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ABSTRACT

The Sarikdy-Inova and the Can-Bayramig-Ezine fault zones (SIFZ, CBEFZ) comprise the southern
strand of the North Anatolian Fault System in the Biga Peninsula. They are located in the area
between Sarikdy to northeast and the Dalyan settlement around Bozcaada in the North Aegean Sea
to southwest. Both of the fault zones are active. This is evidenced by the 6 March 1737 (Ms =7.0)
Inova, 1st February 1809 Hurma (Ms = 6.1), and the 8 February 1826 Giilliice (Ms = 6.2) historical
earthquakes resulted from these fault zones. Maximum lengths of fault segments comprising the
SIFZ and the CBEFZ are 14 km and 15 km, respectively. Based on the maximum lengths of fault
segments, the magnitude of the peak earthquakes to be originated from these faults are Mw = 6.3 and
6.6, respectively. Based on both the geological and geographic markers, the total right lateral offsets
accumulated on the SIFZ and CBEFZ are 12 km and 20 km, respectively. These offset values imply
to the slip rates of 4.6 mm/yr and 7.7 mm/yr, respectively. Five pull-apart basins were developed on
both fault zones. These are the Sarikdy, Inova, Kazabat, Can and Ezine-Bayrami¢ basins. The first
three of them are pure strike-slip pull-apart basins, while the type of the rest basins is superimposed.
The angular unconformity between the nondeformed basin fill of Quaternary age and the folded to
thrust-faulted basement rocks of pre-Quaternary age reveals strongly that the pull-apart basins have
formed during the Quaternary time. This relationship also reveals that the commencement age of the
strike-slip neotectonic regime and formation of associated fault zones are the Early Quaternary. This
work was dedicated to the retirement memory of Dr. Fuat Saroglu.

1. Introduction

The North Anatolian Fault System is divided into

Fault System (Figure 1). Based on aerial photograph
study, seven fault segments within these two fault
zones were previously identified and mapped by

numerous fault zones around the Sea of Marmara
and results in an active deformation zone wider than
120 km. Two of them are the Sarikdy-Iinova and the
Can-Bayramic¢-Ezine fault zones. They cut across the
Biga Peninsula in the area between Ulukir village to
northeast and Dalyan to the further southwest and are
included in the southern strand of the North Anatolian

Barka and Kadinsky-Cade (1988). Later on, four
single faults, which comprise these two fault zones,
were also observed, mapped and renamed separately
by Siyako et al. (1989). These are the Ezine-Bayramig,
Can, Terzialan-Comakli and the inova-Sarikdy single
faults. They also reported that these faults have
formed in a neotectonic period that commenced in
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Figure 1-a) Simplified map illustrating plate tectonic configuration of Tiirkiye and location of study area, b) Simplified fault map illustrating
major strands of the North Anatolian Fault system and fault zones comprising them around Sea of Marmara.

the Early-Middle Miocene. Additionally, some dextral
offsets, such as the 1.5 km on the Can fault and 8 km
on the Inova-Sarikdy fault, were also determined
and reported by the same authors. Later on, these
two studies were followed by several researchers
(Saroglu et al., 1992; Kogyigit, 2006; Duru et al.,
2007; Kogyigit, 2011; Emre et al., 2011, 2012).
Saroglu et al. (1992) named the same structures as the
Etili fault, Can-Biga fault zone and the Sarikdy fault,
respectively. Duru et al. (2007) carried out a detailed
geological map of the Inova area, divided the Sarikoy
fault into two segments namely the Asmali and Tahtali
segments, and then reported 12 km dextral offset on
both fault segments. Lastly, same structures were
also reevaluated and named as the Biga-Can fault
zone, Sarikdy fault and Giindogan fault respectively
by (Emre et al., 2011; 2012), who also redivided the
Biga-Can fault zone into three fault segments as Can,
Yuvalar, and Biga fault segments. Five pull-apart
basins occur along these fault zones. From NE to SW
these are the Sarikdy, Inova, Kazabat, Can and the
Ezine-Bayramig basins. Except for the Inova basin, rest
four basins have not been studied yet, whereas, these
basins contain valuable stratigraphic and structural
data about the commencement age of the neotectonic
period, evolutionary history of faults and associated
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displacements accumulated on them. In terms of this
study, some type localities, such as the Sarikdy, inova,
Kazabat, Can-Etili, Bezirganlar, Ezine-Bayrami¢ and
the Kurudere areas, were mapped in detail on 1/25.000
scale, and new findings were obtained. These new
data were obtained by the usage of both the office
and field methods. Office studies include computer
program T-TECTO 3.0, satellite images and aerial
photograph studies, whereas field studies focus on the
detailed field geological mapping of rocks and faults
carried out directly in the field. In the present day, the
debate about the fault pattern, total displacement, and
the commencement age of the neotectonic period in
the study area is still lasting. This study aims to bring
plausible solutions to these debates under the lights
of both the newly obtained field data and national to
international literature surveys.

