensuring test security and estimating the change in test scores by using different items (Öztürk Gübeş, 

2014). In these applications, different test forms consisting of equal numbers of items are created so that the 

content and item format of the item are equivalent to each other (Xu, 2009). The main purpose of using different 

equivalent test forms is to compare the scores obtained from the tests and to use the scores obtained 

interchangeably. Although the test forms are prepared with similar content and psychometric characteristics in 

order to measure the same trait, the scores obtained from the test forms should be equated by numerical 

transformation (Braun & Holland, 1982). As a result of the numerical transformation, the scores obtained from 

the test forms are placed on the same scale and the scores obtained from the tests can be used interchangeably. 

Comparing scores obtained from different test forms that are not at the same scale level may lead to 

inaccurate results. In order for the scores to be comparable, a statistical adjustment is made between the scores 

obtained from different test forms by test equating, so that the scores are on the same scale (Kolen & Brennan, 

2014). Test equating, which is a statistical technique, reveals the relationship between the scores obtained from 

test forms (Chu & Kamata, 2003). Angoff (1984) defined test equating as equating the unit system of one form 

to the unit system of another form.  As a result of test equating, scores obtained from different test forms can be 

used interchangeably (Hambleton & Swaminathan, 1985; Kolen & Brennan, 2014). 

Test equating is a statistical process that regulates the differences between the scores obtained from two 

test forms with similar difficulty and content and allows these scores to be used interchangeably (Kolen & 

Brennan, 2014). One of the conditions required for test equating is that the test forms measure the same 

structure. In addition, the reliability coefficients of the test forms should be close to each other and features such 

as equality, symmetricity and group invariance should be met (Dorans and Holland 2000).  

The first step of the test equating process is to decide on the equating design. Kolen and Brennan 

(2014) explained three basic test equating designs as follows; single group design, random groups design and 

non-equivalent groups anchor test (NEAT) design. The non-equivalent groups anchor test design is also referred 
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to as the common-item non-equivalent groups (CINEG) design in the literature (Reckase, 2009; Topczewski, 

Cui, Woodruff, Chen, & Fang, 2013). Since the non-equivalent groups common test design has been widely 

used in many national and international large-scale tests, the non-equivalent groups common test design was 

used in this study. In this design, the test forms (Form X and Form Y) have a common set of items and these 

forms are administered to groups taking different tests. In this design, the group taking Form X is not considered 

equivalent to the group taking Form Y. Differences between Form X and Form Y averages are considered as a 

combination of differences between the groups taking the test and differences between the test forms (Kolen & 

Brennan, 2014). The difference in ability between the groups is controlled by means of common (anchor) items 

in both forms and the scores obtained from the test forms are equated to each other (He, 2011). 

In a test equating process, after the equating design is selected, the equating method is determined and 

the item and ability parameters of each test form are estimated according to this method. Then, item and ability 

parameters are transformed into a common scale. Scale transformation should be performed when using a non-

equivalent groups anchor test design, this step is not necessary since the parameters estimated in single and 

equivalent group designs will be on the same scale. After the item and ability parameters are placed on a 

common scale, the scale on which the test scores will be reported is determined. If the test scores are to be 

reported on ability parameters, the process is completed, but if reporting is to be done on true scores, true scores 

should be estimated according to different ability levels and true scores of both forms should be equated 

(Kabasakal, 2014). 

Tests used in education and psychology are inherently multidimensional to some extent due to the 

many sources of multidimensionality involved in scoring (Ackerman, Gierl & Walker, 2003). The sources of 

multidimensionality may be that the test consists of more than one content area or that the test has more than 

one item format (mixed format tests). In such cases, it is very difficult to meet the unidimensionality assumption 

(Kim, Lee, & Kolen, 2020). Therefore, the relationship between items in tests used in education and psychology 

is not as simple as described in unidimensional models. It can be interpreted that the predictions made using 

unidimensional models have lower errors when there is a dominant dimension in which the items in the test are 

collected and the dimensionality source of the test is mostly explained by this dimension. In cases where the 

data structure of the test measures more than one latent trait, unidimensional models make predictions on the 

axis of the strongest dimension in the data structure, and ability and item parameters estimated using 

unidimensional models can be highly biased (Gibbons, Immekus, & Bock, 2007; Reckase, 1985). If more than 

one psychological trait affects the responses to the items in the test and the test consists of more than one 

content area or more than one item format, it can be interpreted that the unidimensionality assumption is 

violated and in this case, unidimensional models should not be used (Kim & Lee, 2022; Zhang, 2009). Instead, 

models under the multidimensional item response theory (MIRT) can be used. 

