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Abstract 

This paper evaluates an integrated water body mapping method in the Sub-Himalayan region of Nepal using optical imagery of 

Sentinel-2 satellites of the European Space Agency. This method extracts the information on water bodies by combining image 

indices, normalized difference vegetation index, and normalized difference water index, using red, green, and near-infrared bands 

along with slope information to remove false results along the shadow areas. The study results indicated that differentiating indices 

generated a more accurate map of the water bodies than taking the individual index. The difference in indices enhanced the contrast 

between water bodies and other environmental features. Based on the accurately mapped water bodies of the study area, this research 

concluded that the multi-spectral images from the Sentinel-2 can be ideal data sources for water bodies monitoring with finer spatial 

and temporal resolution. Although smaller water bodies with high vegetation cover cannot be detected by this method, the integrated 

water body mapping method is suitable for the applications of multi-spectral images in this field. 
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Introduction 

Water, an important and essential part of the ecosystem, 

is responsible for the development and growth of life 

forms on Earth (Biggs et al., 2017) and covers more than 

three-quarters of Earth’s surface. The amount and 

location of inland surface water play a vital role in 

decision-making for policymakers (Biggs et al., 2017; 

Du et al., 2016; Verpoorter et al., 2014). These surface 

waters are very susceptible to change (Nazari-Sharabian 

et al., 2018) and are, therefore, responsible for various 

environmental and ecological modifications (Habitat, 

2013, 2015; Villamagna and Murphy, 2010), as well as 

human socio-economic development (Biggs et al., 2017; 

Habitat, 2015; Nazari-Sharabian et al., 2018; Villamagna 

and Murphy, 2010). As a crucial part of the global 

climate cycle, mapping water bodies, especially fresh 

water, is an essential task and a requisite (Biggs et al., 

2017; Du et al., 2016). This mapping of freshwater in the 

spatiotemporal domain, describing the distribution of 

water bodies in space and time, makes the task essential 

for academic research and policy-making (Du et al., 

2016; Verpoorter et al., 2014; Weise et al., 2020).  

With the development and increasing applications of 

satellite imagery in recent years, the mapping of natural 

resources, like forest and water bodies, is gaining much 

importance (Verpoorter et al., 2012, 2014; F. Yang et al., 

2017). In addition, geospatial tools are advantageous for 

identifying natural resources, such as forest and water 

bodies, and assessing their status (S. W. Wang et al., 

2020; Yan et al., 2020; F. Yang et al., 2017). Moderate-

resolution Imaging Spectro-radiometer (MODIS) images 

have been widely used to map water bodies at both 

global and regional scales (Colditz et al., 2018; Liu et al., 

2020; Y. Wang et al., 2020; Xing and Niu, 2019). For 

regional studies, images provided by the Landsat TM 

(Thematic Mapper) and ETM+ (Enhanced Thematic 

Mapper Plus) proved to be valuable as the imagery has a 

moderate spatial resolution (30 m), provides 

multispectral images (seven or eight bands), with a short 

revisit interval (16 days) and includes decades of records 

(Du et al., 2016; Masocha et al., 2018; Zhai et al., 2015). 

Various techniques have been adopted and developed to 

delineate water bodies in remotely sensed imagery and 

are commonly grouped into three categories, i.e., 

Spectral bands (Verpoorter et al., 2012, 2014; Zhai et al., 

2015; Kavzoğlu et al., 2023), classification (Acharya et 

al., 2018; Huang et al., 2018; Talukdar et al., 2020; 

Kavzoğlu, et al., 2021) and index-based extraction 

(Acharya et al., 2018; Du et al., 2016; F. Yang et al., 

2017; Gazioğlu, 2018).  

Analyzing spectral bands helps to identify water bodies 

by applying thresholds to one or more spectral bands. 