2. Fault Zones

Both the Sarikdy-Inova and Can-Bayramig-Ezine
fault zones are represented by the dextral strike-
slip faulting caused by stress field state, in which
the maximum principal compressive stress (c,) is
operating in approximately E-W direction, while the
least principal stress axis (c;) or extension direction
is N-S (Kogyigit and Giirboga, 2021). Based on
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the relationship between the strike of faults and
the operation direction of the maximum principal
compressive stress axis, the NE-striking faults are
dextral strike-slip faults, NW-striking faults are
sinistral strike-slip faults, the E-W striking faults are
oblique-slip normal faults and the N-S striking faults
are oblique-slip reverse faults. In general, as the strikes
of the faults approach to the E-W direction, i.e., o,
direction, their normal components increase (Wilcox
et al., 1973). Consequently, the Biga Peninsula and its
neighborhood are being shortened in E-W direction,
while it is expanded in N-S direction.

2.1. Sarikdy-inova Fault Zone (SIFZ) and Related
Basins

In general, the SIFZ is 0.2-5 km wide, totally 65 km
long, and N45° to 70E°-trending active deformation
zone dominated by the dextral strike-slip faulting. It
is situated between Ulukir village to the northeast and
Hurma village to the southwest (Figure 1b). It begins
around Ulukir village and then runs southwestward
across the Sarikdy, Armutlu, Geyikli, Tahtali, Yolindi,
Asagiinova, Yukariinova, Asmali, Sameteli and
Hurma settlements. Around Hurma village further
southwest, it meets with the Can-Bayramig-Ezine
fault zone (CBEFZ) and then terminates. Along the
whole length, the SIFZ consists of numerous 0.3-3
km spaced, 0.1-14 km long and NE-, E-W- and NW-
trending structural fault segments. In addition, it is
divided into five major sections in the pattern of a
fault set by the intervening some other strike-slip
complexities and related pull-apart basins. These
sections or fault sets are, from northeast to southwest,
the Sarikdy-Geyikli, Hiiseyinbey, Tahtali-Asagiinova,
Yukariinova-Asmali, and the Kazabat fault sets,
respectively (Figures 2 and 3). They are 18 km, 14
km, 17 km, 18 km and 12 km in length, respectively.
The most diagnostic character of the SIFZ is the
anastomosing pattern. The master fault bifurcates
and rejoins frequently, divides the earth crust into a
series of diverse-sized lensoidal blocks with long
axes running more or less parallel to the general trend
of the fault zone. Thus, it displays an anastomosing
occurrence pattern peculiar to the strike-slip faulting
(Figures 2 and 3). Fault segments, which comprise
the SIFZ, cut across various rocks (Permo-Triassic
Karakaya Complex, Liassic clastic rocks, Jurassic-
Cretaceous Limestone and the Oligo-Miocene igneous
to volcanic rocks) (Bingol et al., 1973; Siyako et al.,
1989; Okay et al., 1990; Kogyigit, et al., 1991; Sahin et

al., 2010) and tectonically juxtapose them with to each
other, and also with the Quaternary basin fill. They also
displace older rocks in both vertical and right-lateral
directions. Various lithofacies of the Permo-Triassic
Karakaya Complex are displaced up to 12 km in dextral
direction by the Tahtali-Asagiinova section of the
SIFZ (X-Y in Figure 4) (Engin et al., 2012). This is also
confirmed by the offset drainage system. The Sarikdy
Cay, Keci Stream, Balikli Cay and the Kaz Stream are
fault-controlled drainage systems flowing within the
SIFZ. In particular, the Balikli Cay is offset up to 12
km in the dextral direction by the Tahtali-Asagiinova
section of the SIFZ (X-Y in Figure 3). Same offset
features were also previously reported by Siyako et
al. (1989) and Emre et al. (2012). The longest segment
of the SIFZ is the 14 km long Tahtal1 fault, on which
the total displacement accumulated until the present
is 12 km. Based on the maximum length of this fault
segment, the magnitude of the peak earthquake to be
resulted from the Tahtal fault is M, = 6.4 based on
formula introduced by Wells and Coppersmith (1994).
There is a relationship among the slip rate (SR), total
displacement (TD) and the age of the fault (A). In the
same way, there is a relationship among the slip rate
(SR), coseismic displacement (CD) and the return
period (RP). It is explained by the equation (RP = CD/
SR). Based on this equation, the amount of coseismic
lateral displacement to be sourced from the Mw 6.4
earthquake is approximately 2.3 m or 2.5 m.

The SIFZ is a regional active structure. This is
proven by two historical earthquakes. These are the
6th March 1737 Inova earthquake of Ms =7.0, and the
first February 1809 Hurma earthquake of Ms = 6.1
(Figure 3) (Ambraseys, 2002; Tan et al., 2008). They
were sourced from the Asagiinova and Hurma sections
of the SIFZ, respectively. The epicenter localities
of these earthquakes are located on the strike-slip
complexities, such as the Inova releasing step-over, a
single contractional bend and the intersection of two
fault zones, where motion on the fault is locked and
causes to the accumulation of huge volume of elastic
strain energy for the occurrence of earthquakes.
However, the main bulk of the SIFZ still retains its
seismic gap.

