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The Relationship between Agriculture and Carbon Dioxide Emission in Türkiye: A 

Non-Linear Evidence 

Türkiye'de Tarım Sektörü ve Karbondioksit Emisyonu Arasındaki İlişki: Doğrusal Olmayan 

Bir Kanıt 

 

İbrahim ÜRKMEZ1*, Ahmet SEVİM2, Abdurrahman Nazif ÇATIK3 

Abstract 

Agricultural production has both increased and become more efficient with the development of technology. 

However, greenhouse gases such as CO2 released into the air during production cause climate change. This 

situation also affects agricultural productivity. Therefore, the main objective of this paper is the examine the 

interaction between agricultural sector activity and CO2 emissions in Türkiye in a non-linear framework.  For this 

purpose, the Maki cointegration test and the Single Fourier frequency Toda & Yamamoto causality test were used 

to investigate the interplay between agricultural value added and CO2 using time series data covering the period 

from 1968 to 2018. In addition to the empirical analysis developed in the paper, our study adds to the literature by 

studying the relationship between CO2 and energy consumption in the agricultural sector, as opposed to studies 

that use aggregate CO2 emissions as an indicator of climate change. In addition, the short- and long-run interactions 

between CO2 and agricultural productivity were investigated by estimating two separate equations where 

agricultural productivity and CO2 emissions are used as dependent variables. The Maki cointegration test 

cointegration test shows the existence of a long-run relationship between agricultural value added and CO2 

emissions under structural breaks. The detected significant breaks are associated with significant events affecting 

the Türkiye economy. For instance, when agricultural value added is the dependent variable, the break dates of 

1971 and 1974 coincide with the oil crisis, while the breaking dates of 2002 and 2008 coincide with Türkiye’s 

2001 financial crisis and the 2008 global financial crisis. Similarly, the break dates of 1973 and 1977 obtained in 

the CO2 equation are associated with the 1970s’ global oil crisis. Long-run parameter estimates derived from 

FMOLS and CCR estimators indicated that CO2 emissions have a long-run, positive and significant impact on 

agricultural productivity. In addition, the long-run results support the existence of a positive and significant impact 

of agricultural productivity on environmental degradation. The gradual shift causality test also supports the 

presence of one-way causality, running from agriculture output to CO2.  
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Öz 

Tarımsal üretim, teknolojinin gelişmesi ile hem artmıştır hem de daha verimli hale geldiği gerçeği yadsınamaz. 

Ancak üretim esnasında havaya salınan CO2 gibi sera gazları iklim değişikliğine neden olmaktadır. Bu durum da 

tarımsal verimliliği etkilemektedir. Dolayısıyla bu çalışmada Türkiye’de tarım sektörü aktivitesi ile CO2 

emisyonları arasındaki karşılıklı etkileşimi doğrusal olmayan bir çerçevede incelemeyi amaçlamaktadır. Bu 

amaçla, Maki eşbütünleşme testi ve Tek Fourier frekansı Toda & Yamamoto nedensellik testi, 1968'den 2018'e 

kadar olan dönemi kapsayan zaman serileri kullanarak tarımsal katma değer ile CO2 arasındaki etkileşimi 

araştırmak için kullanılmıştır. Makalede yapılan ampirik analize ek olarak, çalışmamız, toplam CO2 emisyonlarını 

iklim değişikliğinin bir göstergesi olarak kullanan çalışmaların aksine, tarım sektöründe CO2 ve enerji tüketimi 

arasındaki ilişkiyi inceleyerek literatüre katkıda bulunmaktadır. Ayrıca, CO2 ve tarımsal verimlilik arasındaki kısa 

ve uzun vadeli etkileşimler, tarımsal verimlilik ve CO2 emisyonlarının bağımlı değişkenler olarak kullanıldığı iki 

ayrı denklemin tahmini ile araştırılmaktadır. Maki eşbütünleşme testi, tarımsal katma değer ile yapısal kırılmalar 

altındaki CO2 emisyonları arasında uzun dönemli bir ilişkinin varlığını göstermektedir. Tespit edilen önemli 

kırılmalar, Türkiye ekonomisini etkileyen önemli olaylarla ilişkilidir. Örneğin, tarımsal katma değerin bağımlı 

değişken olduğu modelde, 1971 ve 1974 yıllarının kırılma tarihleri petrol kriziyle çakışırken, 2002 ve 2008 

yıllarının kırılma tarihleri Türkiye'nin 2001 mali krizi ve 2008 küresel mali krizi ile çakışmaktadır. Benzer şekilde, 

CO2 denkleminde elde edilen 1973 ve 1977'nin kırılma tarihleri, 1970'lerin küresel petrol krizi ile ilişkilidir. 

FMOLS ve CCR tahmincilerinden türetilen uzun dönemli parametre tahminleri, CO2 emisyonlarının tarımsal 

verimlilik üzerinde uzun vadeli, olumlu ve önemli bir etkiye sahip olduğunu göstermektedir. Bunun yanında, uzun 

dönemli sonuçlar, tarımsal verimliliğin çevresel bozulma üzerinde olumlu ve önemli bir etkisinin varlığını 

desteklemektedir. Kademeli kayma nedensellik testi ise, tarımsal üretimden CO2’ye kadar uzanan tek yönlü 

nedenselliğin varlığını desteklemektedir. Bu bulgular Türkiye’de tarımsal verimlilik ve CO2’nin birbirini 

desteklediğini göstermektedir. Her ne kadar CO2’nin tarımsal verimliliği pozitif etkilemesi olumlu görünse de 

çevreci olmayan bir tarıma işaret etmektedir. 

Anahtar Kelimeler: Tarım sektörü, Karbondioksit emisyonları, Yapısal kırılma analizi, Doğrusal olmayan analiz 
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1. Introduction 

Despite recent advances in production technology, agricultural output is adversely affected by a range of 

variables that reduce yields. These are mostly related to climate change, such as water scarcity, drought, plant pests 

and diseases, and altered vegetation seasons. Because of its effects on agricultural productivity, global climate 

change has major implications for food security and international trade. Climate change can adversely affect 

agriculture including loss of cultivated areas, shifting precipitation patterns, reduced irrigation water, and drought 

(Adams et al., 1998). Because of agriculture’s importance, any climate-change-induced output reductions 

significantly affect the economy’s macroeconomic fundamentals. For example, it may increase consumer prices 

for domestic produced and imported foods (Dellal, 2011). 

At the same time as being affected by climate change, agriculture itself also significantly affects the 

environment. In particular, it contributes significantly to greenhouse gas emissions due to increasing 

mechanization, livestock production, soil tillage, and excessive nitrogen fertilizer usage. This suggests that 

countries must abandon the use of fossil fuels and increase the use of renewable energy in agricultural production 

(Ben Jebli and Ben Yousef, 2017). 