In MIRT, item discrimination parameter is calculated differently from unidimensional item response 

theory. According to this theory, since the test consists of more than one dimension, the items in the test have a 

separate discrimination parameter for each dimension. Item discrimination is represented by multidimensional 

discrimination index (MDISC). MDISC is used in conjunction with the parameter a in unidimensional models. 

The length of the vector related to the MDISC index is calculated as given in Equation 1, where ika  is the 

discrimination parameter of item i for each dimension (Reckase, 2009). 

 

 
2

1

k
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MDISC a


   (1) 

 

While the items in the test have a separate discrimination parameter for each dimension, they have a 

single difficulty parameter. The multidimensional difficulty index (MDIFF) is a parameter corresponding to the 

b parameter in the unidimensional item response theory. The id  in Equation 2 is the intercept parameter related 

to item difficulty and calculated by the interaction of a and b parameters. MDIFF index is calculated as given in 

Equation 2 (Reckase, 2009). 

 

 
id

MDIFF
MDISC


  (2) 

 

It has been explained in the previous sections that as the number of latent traits measured by a test 

increases, the test measures more than one ability. While items in some tests measure more than one latent trait, 
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each of the items in some tests may be combined under a separate latent trait. Tests with items that are related to 

more than one ability are called complex structured tests, while tests in which items are gathered under different 

abilities and are related only to the level of ability they measure are called simple structured tests (Zhang, 2012). 

While the items in a simple structured test load on only one dimension, in a complex structured test the items 

load on more than one dimension (Ackerman, Gierl, & Walker, 2003). Simple structure may never occur in real 

data structures, however, simple structure assumes that the secondary loadings of items for data fluctuate around 

zero (Kim & Lee, 2022). In this study, two-dimensional simple structured data sets were generated and analyses 

were conducted on these data sets. 

 

In the test equating study using the NEAT design, the parameters estimated from different forms may 

not be on the same scale due to the differences in ability between the groups. Therefore, a linear transformation 

is required to place the parameters estimated from the test forms on the same scale. Separate calibration and 

concurrent calibration methods can be used to transform the item parameters of the test forms applied to 

different groups to the same scale (Kolen & Brennan, 2014). Since separate calibration has been found to give 

more accurate and reliable results in multidimensional data structures (Kim & Kolen, 2006; Kolen & Brennan, 

2014), separate calibration method was used in this study. 

 

Separate calibration refers to the situation where item and ability parameters for each form are 

estimated separately and then an additional linking procedure is applied to place the two sets of parameters on 

the same scale (Kim, 2018). In NEAT design, item parameters of common items are used for scale 

transformation. With the scale transformation process, it is aimed to transform the item and ability parameters 

estimated from the new test form into the scale of the item and ability parameters of the old test form. For this 

purpose, it is necessary to obtain the slope (A) and intercept (B) constants. With these constants, the equivalent 

of the ability parameter value in one form can be found in the other form. Considering that there are I and J 

forms of a test, the ability (𝜃) parameter of person i in Test I and its equivalent in Test J can be calculated as 

given in Equation 3 (Kolen & Brennan, 2014). 

 

 Ji IiA B    (3) 

 

The transformation of item parameters from Test I to Test J is given in Equation 4. Since the guess 

parameter (parameter c) is on the probability scale, there is no need for transformation. 
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(4) 

 

, , :Ij Ij Ija b c  Item parameters for test I of item j 

, , :Jj Jj Jja b c  Rescaled item parameters of item j for test J 

 

The methods used for separate calibration in scale transformation can be defined as moment methods 

and characteristic curve methods. Moment methods include mean-mean and mean-sigma methods, while 

characteristic curve methods include Stocking Lord and Haebara methods. In this study, mean-mean and mean-

sigma methods from moment methods and Stocking Lord from characteristic curve methods were used. 