Three strike-slip basins have developed along the
SIFZ owing to the strike-slip complexities. These are
the Sarikdy, Inova and the Kazabat pull-apart basins.
In the near southwest of Geyikli village, the SIFZ
bifurcates into two sections such as the NE-trending
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Sarikdy and the E-W-trending Hiiseyinbey fault sets
(Figure 2). This bifurcation results in an eastward
widening fault-wedge type of pull-apart basin (Figures
2 and 5). It is bounded by the Sarikdy fault set to north
and by the Hiiseyinbey fault set to south (F1 and F2
in Figure 5). The 14 km long Hiiseyinbey fault set
consists of diverse-sized and northerly dipping several
normal faults, and a single NW-trending sinistral
strike-slip fault (Derekéy fault) (Figure 2). They
display well-preserved normal and sinistral strike-
slip fault slickensides. The stereographic plot of slip-
plane data on Schmidt lower hemisphere stereonet
indicates that the Sarikdy basin is under the effect of
E-W shortening and N-S expansion (Figure 6). The
Sarikdy basin is occupied by an approximately 85
m thick, weakly lithified to unconsolidated, and flat-
lying fluvial sedimentary sequence of Quaternary age.
This basin fill overlies with an angular unconformity
on the erosional surface of the various rocks of pre-
Quaternary age (Figure 2).

The second diagnostic structure included in the
SIFZ is the Inova pull-apart basin. It occurs along both
the Tahtali-Asagiinova and the Yukariinova-Asmali
sections of the SIFZ. Around Asagiinova village, the
master fault of the SIFZ bends first toward left and
then jumps to right, and so it results in a releasing
type of stepover, which nucleates the Inova strike-slip
basin (Figure 3). The southwestern and northeastern
sections of the SIFZ were previously named as the
Asmali and Tahtali segments respectively by Emre et

al. (2012). However, this naming is not true, because
it contradicts with the definition of structural fault
segment, which is a single fault or a part of a single
fault confined between two structural complexities,
such as the step-over, bend and bifurcation. The
Inova pull-apart basin is a 2.5 km wide and 7 km
long depression occupied by 70 m thick, loose and
non-deformed fluvial sediments of Quaternary age.
The basin fill rests with an angular unconformity on
the erosional surface of the Permo-Triassic Karakaya
Complex (Bingol et al., 1973).

Around Samateli the SIFZ bends at 25° towards
north, bifurcates into several splay faults, and then
results in an extensional horse-tail structure, namely
the Sameteli horse-tail structure, where the third pull-
apart basin occurs. It is the Kazabat depression located
on the southwestern tip of the SIFZ (Figures 3 and 7).
The Kazabat basin is a 2.5 km wide and 10 km long
lense-shaped depression with an E-W trending long
axis. It widens up to 2.5 km in the central section,
while it narrows and wedges out in both east and
west directions. It is bounded by the NE-trending
Hurma fault to west, by the E-W to WNW-trending
Cekigler, Korualti, Biiyiliktepekdy and Kalburcu fault
segments to north, and by the E-W-trending Siilekdy
and Karakoca fault segments to south (Figure 7).

Both the northern- and southern margin-boundary
fault segments gain a considerable amount of normal
components greater than their strike-slip components
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Figure 2- Geologic map of the Sarikdy fault-wedge basin and its near vicinity. Geological cross-section along line A-A’ indicates the Sarikdy
basin, its margin-boundary faults, fills and stratigraphical relationships with the pre-Miocene rocks.
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Figure 5- General view of the Sarikdy fault-wedge type of pull-apart basin (view to SSE).

Figure 6- a) Field photographs of the Hiiseyinbey oblique-slip normal fault and b) the Derekdy sinistral strike-slip fault slickensides,
respectively, at stations S1 and S2 in Figure 2, c¢) and d) stereographic plots of slip-plane data on Schmidt lower hemisphere
stereonet respectively (diverging and converging large arrows indicate expansion and shortening directions respectively.
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owing to the kinematic character of the Sameteli horse-
tail structure. This situation is also the main cause for
the development of the Kazabat basin. This basin is
occupied by 108 m thick fluvial to gravity-induced
sedimentary fill (Kazabat formation) of Quaternary
age (Figure 8). It rests with an angular unconformity
on the erosional surface of various pre-Miocene rocks.
The basin fill begins with well-bedded and weakly-
sorted polygenetic basal conglomerates at the bottom,
and then continues upwards with the alternation of
weakly bedded to lose fluvial conglomerate, sandstone
and siltstone. Towards the top, it is succeeded by
both the coarse-grained marginal and finer-grained
depocentral lithofacies such as slope-scree, fan-

apron, fan and basin floor sedimentary deposits
respectively. All the lateral and vertical gradations are
observed among these lithofacies. Consequently, the
stratigraphy of these pull-apart basins reveals strongly
that the formation age of the SIFZ is Quaternary.