The main objective of this study is to reveal the interaction between agricultural activity and CO2 in Türkiye. 

For this purpose, the research question of the study can be stated as follows: Is there a statistically significant 

relationship between agricultural productivity and CO2 in Türkiye? Türkiye presents an interesting case to analyze 

how environmental pollution affects agriculture. Firstly, according to the greenhouse gas inventory, agriculture’s 

CO2 emissions in Türkiye have increased dramatically during the previous three decades. Türkiye’s total per-

capita greenhouse gas emissions are projected to grow to 6.3 tons of CO2 equivalent in 2020 from 4 tons in 1990. 

As measured by CO2 equivalent, energy-related emissions accounted for 72 percent of Türkiye’s emissions in 

2020, followed by agriculture at 14 percent, industrial processes and product consumption at 12.7 percent, and the 

waste sector at 3.1 percent. Agriculture was projected to emit 73.2 Mt CO2 equivalent in 2020, a 58.8 percent 

increase from 1990 and a 7.5 percent increase from 2019 (TURKSTAT, 2021). The second reason Türkiye is an 

interesting case is that its arable land area has shrunk significantly over the last three decades, from approximately 

32% of the total agricultural land area in 1990 to approximately 25% in 2020 (World Bank, 2022). There has been 

a similar climate-change-induced rise in temperature from an annual average of 12.7 °C in 1991 to 14.5 °C in 2020, 

according to the Turkish State Meteorological Service (TSMS, 2022). Climate change is universally recognized 

as having a substantial influence on diverse sectors, with the agricultural industry being arguably more susceptible 

to its effects compared to other industries. Therefore, in order to effectively address the impact of climate change 

on the agricultural sector, it is imperative to conduct comprehensive studies at both the national and international 

levels (Konukcu et al., 2020). 

This study provides a novel contribution to the literature in this area. First, it offers a more specific analysis 

than previous literature on Türkiye, which has primarily concentrated on pollution’s impact on overall economic 

activity, with few studies focusing on the agriculture sector (Bayraç and Doğan, 2016; Pakdemirli, 2020; and Çetin 

et al., 2020). In contrast, instead of examining CO2 emissions at an aggregate level, our study examines the 

relationship between agricultural activities and CO2 emissions due to the agriculture sector. Similarly, we also 

consider agriculture’s energy consumption as a major determinant of agricultural activity. Second, this study 

considers the long-run environmentally degrading impact of agricultural activity. Third, our literature review 

suggests that research examining agricultural activity and pollution has mostly used linear estimation 

methodologies. However, some researchers have argued that linear models may be inappropriate for analyzing the 

relationship between emissions and agricultural activity because changes in the economic environment and 

abnormal climate conditions could create serious parameter instabilities, leading to biased empirical results. Our 

study therefore addresses these gaps in the literature by using Maki (2012) cointegration and Toda and Yamamoto 

(2016) causality tests to investigate the nonlinear impacts of local and global economic events on the relationship 

between agricultural activity and climate change. 

The rest of the article is structured as follows. The following section briefly reviews the literature on climate-

change-induced effects on agricultural productivity. We then present the study’s methods and variables before 

summarizing the results of the cointegration and causality tests. We conclude with policy suggestions predicated 

on the estimation results. 
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2. Literature Review 

Table 1 and Table 2 presents the main findings from the literature analyzing the agriculture-CO2 emission 

nexus. Some studies have employed temperature and precipitation data as indicators of climate change. 

Rosenzweig and Parry (1994) find that changing climate conditions reduce agricultural yields. Using the Ricardian 

model, Liu et al. (2004) measured how climate change has affected Chinese agriculture economically. They found 

that temperature increments have led to increasing average net agricultural income. Brown et al. (2010) estimated 

a panel data model for 133 countries covering 1961 to 2003. They found that increasing precipitation raises 

agriculture’s share in GDP, rising temperatures have the opposite effect. Also, using the Ricardian model, Masud 

et al. (2014) showed that temperature, precipitation, farm size, educational information, land area, and labor input 

value all affect rice production in Malaysia.  

Table 1. Time series studies. 

Study Country Period Variables Methodology Findings 

Jebli and 

Youssef 

(2017) 

Tunisia 1980-2011 GDP, CO2, AGR, 

trade openness, REN 

and NONREN 

VECM 

causality 

There is a bidirectional 

relationship between 

agriculture and CO2. 

Zafeiriou and 

Azam (2017) 

France, 

Portugal and 

Spain 

1992-2014 CO2 and AGR  ARDL, VECM 

causality 

There is unidirectional 

causality from CO2 to 

agriculture variable. 

Waheed et al. 

(2018) 

Pakistan 1990-2014 CO2, REN, AGR and 

forest area 

ARDL 

cointegration, 

VECM 

causality 

There is unidirectional 

causality from 

agriculture to CO2. 

Jebli and 

Youssef 

(2019) 

Brazil 1980-2013 CO2, GDP, CRW and 

AGR 

ARDL, VECM 

causality 

There is no short-run 

causality relationship. 

However, there is a 

bidirectional, long-run 

relationship between 

agriculture and CO2. 

Ngarava et al. 

(2019) 

South 

Africa 

1990-2012 CO2, AGR, coal and 

electricity energy 

ARDL, Granger 

causality 

There is unidirectional 

causality from 

agriculture to CO2. 

Pakdemirli 

(2020) 

Türkiye 1961-2018 AGR and CO2 ARDL, VAR There is a strong 

relationship between 

agriculture and CO2. 

Çetin et al. 

(2020) 

Türkiye 1968-2016 CO2, GDP, AGR, 

REN and LAND 

Toda-

Yamamoto 

There is unidirectional 

causality from 

agriculture to CO2. 

Wang (2022) China 1985 -2019 AGR, CO2, LAND, 

Harvested, GDP, 

AGR export and 

NONREN 

ARDL, 

Johansen 

cointegration 

CO2 has a positive 

effect on agriculture. 