In mean-mean (MM) method, slope (A) and intercept (B) constants are obtained by using the means of 

discrimination and difficulty parameters for common items (Loyd & Hoover, 1980). The calculation methods of 

slope and intercept constants are given in Equation 5. 
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   , :i ja a   Mean of the discrimination parameters estimated from common items in i and j scales, 

respectively 

   , :i jb b   Mean of the difficulty parameters estimated from common items in i and j scales, respectively 

 

Means and standard deviations of the difficulty parameters of common items are used to obtain the 

slope (A) and intercept (B) constants in Mean-Sigma (MS) method, (Marco, 1977). The mathematical 

expression for the calculation of the constants A and B according to the mean-sigma method is given in 

Equation 6. 
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   , :i jb b    The mean of the difficulty parameters estimated from common items in scales i and j, 

respectively 

   , :j ib b   Standard deviation of difficulty parameters estimated from common items in scales j and i, 

respectively 

 

In Stocking-Lord (SL) method, the constants A and B are calculated by minimising the criterion 

function defined by the difference between the characteristic curves of the items instead of the parameters of the 

common items (Stocking and Lord, 1983). In this method, the sum is obtained for each parameter set and the 

square of the difference of the sums over the items is taken. Equation 7 shows the mathematical expression for 

this method (Kolen and Brennan, 2014). 

 

    
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Ij
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j V j V

a
SLdiff p a b c p b B c

A
  

  
    

  
   (7) 

A : Slope constant 

B : Intercept constant 

ijp  : Item characteristic function for person i and item j 

, ,Jj Jj Jja b c  : Item parameters for the jth common item in scale J 

, ,Ij Ij Ija b c  : Item parameters for the jth common item in scale I 

:j V  : Indicates that the total formula is calculated on common items 

 

SLdiff is summed over the examinees and the constants A and B are obtained by minimising the 

criterion given in Equation 8 (Kolen and Brennan, 2014). 

 

  crit i

i

SL SLdiff   (8) 

 

Tests used in education and psychology generally do not consist of a single dimension, items are 

sometimes related to multiple dimensions, and there are other dimensions measured by test items other than a 

dominant dimension. When unidimensional equating methods are applied to multidimensional data structures, it 

can be interpreted that the equating relationships will contain a large amount of error due to the violation of the 

unidimensionality assumption (Brossman, 2010). Multidimensional equating methods should be used for 

multidimensional data. In this study, an answer to the question of how the magnitude of the equating errors to be 

obtained when multidimensional equating methods are applied to multidimensional data structures under 

various conditions is searched.  

It is aimed to apply scale transformation methods under NEAT design using two-parameter logistic 

model (2PLM) and 3-parameter logistic model (3PLM) to two-dimensional simple structured test data produced 
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under two different common item ratios (20% and 40%) with low (0.1), medium (0.5) and high (0.9) correlation 

between dimensions in sample sizes of 1000 and 2000 people, and to compare the estimated equating errors 

(RMSE) under the conditions considered in this study. It can be interpreted that the tests used in education and 

psychology measure more than one latent trait and are multidimensional due to their structure. In scale 

transformation studies, it is generally accepted that the data are unidimensional and analysis processes are 

carried out through unidimensional item response theory. Scale transformation studies conducted on 

multidimensional data structures are quite few. In this context, it is thought that the results of this study, which 

aims to compare the equating errors obtained from multidimensional scale transformation over 

multidimensional data and under the conditions considered, will contribute to the literature. In method section, 

the variables and conditions considered in the research are presented in a table, and the data generation, data 

analysis and evaluation criteria for these conditions are explained under separate headings. 

Method 

Research Data 

Simulation data was used in the study. The reason for this may be that it is not possible to fulfil all of the 

conditions (sample size, correlation between dimensions, common item ratio, parameter estimation model) in 

real data structures. Within the framework of the conditions in the study, data sets for both forms of the test (X 

and Y) and item and ability parameters were generated using R software, and dichotomous (1-0) item response 

data were generated from item and ability parameters using R software. 

In scale transformation methods, there are studies examining the effect of sample size on equating 

error. Skaggs and Lissitz (1986) stated that the sample size for 3PLM should be at least 1000, Gübeş (2019) 

took the sample size as 1000 and 2000 in her study, and Hanson and Beguin (2002), Gök and Kelecioğlu (2014) 

and Kumlu (2019) took the sample size as 1000 and 3000 in their studies. In this study, the sample size was 

taken as 1000 and 2000. 