2.2. CBEFZ and Related Basins

In general, the CBEFZ is an 1.5-4.6 km wide,
totally 80 km long and ENE- to NE-trending active
deformation zone represented by mostly strike-slip
faulting. It is situated between Helvaci village (Can)
to northeast and Dalyan Town (Bozcaada) to further
southwest (Figure 1b). The CBEFZ begins around
Helvact village in the northeast and then runs in
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southwest direction along a series of settlements in
the size of village, town and county. Based on some
strike-slip complexities, such as the Yeniceri and
Etili releasing stepovers, bifurcation and the Doganc1
bend, the CBEFZ is divided into five sections. These
are, from northeast to southwest, the Helvaci, Can-
Etili, Bezirganlar, Ezine and the Bayrami¢-Kurudere
sections or fault sets (Figures. 7, 9 and 10).

These sections are 8 km, 16 km, 18 km, 21 km and
45 km in length, respectively. The CBEFZ consists
of 0.4-15 km long, and E-W-, ENE, NW- to NE-

trending numerous fault segments. They cut across
various older rocks of different lithofacies, and the
Quaternary neotectonic basin fill. These rocks are
cut across, tectonically juxtaposed and offset in both
lateral and vertical directions by the fault segments.
The CBEFZ developed along a paleotectonic structure
named previously as the Bayramig and Etili grabens of
Miocene age by Yilmaz et al. (2000), i.e., the younger
strike-slip tectonic regime and related structures were
overprinted on an earlier extensional tectonic regime
and associated structures during the Quaternary time.
For this reason, most fault segments comprising the
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Figure 10- Simplified map illustrating the relationship of the Bezirganlar section of the Can-Bayrami¢-Ezine fault zone (CBEFZ) with the

drainage system.

CBEFZ are reactivated older faults inherited from
the Miocene extensional tectonic regime and related
grabens. For instance, the Can, Kiiciikpasa and
some intrabasinal fault segments in the Can basin
(Figure 7), and the Ezine and Bayramig¢ faults in
the Ezine-Bayrami¢ basin (Figure 10) are originally
reactivated older structures. This is also proven by the
superimposed slip-plane features such as slip lines to
fault steps and their kinematic analyses (Figure 11).

Both the Kocacay and Karamenderes Cay1 are two
major fault-controlled drainage systems flowing in
opposite directions within the CBEFZ. The Kocacay
River rises from the peak of Kazdaglar1 pressure
ridge to south and outside the study area, and then
flows towards north. It changes its flow direction
towards ENE and then is offset up to 20 km in dextral
direction when it enters into the Can-Etili section of
the CBEFZ (X-Y in Figure 12). This dextral strike-
slip displacement is also proven by a geologic marker,
namely the offset formation boundary. The southern
boundary of the Lower-Middle Miocene volcano-
sedimentary sequence is crossed and displaced up to
30 km in right lateral direction (Figure 7 in Yilmaz et
al., 2000). These total dextral offsets indicate the slip
rates of 11.6 mm/yr. and 7.7 mm/yr., respectively, and

the return period of approximately 400 years for the
occurrence of a peak earthquake with the Mw = 7.0.
Total geological offsets that have developed in NAF
System within last 4-5 million years are compatible
with GPS data and explain that the slip rate on
Northern strand is about 4 times higher than Southern
strand (Sipahioglu and Matsuda, 1986; Saroglu et al.,
1987; Kogyigit, 1988; Emre et al., 1998; Armijo et
al., 2002; Meade et al., 2002; Emre and Awata, 2003).
The amount of coseismic lateral displacement is about
3-3.5 m. The longest segment of the CBEFZ is the
15 km long Giilliice fault. Based on the maximum
length of this fault segment, the magnitude of the peak
earthquake to have originated from the Giilliice fault is
about Mw = 6.5 (Wells and Coppersmith, 1994). The
CBEFZ is an active regional structure. This is indicated
by both a series of morphotectonic structures and the
8th February 1826 Giilliice historical earthquake with
the Mw = 6.2 (Tan et al., 2008). This earthquake was
sourced from the Giilliice fault (Figure 10). Despite
these earthquakes, the main bulk of the CBEFZ still
retains its nature of seismic gap.

Two basins developed on the CBEFZ. These are
the Can and the Ezine-Bayramic basins (Figures 7
and 10). Both of them are superimposed in nature,
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because they have two different infills separated by
an intervening regional angular unconformity (Figure
13).

The Can basin begins from the intersection of
both the NE-trending Can-Etili dextral fault set and
the NW-trending Malikdy sinistral strike-slip fault,
and then widens up to 5.5 km in westward direction,

e., it is a fault-wedge basin outlined by these two
structures along its southern and northeastern margins,
respectively (Figures 7, 12 and 14).