Notes: AGR (Agricultural Value Added), REN (Renewable Energy Source), AGRE (State's Agricultural Expenditures), AGRPI 

(Agricultural Production Index), CRW (combustible renewables and waste consumption), EFP (Ecological Footprints), RQ (regulatory 

quality) 

Regarding Türkiye, three studies (Dellal et al., 2011; Başoğlu and Telatar, 2013; Dumrul and Kilicarslan, 2017), 

have examined whether CO2 emissions affect agriculture. Based on temperature and precipitation forecasts for 

seven geographical regions in Türkiye in 2050, Dellal et al. (2011) used both biophysiological and economic 

models to investigate whether climate change will affect Turkish agriculture. The results suggest that the crop 

yield will decline significantly in all regions. Shrinking agricultural land and climate change will reduce production 

by 2.2-12.9%. Başoğlu and Telatar (2013) applied multiple regression analysis to analyze how climate change 

affected Turkish agriculture from 1972 to 2011. They found that increasing precipitation increased agriculture’s 

share in GDP, whereas rising temperature reduced it. Furthermore, Dumrul and Kilicarslan (2017) reported that 

temperature increases agricultural GDP over the long run while precipitation reduces it.  
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The present study aims to address two research gaps in the literature reviewed above. First, previous studies 

used total CO2 emissions rather than those of the agricultural sector specifically while examining the relationship 

between climate change and agriculture. Second, previous studies assumed a time-invariant relationship between 

agricultural activity and climate change. Our study therefore considers nonlinearity in the relationship in both the 

long and short run by employing the Maki (2012) cointegration and the single Fourier-frequency Toda and 

Yamamoto causality tests.  

Table 2. Panel Data studies. 

Study Country Period Variables Methodology Findings 

Islam et al. 

(2014) 

Southeast 

asian 

countries 

1975-2011 CO2, AGR, 

fertilizer, capital 

and population 

Panel ARDL 

and PMG 

CO2 has a positive 

effect on agriculture. 

Khalid et al. 

(2016) 

10 

countries 

1990-2014 AGR, GDP, CO2, 

capital, AGRE, 

LAND, AGRPİ, 

fertilizer 

Panel OLS CO2 has a positive 

effect on agriculture. 

Hayaloğlu 

(2018) 

10 

countries 

1990-2016 GDP, AGR, CO2, 

LAND, population, 

capital and 

schooling 

Panel OLS CO2 has a negative 

effect on agriculture. 

Olanipekun 

et al. (2019) 

African 

countries 

1996-2015 EFP, GDP, REN, 

population and 

AGR and RQ 

Emirmahmuto

glu and Kose 

Granger 

causality 

There is a 

bidirectional 

relationship between 

ecological footprint 

and CO2. 

Qiao et al. 

(2019) 

G20 

countries 

1990-2014 CO2, GDP, AGR 

and REN 

Panel VECM 

causality 

There is 

unidirectional 

causality from 

agriculture to CO2. 

Notes: AGR (Agricultural Value Added), REN (Renewable Energy Source), AGRE (State's Agricultural Expenditures), AGRPI 

(Agricultural Production Index), CRW (combustible renewables and waste consumption), EFP (Ecological Footprints), RQ (regulatory 

quality) 

3. Materials and Methods 

This study employed annual data from 1968 to 2018. The availability of the data on agriculture-sector CO2 

emissions determined the estimation sample. These were retrieved from the International Energy Agency (IEA) as 

an indicator of climate change. Real agricultural value added was used to measure agricultural sector activity. In 

line with previous studies (Wang, 2022), agricultural land, agricultural energy consumption, and fixed capital 

formations were also included in the model as control variables.1 Given that the present study aimed to quantify 

both the short- and long-run interactions between CO2 and agricultural productivity, two separate equations were 

estimated, which treated agricultural output and CO2 emissions as dependent variables. The linear forms of the 

estimated equations are formulated as follows:  

Model 1: 𝒍𝒏𝑨𝑮𝑹𝒕 = 𝜷𝟎 + 𝜷𝟏𝒍𝒏𝑪𝑶𝟐𝒕 + 𝜷𝟐𝑳𝑨𝑵𝑫𝒕 + 𝜷𝟑𝒍𝒏𝑬𝑵𝑮𝒕 + 𝜷𝟒𝑮𝑭𝑪𝑭𝒕 + 𝜺𝒕                                       (Eq.1) 

Model 2: 𝒍𝒏𝑪𝑶𝟐𝒕 = 𝜷𝟎 + 𝜷𝟏𝒍𝒏𝑨𝑮𝑹𝒕 + 𝜷𝟐𝑳𝑨𝑵𝑫𝒕 + 𝜷𝟑𝒍𝒏𝑬𝑵𝑮𝒕 + 𝜷𝟒𝑮𝑭𝑪𝑭𝒕 + 𝜺𝒕                                          (Eq.2) 

Where 𝒍𝒏𝑨𝑮𝑹𝒕 represents the natural log of real agricultural value added; 𝒍𝒏𝑪𝑶𝟐𝒕 represents the natural log 

of agriculture-sector CO2 emissions in tonnes (Mt); 𝒍𝒏𝑬𝑵𝑮𝒕 is the natural log of the energy consumption in the 

agricultural sector. Agricultural land (𝑳𝑨𝑵𝑫𝒕) and gross fixed capital formation (𝑮𝑭𝑪𝑭𝒕) are included in their 

level form as they are defined in percentage terms. Agricultural land is defined as the proportion of total land that 

 
1 Appendix Table A1 provides detailed descriptions of the variables.  
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is cultivated. Gross fixed capital formation as a percentage of GDP is included as a control variable to quantify the 

effect of a change in total value added, i.e., investment on agricultural productivity and environmental quality.2 

3.1. Maki (2012) Cointegration Test with Multiple Structural Breaks 

The Johansen and Juselius (1990) cointegration test were used first to analyze the long-run relationship between 

agricultural activity and CO2 emissions. The Maki (2012) cointegration test was then used to investigate the long-run 

relationship between agricultural activity and CO2 emissions given unknown multiple structural breaks. Using Monte 

Carlo simulations, Maki (2012) demonstrated that the proposed test had better effect size and power than other 

cointegration with structural break tests (Gregory and Hansen, 1996; Hatemi J., 2008). The Maki (2012) cointegration 

test is based on the following four specifications:   

Model 0: Level shift  

𝒚𝒕 = 𝝁 + ∑ 𝝁𝒊𝑫𝒊,𝒕
𝒌
𝒊=𝟏  𝜷′𝒙𝒕 + 𝒖𝒕,                                                                                                      (Eq.3) 

Model 1: Level shift with trend 

 𝒚𝒕 =  𝝁 + ∑ 𝝁𝒊𝑫𝒊,𝒕
𝒌
𝒊=𝟏 + 𝜷′𝒙𝒕 + ∑ 𝜷′

𝒊
𝒙𝒕𝑫𝒊,𝒕

𝒌
𝒊=𝟏 + 𝒖𝒕,                                                                                       (Eq.4) 