Conditions were created so that the correlation between dimensions was low (0.1), medium (0.5) and 

high (0.9) in the study. High correlation between the dimensions can be shown as an evidence for the 

unidimensionality of the test (Zhang, 2009). Beguin and Hanson (2001) observed that an increase in the 

correlation between dimensions leads to an increase in the total error when multidimensional model parameter 

estimation is used. Gübeş (2019) applied unidimensional scale transformation methods to a two-dimensional test 

data and obtained higher equating errors as the correlation between dimensions decreased. 

Scale transformation is performed through common items (anchor) in NEAT design. In this design, 

anchor form is divided into two as internal anchor and external anchor. If common items are included in the 

total score of the individual, it is called internal anchor, if not, it is called external anchor (Crocker & Algina, 

1986; Kolen & Brennan, 2014). In this study, internal anchor test was used. Angoff (1984) and Kolen and 

Brennan (2014) stated that the number of common items in test forms should not be less than 20 items or 20% 

of the total number of items. In this study, common item ratio was taken as 20% and 40%. 

There are studies examining the effect of scale transformation using 2PLM and 3PLM on equating 

error (Gök & Kelecioğlu, 2014; Kim & Kolen, 2006; Kim & Lee, 2006). Accordingly, it is stated that the model 

used has an effect on the scale transformation and test equating process. The data of this study were generated 

according to 2PLM and 3PLM and in this way, it was aimed to reveal the effect of the guess parameter on the 

equating error when 3PLM was used. 

In the study, the discrimination parameter (a) was generated from a uniform distribution with values 

ranging between 0.6 and 2 for both forms. The difficulty parameter (b) was generated from a normal distribution 

with a mean of 0 and a standard deviation of 1 with values between -3 and +3, and the guess parameter (c) was 

generated from a uniform distribution with values between 0.01 and 0.25. Between-groups ability distribution is 

not considered as a condition in this study. According to the classification based on the difference between the 

means of ability distributions between groups, if the difference is between 0.05-0.10, it can be defined as 

"wide", and when it takes values of 0.25 and higher, it can be defined as "very wide" (Wang at al., 2008). 

However, since the NEAT design was used in this study and the average ability difference between the groups 

was not desired to affect the results to be obtained regarding the conditions to be examined, the difference was 

taken as low as 0.05. When generating the ability parameters of one of the groups, the mean was taken as 0 and 

the standard deviation as 1, and when generating the ability parameters of the other group, the mean was taken 

as 0.05 and the standard deviation as 1, and the ability parameters were generated to show a multivariate normal 

distribution. In Table 1, the variables and conditions within the framework of the study are explained. 

As seen in Table 1, a total of 24 (2x3x2x2) conditions were examined in this study, including sample 

size (2 conditions), correlation between dimensions (3 conditions), common item ratio (2 conditions) and 
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parameter estimation model (2 conditions). In the literature, it was observed that at least 50 iterations were 

performed for each data set in order to make the research results consistent and stable (Hanson & Beguin, 2002) 

and 50 iterations were performed for each data set in this study. 

 

Table 1. Variables and Conditions in the Study 

Variables Conditions Number of Conditions 

Sample size 1000-2000 2 

Correlation between dimensions 0.1-0.5-0.9 3 

Common item ratio %20-%40 2 

Parameter estimation model 2PLM-3PLM 2 

 

Data Anaysis 

In the study, 1200 (24x50) data sets for both forms of the test (X and Y) were generated in R software in order 

to compare the equating errors obtained from mean-mean (MM), mean-sigma (MS) and Stocking Lord (SL) 

scale transformation methods. Dichotomous (1-0) item response data were generated from the item and ability 

parameters produced using the mirt package (Chalmers, 2012) in R software. For both forms of the test, 

multidimensional and simple structure parameter estimations were performed separately for 2PLM and 3PLM in 

IRT PRO 4.2 software. Markov Chain Monte Carlo (MC-MC) method was used for parameter estimation. In 

order to set the parameters obtained from both forms on the same scale, scale transformation was performed by 

using the mean-mean, mean-sigma and Stocking Lord methods, which are separate calibration methods over the 

MIRT based on the parameters of the items in the first form and the common item parameters in the second 

form. Linkmirt software (Yao, 2009) was used for multidimensional scale transformation. The softwares used in 

the study was run through batch script with R software in order to analyse 50 iterations of the data sets at one 

time. Slope (A) and intercept (B) constants were obtained by using MM, MS and SL scale transformation 

methods, and then the Root Mean Squared Error (RMSE) value, which gives the amount of error of the 

transformed item and ability parameters for each scale transformation method, was calculated. The RMSE 

values estimated after each iteration for item and ability parameters were averaged separately to obtain a single 

RMSE value for each parameter. The mathematical expression for the calculation of the RMSE value is given in 

Equation 9. 

