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ABSTRACT

In the present paper, we prove that if the metric of a three dimensional almost Kenmotsu manifold
with Qϕ = ϕQ whose scalar curvature remains invariant under the chracterstic vector field ζ and
the divergence of the scalar curvature vanishes, admits a Yamabe soliton, then either the soliton is
trivial or the manifold is of constant sectional curvature.
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1. Introduction

In a Riemannian manifold N 2m+1, the metric g is a Yamabe soliton if it allows a smooth vector field W such
that

£W g = (λ− r)g, (1.1)

where λ is a real constant and r represents the scalar curvature of g and £ indicates the Lie-derivative operator.
The Ricci flow and Yamabe flow both were first introduced by Hamilton [11]. A given manifold is deformed

due to alternation in its metric as per the equation ∂
∂tg(t) = −r(t)g(t), where r(t) stands for the scalar curvature

of the metric g(t). Yamabe solitons are equivalent to the Yamabe flow’s self-similar solutions. The Ricci flow,
which is described by ∂

∂tg(t) = −2S(t), is comparable to the Yamabe flow in two dimensions, where S indicates
the Ricci tensor. Moreover, the Yamabe and Ricci flows disagree in the dimension of greater than 2.

Equation (1.1) becomes

Hessf =
1

2
(λ− r)g, (1.2)

for a Yamabe soliton if a smooth function f satisfies W = Df , where the Hessian of f is denoted by Hess f and
D is the gradient operator of g. In this instance, g is referred to as a gradient Yamabe soliton and f is referred
to as the potential function of the Yamabe soliton. We call a Yamabe soliton or a gradient Yamabe soliton to be
trivial when W is Killing or f is constant respectively. Numerous authors, including Blaga [2], Calvaruso [5],
Sharma [14], Chen and Deshmukh ([3], [4]), Wang ([16], [19]), Suh and De [15] and many more, have examined
Yamabe solitons.

In 2016, Wang [16] researched Yamabe solitons on a three-dimensional Kenmotsu manifold. Recently, Wang
[19] have been characterized Yamabe solitons in (k, µ)′- almost Kenmotsu manifolds and proved that if the
metric g of a (k, µ)′- almost Kenmotsu manifold represents a Yamabe soliton, then either the manifold is
locally isometric to the product space Hn+1(−4)×Rn or ζ is a infinitesimal contact transformation. The
aforementioned investigations served as an inspiration for the current paper, which examines Yamabe solitons
on a 3-dimensional almost Kenmotsu manifold with ϕQ = Qϕ, Q is the Ricci operator defined by g(QT,U) =
S(T,U), where S is the Ricci tensor of type (0, 2).

The present paper is set up as follows : After preliminaries in Section 3 we prove the main Theorem of the
paper. We specifically demonstrate the following :
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Theorem 1.1. Let N be a 3-dimensional almost Kenmotsu manifold with Qϕ = ϕQ, the scalar curvature remains
invariant under the characterstic vector field ζ and divergence of r vanishes. Then either the soliton is trivial or the
manifold is of constant sectional curvature.

2. Preliminaries

Suppose N be a differentiable manifold of dimension (2m+ 1). Assume that (ϕ, ζ, π, g) is an almost contact
metric structure on N . This means that (ϕ, ζ, π, g) is a quadruple made up of a (1, 1)-tensor field ϕ, an associated
vector field ζ, a 1-form π and a Riemannian metric g on N satisfying the following requirements

ϕ2(T ) = −T + π(T )ζ, π(ζ) = 1, g(ϕT, ϕU) = g(T,U)− π(T )π(U), (2.1)

where T,U are smooth vector fields on N . In addition, we have

ϕζ = 0, π(ϕT ) = 0, g(T, ζ) = π(T ), g(ϕT,U) = −g(T, ϕU). (2.2)

An almost contact structure with a suitable Riemannian metric is referred to as a “almost contact metric
structure." Furthermore, an almost contact metric manifold is one that has an almost contact metric structure.
Φ(T,U) = g(T,ΦU) for any smooth vector fields T , U defines the fundamental-2 form Φ on a almost contact
metric manifold. The vanishing of the (1, 2)-type torsion tensor Nϕ, which is defined as Nϕ = [ϕ, ϕ] + 2dπ ⊗ ζ, is
the prerequisite for an almost contact mtetric manifold to be considered normal. In ([8], [9]), the authors have
studied almost contact metric manifolds, also known as almost Kenmotsu manifolds, when π is closed and
dΦ = 2π ∧ Φ . A normal almost Kenmotsu manifold is a Kenmotsu manifold. Also Kenmotsu manifolds can be
described by (∇Tϕ)U = g(ϕT,U)ζ − π(T )ϕU , for any vector fields T , U . Kenmotsu manifolds was invented by
Kenmotsu [13]. Later, the concept of almost Kenmotsu manifolds was first put up by Janssens and Vanhecke
[12] as a generalization of Kenmotsu manifolds. Researchers such as Dileo and pastore ([8], [9]), De et el. ([6],
[7]), Wang et el. [18], Wang [20] and many others examined almost Kenmotsu manifold.