Model 2: Regime shift and trend 

 𝒚𝒕 =  𝝁 + ∑ 𝝁𝒊𝑫𝒊,𝒕
𝒌
𝒊=𝟏 + 𝜸𝒕 +  𝜷′𝒙𝒕 + ∑ 𝜷′

𝒊
𝒙𝒕𝑫𝒊,𝒕

𝒌
𝒊=𝟏 + 𝒖𝒕,                                                                      (Eq.5) 

Model 3: Regime shift with trend 

 𝒚𝒕 =  𝝁 + ∑ 𝝁𝒊𝑫𝒊,𝒕
𝒌
𝒊=𝟏 + 𝜸𝒕 + ∑ 𝜸𝒊𝒕𝑫𝒊,𝒕

𝒌
𝒊=𝟏 + 𝜷′𝒙𝒕 + ∑ 𝜷′

𝒊
𝒙𝒕𝑫𝒊,𝒕

𝒌
𝒊=𝟏 + 𝒖𝒕,                          (Eq.6)  

Where 𝒚𝒕 represents the dependent variables in Equations 1 and 2, i.e., the natural log of agricultural value added, 

𝒍𝒏𝑨𝑮𝑹𝒕, and the natural log of carbon emissions, 𝒍𝒏𝑪𝑶𝟐𝒕. 𝒙𝒕 represents the m-dimension vector of the explanatory 

variables.  𝒙𝒕′ = [𝒍𝒏𝑪𝑶𝟐𝒕, 𝑳𝑨𝑵𝑫𝒕, 𝒍𝒏𝑬𝑵𝑮𝒕, 𝑮𝑭𝑪𝑭𝒕] and  𝒙𝒕′ = [𝒍𝒏𝑨𝑮𝑹𝒕, 𝑳𝑨𝑵𝑫𝒕, 𝒍𝒏𝑬𝑵𝑮𝒕, 𝑮𝑭𝑪𝑭𝒕]  are used in 

Equations 1 and 2, respectively. 𝒖𝒕 is the white noise error term while  𝑫𝒊,𝒕 is a dummy variable taking the value 1 if 

𝝉 > 𝑻𝑩𝒊 (i=1,.., k) and 0 otherwise, where k is the maximum number of breaks. 𝑻𝑩𝒊 represents the time period of the 

break in the intercept, 𝝁, and the vector slope coefficients, 𝜷. 

Based on these settings, the Maki (2012) cointegration test can be applied using the following steps if Model 1 is taken 

as the benchmark model. First, the maximum number of breaks (k) is determined and the model is estimated: 

𝒚𝒕 =  𝝁 +  𝝁𝟏𝑫𝟏,𝒕 + 𝜷′𝒙𝒕 +  𝒖𝒕.                                               (Eq.7) 

The null hypothesis with 𝝆 = 0 is then tested against the alternative hypothesis with 𝝆< 0 using the equation below: 

𝜟�̂�𝒕 =  𝝆�̂�𝒕−𝟏 + ∑ 𝜶𝒋𝜟�̂�𝒕−𝒋
𝒑
𝒋=𝟏 +  𝜺𝒕,                                               (Eq.8) 

Where 𝜺𝒕 (0, σ2) and �̂�𝒕 are the OLS residuals from the model 1. Based on the recursive estimation of the model above, 

a single break is searched, and t-statistics are computed to test for ρ=0 for all possible periods of the break. The set of 

all possible partitions and the t-statistics are denoted as 𝜯𝟏
𝒂 and τ1, respectively. In the case of k=1, the minimum t-

statistic in τ1 is used as the test statistic.  

In the second step, the first breakpoint is selected by minimizing the sum of the squares (SSR) as follows: 

𝑺𝑺𝑹𝟏  =  𝜮𝒕=𝟏
𝑻  (𝒚𝒕 − �̂� − �̂�𝟏𝑫𝟏−𝒕 − �̂�′𝒙𝒕)2,                                                                      (Eq.9) 

Where �̂�, �̂�𝟏, and β are the OLS estimates. Then the first breakpoint is denoted as �̂�𝒑𝟏 = 𝒂𝒓𝒈 𝒎𝒊𝒏 𝑺𝑺𝑹𝟏 

In the third step, the estimated breakpoint 𝒃𝒑𝟏 is included to the regression model. Based on the similar procedure the 

second breakpoint is searched before t-statistics are used to test for ρ=0 for all possible periods of the second break 

using the regressions given by 

 
2 Figure A1 shows the visual inspection of the series. Table A2 contains the desctiptive statistics of the variables without 

natural log form for AGRt ,  CO2t  and ENGt.. 
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𝒚𝒕 = 𝝁 + 𝝁𝟏𝑫𝟏,𝒕 +  𝝁𝟏𝑫𝟐,𝒕 + �̂�′𝒙𝒕 + 𝒖𝒕,                                                          (Eq.10) 

 𝜟�̂�𝒕 =  𝝆�̂�𝒕−𝟏  +  ∑ 𝜶𝒋𝜟�̂�𝒕−𝒋
𝒑
𝒋=𝟏 +  𝜺𝒕                                                                (Eq.11) 

The set of all possible partitions and the statistics of 𝝆 are denoted as 𝜯𝟐
𝒂 and τ2, respectively. Furthermore, 𝝉𝒑

𝟐 = 𝝉𝟏  ∪

𝝉𝟐   

In step four, as with estimation of the first breakpoint, the second breakpoint, bp2, is estimated by minimizing 𝑺𝑺𝑹𝟐 in 

the following equation:  

𝑺𝑺𝑹𝟐 =  𝜮𝒕=𝟏
𝑻  (𝒚𝒕 − �̂� − �̂�𝟏𝑫𝟏−𝒕 −  �̂�′𝒙𝒕)2                            (Eq.12) 

In the last step, the estimated first and second breakpoints are introduced into the model. Finally, steps 3 and 4 are 

repeated until the maximum number of breaks, k, is achieved. Finally, 𝝉𝒎𝒊𝒏
𝒌   is  adopted as the t test statistic over the 

set 𝝉𝒑
𝒌 = 𝝉𝟏  ∪ 𝝉𝟐 … .∪ 𝝉𝒌

𝟐   . 