  
 

2

1

R

jr jr

jRMSE
R

 
 





 
(9) 

 :j  True value of parameter j 

:jr  Estimated value of parameter j for repeated data set (r=1, 2, 3, ..., R) 

R   :  Number of iterations 

Results and Discussion 

Multidimensional scale transformation was performed over the data obtained from both forms within the 

framework of the conditions in the research by using 3PLM and 2PLM respectively, and the findings obtained 

were interpreted under separate headings respectively. 

Results on RMSE Values Obtained When Scale Transformation is Performed Using 3PLM 

The RMSE values for the item and ability parameters obtained as a result of the multidimensional scale 

transformation process performed over 3PLM on both forms, including the discrimination parameter a, 

difficulty parameter b and the ability parameter theta, are given in Table 2. 

Table 2. RMSE Values of Scale Transformation Methods Using 3PLM 

Correlation 

Between 

Dimensions 

Sample 

Size 

Common 

Item 

Ratio 

RMSE Value 

a b theta 

MM MS SL MM MS SL MM MS SL 

0.1 1000 %20 0.10 0.41 0.19 0.21 0.33 0.25 0.15 0.22 0.20 
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%40 0.12 0.28 0.13 0.15 0.20 0.18 0.11 0.15 0.13 

2000 
%20 0.12 0.31 0.19 0.15 0.25 0.32 0.11 0.18 0.28 

%40 0.08 0.23 0.14 0.11 0.25 0.28 0.07 0.17 0.22 

0.5 

1000 
%20 0.13 0.47 0.20 0.26 0.39 0.34 0.18 0.25 0.29 

%40 0.11 0.31 0.16 0.14 0.28 0.24 0.10 0.19 0.18 

2000 
%20 0.09 0.35 0.15 0.17 0.32 0.23 0.12 0.23 0.17 

%40 0.12 0.28 0.13 0.15 0.20 0.18 0.07 0.10 0.09 

0.9 

1000 
%20 0.13 0.44 0.19 0.21 0.35 0.28 0.14 0.24 0.23 

%40 0.08 0.31 0.14 0.13 0.29 0.26 0.09 0.18 0.20 

2000 
%20 0.11 0.32 0.16 0.17 0.33 0.29 0.12 0.23 0.24 

%40 0.08 0.24 0.13 0.10 0.21 0.25 0.07 0.15 0.20 

 

When Table 2 is examined, it is seen that the RMSE value decreases as the sample size increases for all 

methods in the analyses using 3PLM. Similarly, it can be interpreted that the increase in the common item ratio 

is effective in obtaining lower RMSE values in general. When the RMSE values obtained for the methods are 

analysed, it is seen that the RMSE values for the mean-sigma method are higher than the other methods for all 

parameters. This supports the findings obtained by Atar and Yeşiltaş (2017). In addition, it is seen that the 

lowest RMSE values are obtained from the mean-mean method. While this is consistent with the findings of 

Ogasawara (2000) and Gök and Kelecioğlu (2014), which show that the mean-mean method yields better results 

than the mean-sigma method, it conflicts with the finding reported by Baker and Al-Karni (1991) and Hanson 

and Beguin (2002) that characteristic curve methods produce lower errors than moment methods. When the 

correlation between dimensions is 0.1 (low), the sample size is 2000 (high) and the common item ratio is 40% 

(high), the RMSE values of the mean-mean and mean-sigma methods are the lowest for all parameters. In the 

Stocking-Lord method, the lowest RMSE values for all parameters were obtained in conditions with correlation 

between dimensions of 0.5 (medium), sample size of 2000 (high) and common item ratio of 40% (high). Figure 

1 shows the RMSE values obtained under all conditions as a result of multidimensional scale transformation 

using 3PLM for a, b and theta parameters, respectively. 
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Figure 1. RMSE Values of Scale Transformation Methods Using 3PLM 

 

Figure 1 shows that the lowest RMSE values for a, b and theta parameters, respectively, were obtained 

from the mean-mean method when the common item ratio was 40% and the sample size was 2000. When the 

sample size and common item ratio are constant, it can be interpreted that increasing the correlation between 

dimensions has a relatively decreasing effect on the RMSE values obtained from a and b parameters. The reason 

for this is that the increase in the correlation between dimensions strengthens the unidimensional characteristic 

of the test, and this situation is thought to provide more consistent estimation of the parameters of the test items. 