The Ezine-Bayramig¢ basin is a 4 km wide, 30
km long and ENE-trending rectangular depression.
It is bounded by the Ezine and Giilliice faults to the
north, and by the Bayramic fault set to south (Figure
10). In the west, it is outlined by the NNW-trending
Akgin fault zone, which is an active deformation zone
dominated by mostly the sinistral strike-slip faults
with a considerable amount of reverse component.
Conversely, in the west, the basin is divided into
two arms and they wedge out to the further east.
The southern margin of the Ezine-Bayramig¢ basin is
outlined and controlled by the Bayrami¢-Kurudere
fault set. It consists of diverse-sized, and NE-, NW-,
ENE- and WNW-trending numerous fault segments in
the nature of both dextral to sinistral strike-slip faults
and the oblique-slip normal faults. Some of them are
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the Bayramig, Aktas, Cinarkoy and Kurudere faults
(Figures 10 and 15).

The totally 45 km long Bayramig¢ fault set or
section begins around Bayrami¢ Dam to the east and
then runs wastwards up to south of Ezine County,
where it cuts the Akgin fault zone and displaces it
up to 3 km in sinistral direction (A-B in Figure 10).
Later on, it continues again in the west direction
along the Kurudere drainage system for a distance of
17 km. Lastly, it joins with the Skyros fault zone in
the North Aegean Sea and then terminates (Figures
1b and 15) (Papazachos et al., 1984; Pavlides et al.,
1990; Koukouvelas and Aydmn, 2002; Kiirger et al.,
2015; Sakellariou and Tsampouraki-Kraounaki,
2019). The whole of lithofacies of both the older
graben fill and the younger neotectonic basin fill,
their internal synsedimentary structures, and the top
to bottom stratigraphical relationships are observed
well in the Can coal mining quarry excavated deeply
inside the Can superimposed basin (Figure 14) (Bilgin
et al., 1976). In this basin. the underlying older fill
begins with a polygenetic basal conglomerates on
the erosional surface of the Upper Eocene-Oligocene
volcanic rocks and then continues upward with the
alternation of sand-stone, siltstone, tuff-tuffite, coal
seams and a package of various deep lacustrine
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Figure 12- a and b) Close-up views of the Miocene oblique-slip normal fault slickensides, ¢ and d) Stereographic plots of slip-plane data on
Schmidt lower hemisphere stereonet respectively (diverging large arrows indicate extension directions); e) Close-up view of the

active strike-slip fault slickenside with slip lines parallel to E-W direction.
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sedimentary lithofacies with coal seams intercalations.
It is succeeded by a thick package of andesitic to
basaltic volcanic breccia at the topmost (Figure 16).

This volcano-sedimentary sequence is overlain
with an angular unconformity by the nearly flat-lying
fluvial to gravity-induced sedimentary sequence
of Quaternary age (Figures 13 and 16). The older
sequence was deposited in a tectonically very active
graben. This is indicated by some well-developed and
preserved synsedimentary slump folds and growth
faults (Figure 17).

This older graben fill was deformed and uplifted
on a regional scale at the end of Miocene or most

probably during Pliocene. This is revealed by the folds
with the E-W-trending axes and thrust to reverse faults
(Figures 17, 18 and 19).

The comparison of stratigraphical columns of
both the superimposed and the pure pull-apart basins
reveals that the site of the CBEFZ was a deep and very
active lacustrine depositional setting accompanied
by a volcanic eruption under the control of tensional
tectonic regime and related normal faults, i.e., it was
a graben during the Early-Middle Miocene; whereas,
the site of the SIFZ was a high erosional area, such
as a horst, during the same time slice. Starting from
the Late Miocene onwards, an inversion occurred in

Figure 15- General view of the deeply excavated Can coal mining quarry (view to SE). F1. CanEtili section of the Can-Bayrami¢-Ezine fault

zone, and F2. Malikdy sinistral strike-slip fault.
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the tectonic regime, i.e., the tensional tectonic regime
was replaced by the N-S-directed compressional
tectonic regime. For this reason, the Miocene graben
and its volcano-sedimentary sequence were deformed,
uplifted and became an erosional area during the
Late Miocene, or most probably in the Pliocene time.
Starting from the Early Quaternary, both areas began
to experience a strike-slip tectonic regime governed
by a stress field state with the maximum principal
compressive stress (c,) operating in approximately
E-W direction. This new regime led to the reactivation
of some older faults and formation of numerous new
strike-slip faults. Thus, both the SIFZ and CBEFZ
formed, and five pull-apart basins, which are drained
by the Sarikdy Cay, Balikli Cay, Kocagay River and
Karamenderes Cay1, developed within them.