3.2. Single Fourier-frequency Toda and Yamamoto (2016) causality test 

We first examined the agricultural activity–CO2 emissions relationship using the Toda and Yamamoto (1995) 

Granger causality test, which estimates the VAR model with (p + d) order, where p is the lag length and d is the 

maximum integration degree of the variables. It thereby aims to eliminate the constraint of the same degree of 

integration of the series in the Granger causality test, as in the following VAR (p + d) model: 

𝑦𝑡 = 𝛼 + 𝛽1𝑦𝑡−1 + ⋯ +  𝛽𝑝+𝑑𝑦𝑡−(𝑝+𝑑) +  𝜖𝑡             (Eq.13) 

Where 𝑦𝑡  represents the matrix of k endogenous variables 𝑦𝑡 ′ = [𝑙𝑛𝐴𝐺𝑅𝑡 , 𝑙𝑛𝐶𝑂2𝑡 , 𝐿𝐴𝑁𝐷𝑡 , 𝑙𝑛𝐸𝑁𝐺𝑡 , 𝐺𝐹𝐶𝐹𝑡]. 𝑎   

and β represent the vector of the intercept and parameter matrices, respectively, while  𝜖𝑡  is the vector containing 

white noise error terms. Wald statistics with χ2(p) degrees of freedom are used, where the null hypothesis of 

Granger non-causality is that the first p parameters are jointly equal to zero i.e., 𝐻0 ∶  𝛽1  =  …  =  𝛽𝑝  =  0.  

Some authors (e.g., Enders and Jones (2015), Ventosa-Santaulària and Vera-Valdés (2008)) have argued that 

if the data-generating process is subject to structural changes, the null hypothesis of noncausality can be rejected 

despite the lack of a significant causal relationship between the two variables. Hence, if breaks are not accounted 

for, inferences about the significance of the Granger causality analysis may be incorrect. To address these issues, 

Nazlioglu et al., (2016) suggested a Granger causality test based on Fourier approximation. This is superior to the 

alternative nonlinear causality test because the Fourier approximation avoids the need to know the number, dates, 

and types of breaks. Instead, it uses a few low-frequency elements to represent the structural transitions as a smooth 

process.  

To accommodate structural changes, Nazlioglu et al., (2016) modify the assumption that the intercept terms 

are constant, such that the VAR model in Equation (13) is redefined as follows: 

𝑦𝑡 = 𝛼(𝑡) + 𝛽1𝑦𝑡−1 + ⋯ +  𝛽𝑝+𝑑𝑦𝑡−(𝑝+𝑑) +  𝜖𝑡                  (Eq.14) 

Here, rather than being time variant, the intercept terms, α(t), are functions of time to model smooth structural 

shifts in 𝑦𝑡 . To capture gradual, smooth shifts with an unknown date, number, and form of breaks, α(t) is modeled 

through one Fourier expansion as follows: 

𝛼(𝑡) = 𝛼0 + ∑ γ1𝑘
𝑛
𝑘=1 sin(2𝜋𝑘𝑡

𝑇
) + ∑ γ2𝑘

𝑛
𝑘=1 cos(2𝜋𝑘𝑡

𝑇
),          (Eq.15) 

where k stands for the frequency for the approximation and n denotes the number of frequencies and γ1𝑘 and 

γ2𝑘 denote the frequency’s amplitude and displacement, respectively. Instead of a higher frequency version of the 

intercept term, Nazlioglu et al., (2016) use a single frequency component because the number of frequencies is 

most usually related with stochastic parameter change, which leads to over-fitting by reducing the degrees of 

freedom. Accordingly, the single frequency component α(t) is redefined as follows: 

(t) = 0 + 𝑦1 sin(2𝜋𝑘𝑡

𝑇
) + 𝑦2 cos(2𝜋𝑘𝑡

𝑇
)                                 (Eq.16) 

Hence, the final form of the estimated equation for the gradual-shift causality test is as follows: 
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𝑦𝑡 = 0 + 𝑦1 sin(2𝜋𝑘𝑡

𝑇
) + 𝑦2 cos(2𝜋𝑘𝑡

𝑇
)  + 𝛽1𝑌𝑡−1 +… +  𝛽𝑝+𝑑𝑦𝑡−(𝑝+𝑑)  +  𝜖𝑡.                      (Eq.17)        

Here, the null hypothesis of Granger non-causality is tested in the same way as in the linear Toda and 

Yamamoto (1996) test presented in Equation (13), i.e. 𝐻0 ∶  𝛽1  =  …  =  𝛽𝑝  =  0. In order to increase the power 

of the test statistic in small samples while maintaining its robustness from the unit root and cointegration properties 

of the data, Nazlioglu et al., (2016) used the residual sampling bootstrap approach introduced by Efron (1979). 

The lag length of the VAR model p and frequency k are selected based on the minimum value of the information 

criterion.  

4. Results and Discussion 

4.1. Unit root tests 

This section first considers the variables’ unit root properties as shown in the Augmented Dickey and Fuller (1981), 

Phillips and Perron (1988), and Zivot and Andrews (1992) unit root test results, presented in Table 3. The linear 

unit root tests indicate that the unit root null hypothesis cannot be rejected for the levels of all series. However, it 

can be rejected after the first difference transformation of the variables. That is, all series can be treated as first 

difference stationary, i.e., I(1). In addition to the linear unit root tests, Table 3 also shows the Zivot and Andrews 

(1992) unit root test results, which account for endogenous structural breaks. The results confirm the I (1) 

properties of the variables, as evidenced by the ADF and PP test results. This further indicates that the level of the 

variables contains a unit root with a significant structural break. The significant breaking dates obtained for some 

of the variables, namely 1982, 2001, 2007, and 2008, are associated with crisis periods. 

Table 3. Unit Root Results 

Notes: *** denotes the series is stationary at the 1% significance level; I=intercept; T=trend. In the ADF tests, the SIC (Schwarz Information 

Criterion) is used to determine the optimum number of lags to a maximum of 10 lags. The bandwidth of the PP test is determined using the 
Newey-West method using the Bartlett kernel. Likewise, in the Zivot and Andrews test, which takes structural breaks into account, the 

maximum lag was searched up to 4 lags based on the minimum value of the t statistics. The values in parentheses indicate the optimum number 

of lags of the augmented part for the ADF and Zivot and Andrews tests. 

 

 

Variable 
ADF PP Zivot and Andrews   

I I/T I I/T Model A Model C 

lnAGRt  1.21119 (1) -0.87015 (1) 1.80089  -2.39450 -2.41100 (3) 

(2010) 

-4.19287 (3) 

(2001) 

LnCO2t -2.17432 (0) -3.27227 (0) -2.48737  -3.27529 -4.14442 (0) 

(2001) 

-4.01409 (0) 

(2001) 

LANDt -1.73336 (0) -1.31479 (0) -1.83769  -1.44427 -3.16379 (0) 

(2007) 

-3.31020 (0) 

(1998) 

lnENGt -1.44788(0) -2.21067(0) -1.47910 -2.25222 -3.04293 (0) 

(1982) 

-4.06777 (0) 

(2008) 

GFCFt -1.53217(0) -2.98077(0) -1.48054 -3.14246 -4.38833 (1) 

(1998) 

-4.33980 (1) 

(1987) 