Let N 2m+1 be an almost Kenmotsu manifold. We denote the two symmetric operator h and l such that
h = 1

2£ζϕ and l = R(·, ζ)ζ on N 2m+1. The operators h and l satisfy the following relations [8]:

hζ = 0, lζ = 0, tr(h) = 0, tr(hϕ) = 0, hϕ+ ϕh = 0, (2.3)

∇T ζ = −ϕ2T − ϕhT (⇒ ∇ζζ = 0), (2.4)

trl = S(ζ, ζ) = g(Qζ, ζ) = −2n− trh2, (2.5)

where “tr" indicates trace.
In ([21]), the authors deduce the expression of the Ricci operator in a 3-dimensional almost Kenmotsu

manifold with ϕQ = Qϕ which is given by

QT =
r − trl

2
T +

3trl − r

2
π(T )ζ. (2.6)

3. Yamabe solitons on 3-dimensional almost Kenmotsu manifolds with Qϕ = ϕQ

In this section, we charaterize the Yamabe solitons in 3-dimensional almost Kenmtsu manifolds with
Qϕ = ϕQ. The potential vector field W for Yamabe solitons is a conformal vector field, where £W g = 2αg and
α is called the conformal coefficient. When α is a conformal coefficient then from (1.1), we acquire α = λ−r

2 . A
conformal vector field in particular reduces to a Killing vector field when the conformal coefficient vanishes.

Here we first state the following Lemma:

Lemma 3.1. [22] Suppose (N , g) be an (2m+1)-dimensional Riemannian manifold endowed with a conformal vector field
W, then we have

(£W S)(T, V ) = −(2m− 1)g(∇TDα, V ) + (∆α)g(T, V ), (3.1)

£W r = −2αr + 4m∆α, (3.2)

for any vector fields T, V , where D represents the gradient operator and ∆ = −divD indicates the Laplacian operator of
g.
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Now we prove the next Lemma as follows :

Lemma 3.2. Suppose N be an almost Kenmotsu manifold of dimension 3 with Qϕ = ϕQ. If the metric g is a Yamabe
soliton, then

π(£W ζ) = −(£Wπ)ζ =
r − λ

2
. (3.3)

Proof. We are aware that g(ζ, ζ) = 1. Applying the Lie-derivative of this relation along the vector field W and
using (1.1) and (2.4), we obtain

π(£W ζ) = −(£Wπ)ζ =
r − λ

2
. (3.4)

This completes the Lemma’s proof.

Now we prove our main theorem.
Proof of the main Theorem 1.1. :
Making use of α = λ−r

2 and m = 1 in (3.1) and (3.2), we get

(£W S)(T,U) =
1

2
g(∇TDr,U)− 1

2
∆rg(T,U), (3.5)

and
£W r = r(r − λ)− 2∆r. (3.6)

Taking Lie derivative of (2.6) along the vector field W , we get

(£W S)(T,U) =
1

2
£W r[g(T,U)− π(T )π(U)] +

1

2
(r − trl)(£W g)(T,U) (3.7)

+
1

2
(3trl − r)[((£Wπ)T )π(U) + ((£Wπ)U)π(T )]

+
1

2
(£W trl)[−g(T,U) + 3π(T )π(U)].

In view of (3.5) and (3.7), we have

1

2
g(∇TDr,U)− 1

2
∆rg(T,U)

=
1

2
(£W r)[g(T,U)− π(T )π(U)] +

1

2
(r − trl)(£W g)(T,U) (3.8)

+
1

2
(3trl − r)[((£Wπ)T )π(U) + ((£Wπ)U)π(T )]

+
1

2
(£W trl)[−g(T,U) + 3π(T )π(U)].

Making use of (1.1) and (3.6) in (3.8) yields

g(∇TDr,U)−∆rg(T,U) = [r(r − λ)− 2∆r][g(T,U)− π(T )π(U)]

+(r − trl)(λ− r)g(T,U) + (3trl − r)[((£Wπ)T )π(U) + ((£Wπ)U)π(T )] (3.9)
+(£W trl)[−g(T,U) + 3π(T )π(U)].

Replacing T and U both by ζ in the last equation we infer

ζ(ζ(r)) = ∆r + (r − trl)(λ− r) + (3trl − r)(r − λ) + 2(£W trl). (3.10)

Let us assume that the scalar curvature r is invariant along the Reeb vector field ζ and the divergence of r
vanishes, that is, ζ(r) = 0 and ∆r = 0. Then from (3.10), it follows that

£W (trl) = (r − λ)(r − 2trl). (3.11)

Utilizing (3.11) in (3.10) yields

g(∇TDr,U) = r(r − λ)[g(T,U)− π(T )π(U)]

+(r − trl)(λ− r)g(T,U) + (3trl − r)[((£Wπ)T )π(U) (3.12)
+(r − λ)(r − 2trl)[−g(T,U) + 3π(T )π(U)].
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Considering a local orthonormal basis {bi : i = 1, 2, 3} of tangent space at each point of the manifold N 3.
Substituting T = U = bi in (3.12) and taking summation over i : 1 ≤ i ≤ 3, we acquire

0 = 2r(r − λ) + 3(r − trl)(λ− r) + (3trl − r)(r − λ),

which implies,
0 = (r − λ)(3trl − r). (3.13)

Therefore, either r = λ or r = 3trl. If r = λ then from (1.1) we get W is Killing, here the soliton is trivial. When
r = 3trl, then from (2.6) the manifold becomes Einstein one. Since the manifold is of 3-dimensional, hence the
manifold is of constant sectional curvature.

This finishes the proof of Theorem 1.1.
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