Thresholding individual band is easy to implement but 

often misclassifies mountain shadows, urban areas, or 

other background noise as water bodies (Verpoorter et 

al., 2012). Spectral analysis can distinguish natural 

entities from artificial entities but cannot differentiate the 

variation within the former. While the classification 

process helps to extract water bodies from images by 

applying machine learning algorithms. Algorithms such 

as maximum-likelihood classifiers, decision trees, 
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artificial neural networks, support vector machines, K-

means, and iterative self-organizing data analysis 

(ISODATA) (González-González et al., 2022; Lu and 

Weng, 2007; Otukei and Blaschke, 2010) have been used 

for this method. Classification approaches may achieve 

higher accuracy than spectral band methods under some 

circumstances; however, expert experience or existing 

reference data are required to select appropriate training 

samples, which prevents these methods from being 

applied over large areas (González-González et al., 

2022). Index-based water boundary extraction uses 

various spectral bands through various algebraic 

operations to enhance the distinctions between water 

bodies and land. The most commonly used indices are 

the Normalized Difference Vegetation Index (NDVI) 

and Normalized Difference Water Index (NDWI). 

However, due to the similar spectral response trend 

between the mountain shadow area and vegetation-

covered area, as well as water bodies and artificial sites 

in these two indices, NDVI or NDWI alone cannot be 

used to eliminate the interference of the shadow of the 

mountain, and the artificial construction land, during the 

process of the water body mapping (Lu and Weng, 2007; 

F. Yang et al., 2017). These factors make it a challenging 

assignment to map water bodies in the Himalayan region 

(Acharya et al., 2018). Therefore, there is a paucity of 

studies on the inventory and mapping of water bodies 

(Acharya et al., 2018; Bhuju et al., 2010; Liu et al., 

2020). The purpose of this paper is to evaluate the 

potential of the integrated method using Sentinel -2A 

satellite imagery data to be used in delineating 

boundaries of water bodies and to find an optimal 

mapping method so that this type of data can be used for 

high temporal and spatial resolution water bodies 

monitoring in the future. 

Fig. 1: Study Area Location and Specific Field Sites (Inset: Nepal with provinces; experimental area in red box) 

Materials and Methods 

Study Area 

The Bhimdatta municipality, covering an area of 171.14 

km
2
, was selected as the research site for this study. The

study area is located in the Southwestern corner of Nepal 

in Sudurpaschim Province, sharing a border with India in 

the south and west (Figure 1). This region is 

characterized by a large river with its floodplains 

(Mahakali River), dense tropical forest, expansive 

grassland, small rivers/rivulets, and canals, making the 

area better supplied by irrigation and drainage system for 

agricultural production. The human population density is 

very high compared to the neighboring cities. Large 

parts of the forest and natural grassland have been 

converted into settlement and agricultural land. 

The study was conducted in selected locations of varying 

landforms from the Tarai and Siwalik regions of the 

Bhimdatta Municipality. Also, these sites depicted 

varying land use attributes whose details can be observed 

in Table 1. 

Data and Image Pre-Processing 

For this study, multispectral images of the Sentinel-2 

satellite were acquired from the online data portal of the 

European Space Agency (ESA). The image data 

downloaded were dated from November and December, 

the post-monsoon period in Nepal, since permanent 
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water bodies are easily distinctive in post-monsoon 

season (Huang et al., 2018) Besides, all the sub-scenes of 

the data were all free of clouds which would otherwise 

obscure the underlying ground features. Imagery from 

dry periods generates more cloud-free data and results in 

higher accuracy in the data analysis (Huang et al., 2018; 

Yan et al., 2020). Along with satellite imagery, this 

study uses digital elevation model (DEM) data obtained 

from ALOS PALSAR radiometrically terrain-corrected 

products having a resolution of 12.5m. Besides, high 

spatial resolution Google Earth images were used as 

references for the accuracy assessment. The acquisition 

dates of the Google Earth reference data and Sentinel-2 

images were matched to minimize errors in the surface 

water bodies that may happen due to temporal variations. 