∆lnAGRt -12.1163***(0) -12.3363***(0) -12.2735*** -27.0988*** -7.3797*** 

(4) (2005) 

-7.2848*** 

(4) (2005) 

∆lnCO2t -7.09263*** (0) -7.40330*** (0) -7.09324*** -7.45905*** -8.0732*** 

(0) (1978) 

-8.2745*** 

(0) (1982) 

∆LANDt -6.54591***(0) -6.54384***(0) -6.55681*** -6.54839*** -7.7085*** 

(0) (1984) 

-7.6153*** 

(0) (1984) 

∆lnENGt -7.08946***(0) -7.15296***(0) -7.08968*** -7.19996*** -7.5304*** 

(0) (1980) 

-7.9341*** 

(0) (1980) 

∆GFCFt -6.60696***(0) -6.54070***(0) -6.80615*** -6.71654*** -6.8008*** 

(0) (1989) 

-6.7661*** 

(0) (1989) 
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4.2. Cointegration and causality test results 

After applying the unit root tests to demonstrate the variables’ first-difference stationarity, cointegration tests 

were applied to the long-run associations in Equation (1). More specifically, the Johansen and Juselius (1990) 

cointegration test was implemented to analyze the linear long-run relationship (see Table 4). The Maki (2012) 

cointegration test was used to investigate the variables’ nonlinear long-run relationship. The test findings are 

shown in Table 5, panels (a) and (b), respectively. 

Table 4. Johansen cointegration results 

 

Hypothesized 

Trace result Max Eigenvalue result 

Eigenvalue Statistic Critical 

Value 

(0.05) 

Eigenvalue  Statistic Critical Value 

(0.05) 

None *  0.618756  101.0401  76.97277  0.618756  47.25142  34.80587 

At most 1  0.343437  53.78869  54.07904  0.343437  20.61609  28.58808 

At most 2  0.283467  33.17260  35.19275  0.283467  16.33319  22.29962 

At most 3  0.201516  16.83941  20.26184  0.201516  11.02696  15.89210 

At most 4  0.111856  5.812456  9.164546  0.111856  5.812456  9.164546 

       * Denotes rejection of the hypothesis at the 0.05 level.  

Table 5. Maki Cointegration Test Results 

Panel a.  Dependent Variable lnAGRt 

Model Test Statistics                         Critical Value                                    Break Date 

1% 5% 10%  

0 -5.4538155 −6.856 −6.306 −6.039 1975/1985/1998/2008/2012 

1 -8.9773321*** −7.053 −6.494 −6.220 1971/1974/1998/2002/2008 

2 -7.6119198 −8.336 −7.803 −7.481 1982/1990/1995/2007/2012 

3 -8.0555682 −10.08 −9.482 −9.151 1975/1986/1995/2004/2012 

Panel b. Dependent Variable lnCO2t 

Model Test Statistics         Critical Value                                     Break Date 

1% 5% 10%  

0 -6.3435031**        −6.856 −6.306 −6.039 1973/1977/1995/2011/2015 

1 -5.4904613        −7.053 −6.494 −6.220 1973/1976/1997/2000/2007 

2 -7.0583022        −8.336 −7.803 −7.481 1981/1988/1993/1999/2006 

3 -6.4519885        −10.08 −9.482 −9.151 1978/1987/1997/2003/2009 

       Note:  **, *** denote significant at the at 5% and 1%, respectively. The maximum lag length is taken as 3. 1000 bootstrap was used. 

The Johansen cointegration results indicate that the null hypothesis of no cointegration can be rejected because 

the trace and max eigenvalue test statistics show that the variables include at least one cointegrating vector. Given 

that the statistical significance of long-run relationships indicated by linear cointegration tests may be misleading, 

the Maki cointegration was also implemented based on Equations 1 and 2. Here, agricultural value-added, and 

CO2 emissions were employed as the dependent variables (see Table 5), thereby enabling up to five structural 

breaks to be tested for cointegration. 

The test results corroborated the results of the Johansen test by rejecting the null hypothesis of no cointegration. 

However, Table 5 indicates that the cointegrating relationships are subject to structural shifts in both models. As 

already noted, the breaking dates coincide with significant local and global economic events that affected Turkish’s 

economy. When agricultural value added is the dependent variable, the breaking dates of 1971 and 1974 both 

coincide with the oil crisis, while the breaking dates of 2002 and 2008 coincide with Türkiye’s 2001 financial 

crisis and the 2008 global financial crisis. Similarly, when CO2 emissions are the dependent variable, the breaking 

dates of 1973 and 1977 coincide with the 1970s’ global oil crisis. 
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Table 6. Long-Run Coefficient Estimates: lnAGRt dependent variable 

 FMOLS CCR 

Variable Coefficient Std. Error Coefficient Std. Error 

lnCO2t 0.367689*** 0.028980 0.373403*** 0.033002 

LANDt -0.010984*** 0.003390 -0.010830** 0.004044 

lnENGt -0.164949*** 0.021127 -0.168943*** 0.022531 

GFCFt 0.007562*** 0.001441 0.007421*** 0.001713 

C 21.65796*** 0.249539 21.61835*** 0.292924 

DUM1971 -0.080809*** 0.016012 -0.082545*** 0.016799 

DUM1974 0.027658* 0.014544 0.027487* 0.015030 

DUM1998 0.071604*** 0.016758 0.069931*** 0.019502 

DUM2002 -0.007469 0.014192 -0.006647 0.014432 

DUM2008 0.129407*** 0.014632 0.129774*** 0.017666 

         Note:  *, **, ***   denote significant at the at 10%, 5% and 1% respectively. 

 

Table 7. Long-Run Coefficient Estimates: lnCO2t dependent variable 

 FMOLS CCR 

Variable Coefficient Std. Error Coefficient Std. Error 

 

lnAGRt 0.554916*** 0.171254 0.578763** 0.218420 

LANDt 0.027145*** 0.007672 0.028575*** 0.008256 

lnENGt 0.535268*** 0.047548 0.530739*** 0.054319 

GFCFt 0.006681* 0.003436 0.006547* 0.003736 

C -7.605921* 4.040726 -8.218490 5.110718 

DUM1973 0.106868*** 0.037011 0.107688*** 0.037351 

DUM1977 0.164025*** 0.032521 0.161703*** 0.033721 

DUM1995 0.100781*** 0.036002 0.097140** 0.039411 

DUM2011 0.122884** 0.047880 0.122268** 0.059637 

DUM2015 0.156903*** 0.042196 0.152421*** 0.0464923 

        Note:  *, **, ***   denote significant at the at 10%, 5% and 1% respectively. 