3. Regional Geodynamics and Discussion

Both the Aegean Sea and western Anatolia, which
comprise the west-southwesternmost frontal part
of the Anatolian platelet (Figure 1a), have received

Figure 18- a and b) Field photographs illustrating both the
synsedimentary growth fault (a) and slump fold (b)
developed during the sedimentation in lower-middle

Miocene Can paleotectonic graben.

much more attention in last three decades (Sengdr
and Yilmaz, 1981; Ercan et al., 1985; Seyitoglu and
Scott, 1991, 1996; Karacik and Yilmaz, 1998; Ring
et al., 1999; Kogyigit et al., 1999; Yilmaz et al., 2000;
Bozkurt, 2001; Koukouvelas and Aydin, 2002; Kaya
et al., 2004; Erkdl et al., 2005; Bozkurt and Rojay,
2005; Emre and Sozbilir, 2005; Jolivet and Brun,
2010). Although the Aegean Sea and western Anatolia
are relatively smaller area, they contain various and
complex tectonic processes and related structures
such as the subduction tectonics, exhumed HP-LT
metamorphic rocks, metamorphic core complexes,
intracontinental transform fault (North Anatolian

Holocene soil cover

R

Figure 19- a) Field photograph of a Lower-Middle Miocene
recumbent fold (RF) cut and offset by a thrust fault
(TF1 and TF2), b) Field photograph illustrating a
thrust-faulted to offset Lower-Middle Miocene fluvio-
lacustrine sedimentary sequence of A, B, C, and D, and
c) Field photograph illustrating the margin-boundary
normal fault and folds with approximately E-W trending
axes developed in the Miocene basin fill of the NE-
trending Gordes graben.
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Fault System), Tertiary-Quaternary magmatic rocks,
trench, the Plio-Quaternary volcanic arc, back-arc
rifting, orogenic collapse, widespread graben-horst
system, strike-slip basins and their mutual interactions
(Figure 1b).

Some of earlier studies (Sengdr and Kidd, 1979,
1985; Dewey et al., 1986; Saroglu and Yilmaz, 1986)
have reported that the continent-continent collision
of Eurasian and African-Arabian plates and the entire
demise of the intervening oceanic realm (southern
branch of Neotethys ocean) imply to the end of
paleotectonic period and onset age of the strike-slip
faulting-dominated neotectonic period in eastern
Tiirkiye. In contrast to the ideas of these authors, our
detailed field studies (Kogyigit et al., 2001; Aksoy et
al., 2007; Colak et al., 2012; Kogyigit, 2013; Kogyigit
and Canoglu, 2017) carried out directly in the field in a
broad area covering both the eastern Anatolia and some
parts of Lesser Caucasus indicated that: 1) There is an
approximately 9 Ma long transitional period between
the paleotectonic and neotectonic periods in eastern
Tiirkiye, 2) the E-W trending folds, thrust-to reverse
faults and ramp basins represent the Late Miocene-
Middle Pliocene transitional period, and 3) the strike-
slip neotectonic regime has commenced in the Late
Pliocene. Because, for the wholesale establishment of
a neotectonic regime in a region, it has to be preceded
by a series of regional inversions such as magmatic
activity, style of tectonic regime, deformation pattern,
type of basin and sedimentation and the stress field
state. Same kind of transitional tectonic periods have
also been reported from various parts of Europe (e.g.
Becker, 1993). The Late Miocene-Middle Pliocene
transitional period separates the pre-Serravallian
paleotectonic period from the Plio-Quaternary strike-
slip neotectonic period. Starting from the Late Pliocene
onwards, the southern part of the Eurasian plate was
subdivided into a series of diverse-sized continental
wedges bounded by the sinistral to dextral strike-slip
faults. The largest of these continental wedges is the
Anatolian platelet that has been escaping along its
boundary faults, namely the dextral North Anatolian
and the sinistral East Anatolian fault systems (NAFS
and EAFS), in WSW direction onto the oceanic crust
of the Mediterranean Sea since the Late Pliocene
(Hempton, 1987; Kogyigit and Beyhan, 1998).