Table 1: Description of Specific Study Area 

Sites Image 

A Chadani-Dodhara (Mahakali 

River: 

Snow fed Perennial River)  

B Baghphanta (Chaudhar River: 

Siwalik Originated River) 

C Gobariya (Near Suklaphanta 

National Park: 

Groundwater fed River) 

D Jhilimila Lake  

(Natural Ponds/Lake in Siwalik 

hills) 

E Ayri  

(An Artificial Pond) 

F Bangaun (Mahakali Irrigation 

Canal) 
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Data and Image Pre-Processing 

A bundle of Sentinel-2 imagery consists of 13 

multispectral bands with varying resolutions of 10 m, 20 

m, and 60 m. Images were atmospherically corrected 

using the Sen2Cor algorithm, available in the Sentinel 

Application Platform (SNAP) toolbox provided by ESA. 

Bands having a spatial resolution of 10 m, Green band 

(B3), Red band (B4), and Near-infrared band (B8) were 

considered for the calculation of indices applied in water 

body extraction. 

Table 2: Band Information of Sentinel-2 Satellite Images 

Band Resolution Central Wavelength Description 

B1 60 m 443 nm Ultra Blue (Coastal and Aerosol) 

B2 10 m 490 nm Blue 

B3 10 m 560 nm Green 

B4 10 m 665 nm Red 

B5 20 m 705 nm Visible and Near Infrared (VNIR) 

B6 20 m 740 nm Visible and Near Infrared (VNIR) 

B7 20 m 783 nm Visible and Near Infrared (VNIR) 

B8 10 m 842 nm Visible and Near Infrared (VNIR) 

B8a 20 m 865 nm Visible and Near Infrared (VNIR) 

B9 60 m 940 nm Short Wave Infrared (SWIR) 

B10 60 m 1375 nm Short Wave Infrared (SWIR) 

B11 20 m 1610 nm Short Wave Infrared (SWIR) 

B12 20 m 2190 nm Short Wave Infrared (SWIR) 

Methods 

Generation of Indices 

The first task in the extraction of water bodies was to 

determine the NDVI (vegetative index) and NDWI 

(water index) using Near-infrared (NIR), Red, and Green 

bands of Sentinel-2 data. Along with these indices, a 

slope map was also prepared. These indices permitted 

the separation of water bodies from other land use 

features (Acharya et al., 2018; F. Yang et al., 2017). 

However, NDWI was inefficient in extracting shallow 

water bodies and couldn't separate built-up structures 

from water features (F. Yang et al., 2017). Therefore, 

this research has used both NDWI and NDVI, which 

were summed to increase the detail of water features. 

The slope was used to eliminate the impacts of mountain 

shadows that were mapped as water bodies. As the 

surface of water bodies is more gentle than the shadows 

cast by mountains in steep areas (Jawak and Luis, 2015; 

F. Yang et al., 2017), false water bodies from such 

shadows can be removed by the application of slope 

threshold. 

As the water bodies in the NDVI index are generally 

negative or closer to zero, this index can be applied to 

map water bodies by thresholding (Brakenridge and 

Anderson, 2006; Zhan et al., 2002). NDWI  effectively 

reduces the effects of vegetation and highlights more 

information on water bodies (McFeeters, 1996; 

Suwarsono et al., 2021). The equations to estimate these 

indices are presented in Table 3. The reflected radiance 

of an object captured by a sensor in remote sensing 

depends upon the extent of electromagnetic radiation 

absorbed by that object; i.e., the more it absorbs, the less 

it reflects (Merry, 2001; Rabinskiy et al., 2020).. 

The water body absorbs more in the infrared region 

(Jawak and Luis, 2015), making its reflected radiance 

very low in infrared and short-wave-infrared bands, 

distinguishing water from other features like vegetation, 

buildings, bare soil, and roads that have higher 

reflectance in the same wavelength region. The 

reflectance of water in the NIR band is less than in the 

Green and Red bands. These two properties emanated by 

analyzing the pixel values are valid for water bodies but 

not for other objects like soil, sand, roads, vegetation, or 

buildings. Hence by applying these two peculiarities, 

water bodies can be easily extracted. The selection of 

these wavelengths maximizes the reflectance properties 

of water (McFeeters, 1996). Hence, the estimation of 

NDWI maximizes the typical reflectance of water 

features by using green wavelength, whereas it 

minimizes the low reflectance of NIR by water features 

(Yan et al., 2020). 