After confirming cointegration under multiple structural breaks, the long-run coefficients were estimated with 

full modified ordinary least squares (FMOLS) and canonical cointegrating regression (CCR) estimators (see 

Tables 6 and 7). For the estimation of the long-run parameters, following Ike et al. (2020) and Khan et al. (2020), 

dummy variables were constructed to determine the impact of structural breaks on the long-run parameters. As 

Tables 6 and 7 indicated, these parameters were both statistically significant and yielded qualitatively the same 

results. Therefore, we interpreted the FMOLS parameter estimates for both equations.  It is worth noting that all 

other structural break dates, with the exception of 2002, were significant at the 1% significance level. This suggests 

that the break dates from the Maki cointegration test are significant and ought to be included in the long-run 

parameter estimates. 

Regarding the agricultural productivity model results, CO2 emissions significantly increased agricultural 

productivity, in line with Wang’s (2022) findings for China. All other variables were statistically significant at the 

one-percent level. An increase in land area devoted to agriculture significantly reduced agricultural productivity 

(lnAGRt). This suggests that expanding arable farming may not improve agricultural sector efficiency, which may 

instead depend on rising capital formation.  

 
3 Diagnostic tests were conducted on the estimated models and are not presented in the text to save space in the paper. For example, the 

correlogram of residuals for the long-run estimation of model 2 is presented in the appendix. 
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Regarding the long-run coefficients when the model’s dependent variable was CO2 emissions, agricultural 

productivity significantly increased CO2 emissions. This indicates that, in Türkiye, rising agricultural activity 

reduces environmental quality. The control variables also significantly increased CO2 emissions. According to the 

FMOLS estimator, the LAND, ENG, and GFCF parameter coefficients were 0.027, 0.535, and 0.006, respectively, 

while similar coefficients were obtained from the CCR estimator.  

Table 8. Error Correction Model Results 

Panel (a): Dependent Variable lnAGRt 

Variable Coefficient Std. Error t-Statistic Probability 

∆lnCO2t 0.178403* 0.099716 1.789109 0.0805 

∆LANDt -0.014309** 0.006772 -2.112893 0.0403 

∆ENGt -0.100472** 0.041635 -2.413167 0.0200 

∆GFCFt 0.004677* 0.002343 1.996752 0.0521 

𝐸𝐶𝑀𝑡−1 -1.130477*** 0.163053 -6.933187 0.0000 

C 0.009941 0.006164 1.612650 0.1140 

Panel (b): Dependent Variable lnCO2t 

Variable Coefficient Std. Error t-Statistic Probability 

∆lnAGRt -0.036636 0.157673 -0.232357 0.8173 

∆LANDt -0.011212 0.010221 -1.097022 0.2786 

∆lnENGt 0.127391* 0.065043 1.958554 0.0565 

∆GFCFt 0.009664*** 0.003395 2.846465 0.0067 

𝐸𝐶𝑀𝑡−1 -0.338889** 0.127656 -2.654700 0.0110 

C 0.041540*** 0.007316 5.677594 0.0000 

      Note:  *, **, and ***   denotes significant at the at 10%, 5%, and 1% level, respectively. 

Having estimated the long-run parameters, we then estimated the error correction models for the agricultural 

productivity and CO2 emissions equations to analyze the dynamics of the short-run relationship. Based on 

Granger’s representation theorem, the error correction term indicates how rapidly a dependent variable returns to 

equilibrium following a change in the other variables (Engle and Granger, 1987). Table 8, Panel (a), shows that 

the error correction term was negative and statistically significant for the agricultural productivity equation. That 

is, short-run imbalances in the system are corrected in the long run. Regarding the short-run coefficients, the short-

run impact of CO2 emissions is positive and statistically significant, as with the long-run estimates. The remaining 

variables have similar parameter estimates for both the long-run and short-run coefficients. Table 8, Panel (b), 

shows the error correction results for the CO2 model. As with the agricultural productivity equation, there is a 

statistically significant negative error correction coefficient. This indicates that deviations from the long-run 

equilibrium are eliminated in the short run. Furthermore, increases in energy consumption and gross fixed capital 

formation have statistically significant positive impacts, similar to the long-run estimates in Table 7. However, the 

agricultural productivity parameter is statistically insignificant in the short run. This indicates that the error 

correction mechanism is functioning properly in both models. 

Following the time series analysis of the agricultural productivity and CO2 equations, the linear and regime-

shifting Toda-Yamamoto causality tests were performed to identify any interactions between the variables (Table 

9). Based on the linear causality test results, there is a one-way causal relationship, significant at the 5% level, 

from agricultural value added to the CO2 emissions, and a one-way causal relationship, significant at the 10% level, 

from CO2 emissions to agricultural land area. Given that the Maki’s (2012) cointegration test indicated structural 

breaks in the data, a gradual-shift causality test was conducted. The results confirmed the linear Toda-Yamamoto 

causality test findings, i.e. the causal relationship runs from agricultural value added to CO2 emissions. 
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Table 9. Causality Tests Results 

 Toda & Yamamoto Single Fourier-frequency Toda & 

Yamamoto  

Null hypothesis Wald st. Bootstrap 

p-value.    

 

d p f Wald ist. Bootstrap p-

value    

 

d p f 

lnCO2t ≠>lnAGRt 0.97586 0.64500 1 2 0 0.08880 0.94900 1 2 1 

LANDt ≠> lnAGRt 0.73955 0.71200 1 2 0 0.27930 0.86600 1 2 1 

GFCFt ≠> AGRt 0.00328 0.99700 1 2 0 0.41929 0.81400 1 2 1 

ENGt ≠> lnAGRt 1.02208 0.60900 1 2 0 0.23805 0.88600 1 2 1 

lnAGRt ≠> lnCO2t 9.15924** 0.01700 1 2 0 9.73685** 0.01200 1 2 1 

LANDt ≠> lnCO2t 1.70389 0.44500 1 2 0 0.95943 0.63400 1 2 1 

GFCFt ≠> lnCO2t 3.62570 0.16900 1 2 0 3.77221 0.17100 1 2 1 

lnENGt≠> lnCO2t 4.21913 0.13200 1 2 0 4.47276 0.13300 1 2 1 

lnAGRt ≠> LANDt 3.63190 0.18000 1 2 0 1.62905 0.43500 1 2 1 

lnCO2t ≠> LANDt 5.61466*** 0.07600 1 2 0 3.30327 0.20600 1 2 1 

GFCFt ≠> LANDt 1.42637 0.51300 1 2 0 0.74254 0.70600 1 2 1 

lnENGt ≠> LANDt 1.65944 0.44100 1 2 0 2.68300 0.28100 1 2 1 

lnAGRt ≠> GFCFt 2.40039 0.30900 1 2 0 2.84314 0.22400 1 2 1 

lnCO2t ≠> GFCFt 2.21921 0.35700 1 2 0 2.55863 0.29900 1 2 1 

LANDt ≠> GFCFt 0.29445 0.86500 1 2 0 3.16510 0.21100 1 2 1 

lnENGt ≠> GFCFt 0.91726 0.60000 1 2 0 0.22564 0.90300 1 2 1 

lnAGRt ≠> lnENGt 0.27264 0.88200 1 2 0 0.14066 0.91600 1 2 1 

lnCO2t ≠> lnENGt 2.47495 0.28300 1 2 0 1.77270 0.39700 1 2 1 

LANDt ≠> lnENGt 0.47725 0.76500 1 2 0 1.51865 0.48400 1 2 1 

GFCFt ≠> lnENGt 1.34487 0.48300 1 2 0 0.22335 0.88300 1 2 1 

Notes: ** and * denote significance at 5% and 10% level, respectively. The maximum lag length p was selected as 3 for both tests. 