The NAFS is an intracontinental transform fault
structure. It accommodates the westward relative
motion of the southerly located Anatolian Platelet
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(Figure la). However, the Anatolian platelet and its
westward motion are being tried to be blocked and
forced to move in south-southwestward direction by
a barrier, namely the mainland Greece. This regional
process resulted in a new stress field state, in which
the greatest principal compressive stress (c,) is
operating in approximately E-W direction (Sengor,
1980). Thus, the bifurcation of the NAFS into three
major strands, numerous fault zones to single faults,
their bending at ~30° towards south to the just west
of the Lake Ulubat-Bandirma-Tekirdag imaginary
line (X-Y in Figure 1b) and blocking and forcing of
the Anatolian platelet to move southwestwards by the
mainland Greece altogether changed the architecture
of the westernmost section of the NAFS, and led
to the emergence of a new neotectonic province
in central to northern Aegean Sea and their nearby
onshore areas. It includes the southernmost part of
the Rhodope Massif, Thrace basin, the western half
of the Sea of Marmara region, Biga Peninsula, Gulf of
Edremit, [zmir to Doganbey Gulfs, and all of central
to northern Aegean Sea. This domain is here termed as
the central to northern Aegean neotectonic province.
It is now under the control of a prominent strike-slip
neotectonic regime and related structures (Kogyigit
and Giirboga, 2021). This new neotectonic domain
is outlined by the NNE-trending Balikesir-izmir fault
zone (BIFZ) to east (Uzel and Sozbilir, 2008; Kogyigit,
2015; Kogyigit, 2020), and the E-W-trending Metsa
fault zone, which also shapes the southern foot of the
Rhodope Massif along the Greece-Bulgarian state
border, to north-northwest (Protopopova and Botev,
2020). Along these two major structures, the central
to northern Aegean strike-slip neotectonic regime
and related structures interact with the extensional
neotectonic regimes in both the southwest Anatolia-
Tiirkiye and throughout Bulgaria (Pavlides et al., 1990;
Kaya et al., 2004; Uzel and Sozbilir, 2008; Kogyigit,
2015; Sakellariou and Tsampouraki-Kraounaki, 2019;
Kogyigit, 2020). Based on tensor solution diagrams of
earthquakes and the kinematic analyses of slip-plane
data obtained from faults, the prominent extension
directions change slightly between NNW and NNE in
both Southwestern Anatolia and Bulgaria (Kogyigit,
1984; Nalbant et al., 1998; Kogyigit et al., 1999;
Yilmaz et al., 2000; Kogyigit, 2005; Tan et al., 2008;
Kalafat et al., 2011; Kogyigit, 2015; Sozbilir et al.,
2016; Protopopova and Botev, 2020). This extension
direction fits well with the general indirect extension
(o,) in the central to northern Aegean strike-slip
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neotectonic domain owing to the contraction operating
in approximately E-W direction (Gokasan et al., 2012;
Kogyigit and Giirboga, 2021).

In the further east of northwestern Anatolia (around
Kargi-llgaz area district, outside the study area)
(Ayhan and Kogyigit, 2010), the NAFS bifurcates into
three major strands. These are informally: 1) northern
strand, 2) central strand and 3) southern strand (Figure
1b). Around Sea of Marmara, the northern strand is
represented by the Hendek-Yigilca (HYFZ), northern
Marmara (NMFZ), Isiklar (IFZ) to Ganos fault zones
and the North Aegean trough (Koukouvelas and
Aydm, 2002; McNeill et al., 2004; Gorgiin et al.,
2010; Karimi et al., 2014); the central strand by the
Kaynasli-Golyaka-Akyazi (KGAFZ) and the Sapanca-
Yalova fault zones (SYFZ) (Figure 1b). However, the
southern strand consists of numerous fault zones,
fault sets and single faults. The most common of
them are the Dokurcun (DFZ), Geyve-iznik (GIFZ),
Yenigehir (YFZ), Demirtag-Taglik (DTFZ), Edincik-
Denizkent (EDFZ), Karabiga (KFZ), Lapseki (LPZ),
Sarica (SFZ), Sarikdy-Inova (SIFZ), Can-Biga-Ezine
(CBEFZ), Skyros-Biga (SB), Truva (TF), Giilpinar
(GFZ), Yenice-Gonen (YGFZ), Danisment-Pazarkdy
(DPFZ), Ilica-Darica (IDFZ), Bursa (BFZ), Manyas
(MFZ), Edremit-Havran (EHFZ), and the Tuzla (TFZ)
fault zones to single faults (Figure 1b) (Barka, 1992;
Armijo et al., 1996; Kogyigit, 1988; Kogyigit et al.,
1999; Ring et al., 1999; Okay et al. 1990; Kogyigit
et al., 2000; Kaya and Foulger, 2000; Sozbilir et al.,
2003; Kogyigit, 2009; Sakellariou and Tsampouraki-
Kraounaki, 2019). Additionally, in the area between
City of Bursa and Lake Ulubat, the southern strand
of the NAFS intersects with both the WNW-trending
Inénii-Eskisehir Fault System (IEFS) and the NNE
trending Balikesir-izmir fault zone (BIFZ) (Figure
1b). Both northwestern Anatolia and northern Aegean
Sea are crossed and subdivided into numerous strike-
slip basins, troughs and structural highlands (pressure
ridges) by the faults comprising the NAFS. The most
common strike-slip faulting-related structures are
the Sakarya basin (SB), the Sapanca-izmit trough,
the Armutlu pressure ridge, the northern Marmara
Sea trough, Ganos pressure ridge, Saros-Sporadhes
troughs along both the northern and middle strands;
the Geyve basin, the iznik trough, Yenisehir basin,
the Gemlik basin, the Bandirma-Gemlik trough, the
Edincik pressure ridge, the Sarikdy, inova Kazabat,
Can, Bayramig-Ezine, Gonen and Yenice basins along
the southern strand of the NAFS (Figure 1b).