Results on RMSE Values Obtained When Scale Transformation is Performed Using 2PLM 

RMSE values for item and ability parameters obtained when multidimensional scale transformation was 

performed on both forms using 2PLM are given in Table 3. 

It is seen that the RMSE value decreases as the sample size increases for all scale transformation 

methods in the analyses using 2PLM as in 3PLM in Table 3. In addition, it can be interpreted that the increase in 

the common item ratio has a decreasing effect on the RMSE values obtained from the mean-mean and mean-

sigma methods and an increasing effect on the RMSE values obtained from the Stocking-Lord method. When 

the RMSE values obtained for the methods are analysed, it is seen that the values for the mean-sigma method 

are higher than the other methods. When the correlation between dimensions was 0.1 (low), sample size was 

2000 (high) and common item ratio was 20% (low), RMSE values of all methods were the lowest for all 

parameters. 

Table 3. RMSE Values of Scale Transformation Methods Using 2PLM 

Correlation 

Between 

Dimensions 

Sample 

Size 

Common 

Item 

Ratio 

RMSE Value 

a b theta 

MM MS SL MM MS SL MM MS SL 

0.1 
1000 

%20 0.07 0.32 0.09 0.23 0.34 0.16 0.16 0.25 0.11 

%40 0.06 0.26 0.07 0.16 0.34 0.15 0.11 0.24 0.11 

2000 %20 0.06 0.21 0.07 0.14 0.22 0.14 0.10 0.16 0.10 

0

0,1

0,2

0,3

0,4

0,5

b parameter (20%) 

MM MS SL

0

0,1

0,2

0,3

0,4

0,5

b parameter (40%) 

MM MS SL

0

0,1

0,2

0,3

0,4

0,5

theta parameter (20%) 

MM MS SL

0

0,1

0,2

0,3

0,4

0,5

theta parameter (40%) 

MM MS SL
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%40 0.07 0.25 0.17 0.18 0.31 0.33 0.12 0.21 0.19 

0.5 

1000 
%20 0.09 0.40 0.11 0.29 0.38 0.19 0.19 0.27 0.15 

%40 0.09 0.30 0.19 0.23 0.35 0.36 0.17 0.25 0.21 

2000 
%20 0.05 0.24 0.06 0.19 0.27 0.15 0.13 0.21 0.10 

%40 0.08 0.21 0.18 0.15 0.22 0.33 0.09 0.15 0.20 

0.9 

1000 
%20 0.08 0.37 0.10 0.23 0.34 0.18 0.16 0.26 0.15 

%40 0.09 0.31 0.19 0.26 0.53 0.36 0.19 0.34 0.21 

2000 
%20 0.05 0.24 0.06 0.17 0.27 0.15 0.11 0.20 0.11 

%40 0.08 0.23 0.17 0.16 0.24 0.34 0.11 0.17 0.20 

 

When RMSE values according to parameter estimation models are analysed, it is seen that RMSE 

values for discrimination parameter are lower in 2PLM for all methods. When the RMSE values for difficulty 

and ability parameters are analysed, it is seen that the values for Stocking-Lord method are lower in 2PLM, 

while lower values are obtained in 3PLM for other methods. In this context, it can be interpreted that generally 

lower RMSE values are obtained when 2PLM is used. This finding is consistent with the finding of Kaskowitz 

and De Ayala (2001) that 3PLM estimates parameters a and b with higher error. In cases where 2PLM is used as 

a parameter estimation model, this may be explained by the fact that more stable item parameter estimates are 

obtained in large samples (Bökeoğlu at al., 2022). Figure 2 shows the RMSE values obtained under all 

conditions as a result of multidimensional scale transformation using 2PLM for a, b and theta parameters, 

respectively. 
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Figure 2. RMSE Values of Scale Transformation Methods Using 2PLM 

 

According to Figure 2, it is seen that the lowest RMSE values for a and b parameters are generally 

obtained when the sample size is 2000 and the common item ratio is 20%. For the discrimination parameter, the 

lowest RMSE value was obtained from the mean-mean method when the correlation between dimensions was 

0.5 and 0.9, while for the difficulty parameter, the lowest RMSE value was obtained from the mean-mean and 

Stocking-Lord methods when the correlation between dimensions was 0.1. The lowest RMSE value for the 

ability parameter was obtained from the mean-mean method when the common item ratio was 40% and the 

correlation between dimension was 0.5 in a sample size of 2000. When the RMSE values of the scale 

transformation methods were compared, values obtained from the mean-sigma method were found to be higher. 