d=dmax, p= lag length, f= frequency, 1000 bootstrap was used. 

5. Conclusions 

This study analyzed both the long-run and short-run relationships between CO2 emissions and agricultural 

productivity in Türkiye. Our research differed from the literature on several aspects. First, we adopted novel 

methodologies in which the interactions between CO2 and agricultural production were presumed to be nonlinear. To 

this end, we applied both the Maki (2012) cointegration and gradual-shift causality tests developed by Nazlioglu et al., 

(2016). Second, in contrast with prior studies, CO2 emissions due to agriculture have been employed instead of total 

CO2 in the regression analysis. 

The cointegration analysis confirmed the long-run association between CO2 and agricultural productivity. 

However, the Maki (2012) cointegration test results indicated that this relationship is subject to structural changes due 

to local and global events affecting Türkiye’s economy. Therefore, a mutually positive relationship between 

agricultural productivity and CO2 emissions has been confirmed by the long run parameter estimates. The positive and 

statistically significant association between CO2 emissions and the agriculture industry is aligned with the results of 

some prior studies, e.g. Islam et al. (2014), Khalid et al. (2016) and Wang (2022). The adverse impact of agricultural 

activity on environmental quality can be linked to important climate change drivers, such as livestock activities, 

fertilizer use, land use, and soil cultivation methods, which deserve further investigation. The long-run coefficient 

estimates imply that an expansion in farmland reduces agricultural productivity while raising CO2 emissions. That is, 

expanding the arable land area in Türkiye may not be a viable solution for increasing agricultural efficiency. In 

accordance with the findings of Wang (2022), the adverse environmental effects resulting from the escalation of 

agricultural activities in Türkiye can be ascribed to the growing reliance on fossil fuels within the agricultural sector, 

thereby leading to an elevation in greenhouse gas emissions. The aforementioned findings underscore the imperative 
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of transitioning Türkiye's agricultural technologies and energy consumption towards environmentally sustainable 

practices. Moreover, the outcomes of both the linear and gradual shift causality tests demonstrated a unidirectional 

causal association running from agricultural productivity to CO2 emissions. This evidence is consistent with the 

findings reported by Qiao et al. (2019), Waheed et al. (2018), Jebli and Youssef (2019), Ngarava et al. (2019), and 

Çetin et al. (2020). This finding suggests that there is a need to enhance the environmental sustainability of agricultural 

production tools in Türkiye. 

In light of our research, it is evident that proactive measures ought to be implemented in order to mitigate the 

factors that contribute to climate change. Several potential strategies could be contemplated for adoption, 

encompassing enhanced management practices pertaining to agricultural land utilization, regulation of water supply, 

collection and reutilization of wastewater, prevention of deforestation, and the cultivation of plant species that exhibit 

resistance to drought conditions. The implementation of these measures is expected to yield positive outcomes for the 

advancement of the agricultural sector and the mitigation of climate change. As additional data becomes accessible, 

forthcoming investigations may incorporate a broader time span to examine the aforementioned variables that influence 

agricultural productivity. 
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Table A1. Description of the variables 

Notation Definition Unit Source 

AGRt  Agriculture, forestry, and fishing 

(Value added) 

2015 US$ WB (WDI) 

CO2t Agricultural sector CO2 emissions  Tonnes IEA 

LANDt Agricultural land  Percentage of total land area WB (WDI) 

ENGt Agricultural energy consumption Kilotonnes of oil 

equivalent (ktoe) 

IEA 

GFCFt Gross fixed capital formation Percentage of GDP WB (WDI) 

 

Table A2. Descriptive statistics of the variables 

 AGRt CO2t LANDt ENGt GFCFt 

Mean 38500 160890.7 50.71169 2419.262 21.43254 

Median 36000 140333.1 50.44762 2409.989 22.80306 

Maximum 62000 378628.2 53.5621 5342.634 29.85714 

Minimum 26100 31890.07 47.70864 583.4623 11.87302 

Std. Dev. 975000 97376.58 1.40838 1404.081 5.550205 

Skewness 0.8881 0.5564 0.3291 0.3782 -0.1318 

Kurtosis 2.8476 2.2326 2.4418 1.9538 1.6608 

Jarque-Bera 6.7537 3.8827 1.5827 3.5416 3.9586 

J-B Probability 0.0342 0.1435 0.4532 0.1702 0.1382 

 

 

 

 

Figure A1. Time series plot of data 
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Figure A2. Model 2 correlogram of residuals 

Sample (adjusted): 1969 2018

Included observations: 50 after adjustments

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob*

1 0.078 0.078 0.3215 0.571

2 -0.187 -0.194 2.2189 0.330

3 -0.161 -0.134 3.6495 0.302

4 -0.249 -0.279 7.1533 0.128

5 -0.097 -0.146 7.6940 0.174

6 0.192 0.076 9.8615 0.131

7 -0.035 -0.197 9.9365 0.192

8 0.116 0.094 10.766 0.215

9 -0.198 -0.342 13.247 0.152

10 -0.089 0.004 13.762 0.184

11 0.126 0.008 14.820 0.191

12 0.101 -0.001 15.518 0.214

13 -0.063 -0.125 15.801 0.260

14 0.076 -0.014 16.217 0.300

15 -0.221 -0.190 19.857 0.177

16 -0.032 -0.036 19.935 0.223

17 0.180 0.124 22.489 0.167

18 0.120 -0.011 23.661 0.166

19 -0.062 -0.114 23.986 0.197

20 -0.083 -0.129 24.582 0.218

21 -0.113 0.062 25.722 0.217

22 -0.008 -0.132 25.728 0.264

23 -0.005 -0.048 25.730 0.314

24 0.078 -0.118 26.342 0.336