The BIFZ, MFZ, YGFZ, EHFZ, TFZ, GFZ, and
the Truva fault (TF) were previously studied well
(Tutkun et al., 2006; Kiirger et al., 2008, 2012, 2017,
2019; Yaltirak et al., 2013; S6zbilir et al., 2016; Stimer
et al., 2018; Kogyigit and Giirboga, 2021) (readers are
referred to these papers). In contrast to these studies,
the SIFZ and the CBEFZ are still ill-defined and
have not been studied in detail. Whereas these two
basins, their fills and margin-boundary faults include
significant structural and stratigraphic data for the
solution of onset age of the neotectonic regime, total
displacement and slip rate. For this reason, the SIFZ,
the CBEFZ and related basins were studied in detail
based on the field geological mapping carried out
directly in the field in the frame of the present paper
(Figure 1b). Five pull-apart basins were developed
along the SIFZ and CBEFZ. These are, from NE to
SW, the Sarikdy, Inova, Kazabat, Can and Bayramic-
Ezine basins. First three basins are the fault-wedge
type of pure pull-apart basins developed along the
SIFZ during the Quaternary time. This is indicated by
the angular unconformity between the overlying flat-
lying Quaternary basin fill and the underlying severely
deformed pre-Quaternary basement rocks (Figure 8).
However, the rest two basins, namely the Can and
Bayramic¢-Ezine basins, are superimposed depressions
with two basin fills separated by the intervening
angular unconformities (Figure 16). This observation
reveals that these two basins have developed
episodically. Consequently, the stratigraphy of these
pull-apart basins reveals strongly that the formation
age of the SIFZ is Quaternary (Kogyigit and Giirboga,
2021). This also reveals that the onset age of the strike-
slip neotectonic regime in Biga Peninsula is the Early
Quaternary (Kogyigit and Giirboga, 2021). Whereas it
was reported as the Late Miocene-Pliocene in most of
the previous works (Herece, 1985, 1990; Siyako et al.,
1989; Karacik and Yilmaz, 1998; Yilmaz et al., 2000;
Kiirger et al.,, 2008, 2019). Some new geographic
and geological markers were obtained in terms of the
detailed field geological mapping. These are the offset
drainage systems and rock units. Some of them are: 1)
the Balikli Cay1 was offset up to 12 km by the SIFZ
in dextral direction (X-Y in Figure 3), 2) in the same
way, the Permo-Triassic Karakaya Complex has been
cut and displaced up to 12 km by the SIFZ in dextral
direction (X-Y in Figure 4), 3) the Kocagay River was
offset up to 20 km by the CBEFZ in dextral direction
(X-Y in Figure 12), and 4) the southern boundary of
the Lower-Middle Miocene volcano-sedimentary
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sequence in Bayrami¢-Ezine basin was crossed and
displaced up to 30 km in right lateral direction (Figure
7 in Yilmaz et al., 2000). In the case of the uniform
slip rate, there is a close relationship among the age,
total displacement and slip rate of an active fault or
fault zone. This can be explained by a simple equation
(Slip rate = total displacement/age). In this equation
the total displacements are 12 km and 20 km, the age
of the active faults is Early Quaternary, i.e., 2.588 My
BP. Consequently, the slip rate on both the SIFZ and
the CBEFZ are 4.6 mm /yr and 7.7 mm/yr respectively.

4. Results

Based on data presented in the foregoing chapters,
the followings are concluded:

1. In the present, the study area is under the control
of a strike-slip neotectonic regime commenced in
the early Quaternary. This is proven by the regional
angular unconformity separating the folded to thrust-
faulted pre-Quaternary rocks and the non-deformed
Quaternary strike-slip basin fill. It is also evidenced by
the new stress field state with a principal compressive
stress (o,) operating approximately in E-W direction,
whereas it was more or less vertical to sub-vertical in
position before the Quaternary period.

2. SIFZ and related basins developed on the uplifted
erosional surface of the pre-Miocene rocks. For this
reason, the Sarikdy, Inova and Kazabat depressions
are pure strike-slip basins of the Quaternary age. In
contrast to them, the CBEFZ and related basins formed
on the uplifted and deformed erosional surface of the
Lower-Middle Miocene graben and associated fill.
Therefore, Can and Ezine-Bayrami¢ depressions are
superimposed basins, and the most faults comprising
the CBEFZ are the reactivated older structures
inherited from the Miocene extensional paleotectonic
period.

3. Based on both the structural and the geographic
markers, the total dextral strike-slip displacements
accumulated on the SIFZ and the CBEFZ are 12 km and
20 km, respectively. These displacements correspond
to an approximately 4.6 mm/year and 7.7 mm/year
slip rates on the SIFZ and CBEFZ, respectively.

4. The longest fault segments are the 14 km long
Tahtal1 and the 15 km long Giilliice faults. Based on the
maximum lengths of fault segments, the magnitude of
peak earthquakes to be originated from these segments
are Mw = 6.4 and 6.5 respectively.
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5. Both the SIFZ and the CBEFZ are active. This
is also indicated by the historical earthquakes. In the
present, there might be a seismic gap. The return
period of peak earthquakes to be resulted from these
fault zones seem approximately as 500 years and 400
years, respectively.
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