These indices generated water-covered areas but with 

some false positives in steep surfaces; however, slope, a 

DEM-derivative, was applied with a suitable threshold to 

remove water bodies of such sites with high gradients. 
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Fig. 2: Generation of NDVI and NDWI indices from Sentinel-2 image for site A 

Table 3: Summary of the Indices Used For Extraction of the Water Body 

Index Description Remarks 

Normalized Difference 

Vegetation Index (NDVI) 
𝑁𝐷𝑉𝐼 =

NIR –  Red

NIR +  Red

NIR and Red are near-infrared band and red 

band reflectance, respectively. They 

correspond to band 8 and band 4 on 

Sentinel-2 images 

Normalized Difference Water 

Index (NDWI) 
𝑁𝐷𝑉𝐼 =

Green –  NIR

Green +  NIR

Green and NIR are green band and near-

infrared band, respectively. They correspond 

to band 3 and band 8 on Sentinel-2 images. 

Thresholding 

Thresholding is an essential step in water body mapping 

that differentiates them from the background features. 

Due to the dynamic nature of image variables such as 

spectral indices and devoid of any general methodology 

for getting image segmentation, difficulties have arisen 

in obtaining optimum threshold values (Bangira, 2019; 

Bangira et al., 2019). Furthermore, threshold values can 

vary temporally and spatially among regions, depending 

on different images and characteristics of water bodies 

(F. Yang et al., 2017). Several methods are available for 

the segmentation process of image indices which can be 

broadly associated with either region-based or edge-

based segmentation methods for thresholding. Histogram 

shape-based methods (Basar et al., 2020; Pare et al., 

2020), clustering-based methods (Al-Rahlawee and 

Rahebi, 2021; Otsu, 1979; P. Yang et al., 2020), entropy-

based methods (Pandey et al., 2018; Pare et al., 2020) are 

some of the commonly used segmentation methods.  

These methods either underestimate or overestimate the 

surface water sources. Although threshold segmentation 

can differentiate water pixels, the processes have been 

known to yield inconsistent results in situations where 

the spectral characteristics between water and other dark 

objects, such as buildings and shadows, are similar 

(Sezgin and Sankur, 2004).  

As threshold values, applied to distinguish water from 

non-water, were unstable and varied with scene and 

location and miscellaneous uncertainty in available 

methods, the histogram shape-based method was used to 

select thresholds for this research. After drawing the 

spectral curves of typical features based on the imageries 

of NDVI, NDWI, and NIR bands, the data range of 

feature samples based on different indices to select the 

endpoint values (or values closing to the endpoints) or 

the logical values i.e., water > 0; third, comparing the 

result imageries of each alternative visually to find the 

better one. 

The images formed after the computation of the indices 

were converted into a binary map with respect to the 

threshold value of water bodies. This binary map 

converts an image with value one, representing a water 

body, and zero, indicating non-water features. This map 

preparation supported selecting the threshold for the 

output function. Also, this canceled the diminishing 

effect of the negative values while calculating the 

weighted sum. The thresholding is a critical factor 

affecting ground-feature extraction using the index-

based method. Previous scholars applied the default 

threshold to classify the indices image (Du et al., 2016; 

Yan et al., 2020; F. Yang et al., 2017; Zhai et al., 2015). 

However, the default threshold value can inhibit the 

index-based methods from achieving the best mapping 

result. 

Lekhak, et al., / IJEGEO 10(2): 070-081 (2023) 
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Fig. 3: Threshold Value selection for NDVI-NDWI and NIR Images for various types of Water Bodies in the study area 
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Fig. 4: Methodological approach to extract water bodies by using index-based water body mapping method based on 

Sentinel 2 imagery. A, B, and C are threshold values of the NIR band, NDVI – NDWI, and Slope, respectively. ThNIR, 

ThNDVI-NDWI, and ThSlope are thematic maps that are generated from the NIR band, NDVI–NDWI index, and Slope 

used to extract water body. 