Conclusion and Recommendations 

In this study, it was aimed to compare the equating errors of mean-mean, mean-sigma and Stocking-Lord scale 

transformation methods under various conditions (sample size, correlation between dimensions, common item 

ratio and parameter estimation model) using multidimensional item response theory. For this purpose, data were 

generated according to various conditions by taking into account the conditions considered in previous national 

and international studies and it was investigated which of these conditions produced the least error. 

As a result of the analyses, it was seen that the increase in the sample size and the common item ratio 

had a decreasing effect on the equating errors, and the low correlation between the dimensions led to low 

equating errors due to the structure of the data and the methods used. Obtaining low equating errors at high 

sample sizes is consistent with the findings in the literature (Atar & Yeşiltaş, 2017; Hanson & Beguin, 2002). In 

addition, the findings obtained from the study are consistent with the finding that the increase in the correlation 

between dimensions causes an increase in the equating error when multidimensional scale transformation is 

performed (Beguin & Hanson, 2001; Gübeş, 2019). In addition, in cases where 3PLM was used, the increase in 

the common item ratio decreased the equating errors. 

Estimates with the lowest equating error were obtained in the condition with a sample size of 2000 and 

the correlation between dimensions was 0.1 when both 2PLM and 3PLM were used. In addition, higher 

equating errors were obtained when the mean-sigma method was used for both models. In the estimation of the 

discrimination parameter, lower RMSE values were obtained when 2PLM was used for all methods. In the 

estimation of difficulty and ability parameters, lower values were obtained in 2PLM for Stocking-Lord method, 

while lower RMSE values were obtained in 3PLM for mean-mean and mean-sigma methods. It is concluded 

that the equating errors obtained from the mean-mean and Stocking-Lord methods are lower when the 2PLM is 

used, and from the mean-mean method when the 3PLM is used. This finding coincides with the findings of 

Ogasawara (2000), Gök and Kelecioğlu (2014), and conflicts the study by Baker and Al-Karni (1991), who 

found that the method with the least error is Stocking-Lord. The parameter estimation model caused differences 

in the equating errors and in determining the scale transformation method with the least error. In this case, it can 

be interpreted that guess success affects the parameter estimation and also affects the equating error. 

In order to be able to interpret and generalise the results of a research correctly, the conditions in the 

research and their interactions with each other should be taken into consideration. Considering the conditions 

and the results obtained in this study, it is understood that attention should be paid to the selection of sample 

size, common item ratio and correlation between dimensions in multidimensional scale transformation. When 

the results of the research are evaluated in general, it can be interpreted that the scale transformation method 

with the lowest equating error can be obtained by using the mean-mean method when the sample size is 2000 

and the correlation between dimensions is 0.1. Equating errors of all methods decreased due to the fact that the 

error related to parameter estimation decreased in large samples and more stable estimations were made.  
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According to the results of the study, the performance of the scale transformation methods differed 

according to the conditions considered, thus there is no definite conclusion about which method will give the 

best result. It is important that the findings obtained in scale transformation studies are consistent with the 

findings of previous studies. Using many methods together and comparing the results will help in choosing the 

most appropriate method (Hanson & Beguin, 2002). 

This study is limited to sample size, common item ratio, correlation between dimensions, parameter 

estimation method conditions and certain levels of these conditions. A similar study can be conducted by 

considering the condition of ability distribution between groups. This study was conducted with simulation data. 

Similar studies can be carried out using real data. By generating simulation data similar to the conditions of real 

data, the errors obtained from both data types can be compared. In this way, possible differences and errors due 

to the use of real data or simulation data can be revealed. In addition to the RMSE value used as an evaluation 

criterion in this study, comparisons can be made using different evaluation criteria such as standard error of 

equating and bias. 
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