Validation and Accuracy Assessment 

The overall performance of the index-based method to 

extract water bodies was verified by visual inspection 

and pixel-by-pixel assessment of extracted images with 

reference images. Subsequently, a detailed appraisal of 

the results was conducted by using Shape-Theme-Edge-

Position (STEP) matrices (Lizarazo, 2014) to assess the 

performance of the method in identifying the water 

body. Thus, here evaluation of extracted water bodies 

was conducted through a hybrid approach of the classical 

confusion matrix and the recent STEP matrix.  

A confusion matrix was utilized to evaluate Producer 

Accuracy (PA), User Accuracy (UA), Overall Accuracy 

(OA), and Kappa Accuracy using the following 

equations:  

PA=
TP

TP+FN

Where,  

TP = Total number of Correct Extraction  

FN = Total Number of Water Pixel not Detected 

UA=
TP

TP+FP

Where, 

FP = Total Number of Incorrect Extraction 

OA=
TP+TN

T

TN = Total Number of Non Water Bodies that are 

Correctly Rejected 

T = total number of pixel in experimental scene of 

Sentinel-2 image 

Kappa=
T ×(TP×TN)-∑

T×T∑

Where,  

∑ = (𝑇𝑃 + 𝐹𝑃) × (𝑇𝑃 + 𝐹𝑁) × (𝐹𝑁 + 𝑇𝑁) × (𝐹𝑃
+ 𝑇𝑁) 

Here TP, FN, TN, and FP are categorized pixels by 

comparing the extracted water pixel with a reference 

image. 

Green Red Near Infrared 

Sentinel – 2 Images 
DEM 

Image Pre-processing in SNAP Toolbox 

NDVI NDWI 

NDVI – NDWI 

ThNDVI-NDWI ThNIR

Slope 

ThSlope

Water Bodies

A 

B 

C 
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Extraction of the water body with its distinct boundary is 

the central part of this research which should be 

correctly done. Classic accuracy by confusion matrix 

could not reflect the accuracy of boundary conditions for 

the water bodies. Thus, the evaluation of boundary 

conditions was conducted using the area-based accuracy 

(STEP) method (Lizarazo, 2014). The final results were 

compared with reference images, and their shape 

similarity, theme similarity, edge similarity, and position 

similarity were estimated. The equations for evaluating 

these four parameters of STEP accuracy are presented in 

Table 4. 

Table 4: STEP method for accuracy assessment (Lizarazo, 2014) 

Accuracy 

Measure 
Equation Remarks 

Shape Similarity S = rnpik Where, rnpi is the ratio of the classified object’s normalized perimeter index 

(NPI) to the reference object’s NPI, and k is given the value +1 when rnpi is 

less than or equal to 1. 0, and the value -1 otherwise. S values range from 0 to 

1. 

NPI = Peac/Pobj Where, Peac perimeter of the equivalent area circles (eac), Pobj is the object’s 

perimeter. A regular shape (i.e. a circular object) will have an NPI of 1 and 

less compact regions’ values will be lesser than 1. 

Theme 

Similarity 

T = Aint/Aref Where, Aint is the area of the geometric object representing the point set 

intersection between the classified object and the reference object, and Aref is 

the area of the reference object’s geometry. T values range in the between 0 

and 1 interval. A classified object that completely covers the reference object 

and matches its thematic category has a value of 1.  

Edge Similarity E = (lint/pref)
k

Where, lint is length of the boundary of the geometric object representing the 

point set intersection between the boundary of the classified object and the 

boundary of the reference object, pref is the perimeter of the reference object, 

and k is given the value +1 when lint is less than or equal to pref, and the value 

-1 otherwise. 

Position 

Similarity 

P = 1 - dcent/dcac Where, dcent is euclidian distance between the centroid of a reference object 

and the centroid of the corresponding classified object(s), and dcac is the 

diameter of the combined area circle. P values range in the interval of 0 and 1. 

A classified object with a correctly predicted position has a value of 1. 

Results and Discussion  

Water Body Mapping Performance (Visual 

Interpretation) 

The performance of the water body extraction method 

was evaluated by observing their variation with the 

reference data. The final extracted map was overlaid 

with reference images to identify the accuracy of the 

technique implemented. In Figure 5, it can be observed 

the display of results overlaid with reference images. 

The visual interpretation indicated that the applied 

method successfully extracted most of the water bodies 

in the area. Successful extraction of water bodies was 

observed in large and open water bodies such as the 

Mahakali River, the Mahakali Irrigation Canal that goes 

to India, the Chaudhar River, and Jhilimila Lake. A little 

difference was observed between the reference images 

and the final extracted data, and the boundaries in such 

water bodies were conspicuous. In a few cases, 

underestimation and overestimation of water bodies were 

observed in the study area. This method underestimates 

the boundary delineation of the smaller streams, rivers 

with high vegetative cover, and small ponds while 

overestimating the water bodies in an urban center such 

as Mahendranagar. This justified the error associated 

with NDWI in water body extraction mapping. This 

signified NDWI only would result in inaccurate water 

body extraction in urban centers and casted mountains 

shadows (Acharya et al., 2018; F. Yang et al., 2017). 

Accuracy of Mapping 

The accuracy of water body extraction was observed for 

various types of water bodies in the study area. Table 5 

shows the extraction accuracy and Kappa statistics of the 

water bodies mapped. The accuracy was higher and 

congruent for most water body categories except for the 

groundwater-fed streams. OA ranges from 80.4% to 

97.9%, whereas the Kappa coefficient was between 0.63 

and 0.95. With a kappa value of 0.95, large water bodies 

like the snow-fed river (Mahakali River in Site A) 

yielded more accurate results than the smaller and 

shallower water bodies such as the irrigation canal (Site 

F). On the other hand, the index-based method was 

found inadequate in extracting the groundwater-

originated river of the Terai region. 
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Fig. 5: Comparison of Reference Image with Final Water Body Extraction Mapping Results for an Experimental sites 

Table 5: Water mapping accuracy assessment results for 

various experimental sites using Sentinel-2 image 
Experimental 

Site 

PA UA OA Kappa 

Site A (Snow 

fed River) 

97.1% 96.9% 97.9% 0.95 

Site B 

(Mountain fed 

River) 

95.2% 86.6% 85.3% 0.86 

Site C 

(Groundwater 

fed River) 

- - - - 

Site D 

(Natural 

Lake) 

97.8% 95.8% 96.4% 0.85 

Site E 

(Artificial 

Ponds) 

82.7% 82.7% 92.7% 0.82 

Site F 

(Irrigation 

Canal) 

81.8% 86.3% 80.4% 0.63 

This study showed that large water bodies (Snow fed 

Mahakali River, Natural Lakes) achieve higher PA of 

97.1%, OA 97.9%, and Kappa coefficient of 0.95 on the 

extracted information. The reason for this result is that 

the background of the large water bodies had been 

contrasting with its surroundings, along with its high 

resolution, the information of large water bodies can be 

extracted more accurately by the given integrated index 

method (Du et al., 2016; Kaplan and Avdan, 2017). 

Moderate-sized water bodies such as the Chaudhar (a 

mountain-fed river) depicted good extraction accuracy 

with PA of 95.2%, OA of 85.3%, and Kappa coefficient 

of 0.86; but, such water bodies failed to explain the 

thematic and positional similarity. On the other hand, 

water bodies such as groundwater-originated streams and 

irrigation canals indicated PA of 81.8%, OA of 80.4%, 

and Kappa coefficient of 0.63. The relatively narrow 

water bodies with a width of less than 10m pixels 

couldn't be enhanced by the NDVI-NDWI index; 

therefore, such water areas were not precisely delineated 

by this method (Suwarsono et al., 2021).  

Commonly used classification accuracy does not justify 

the water bodies in thematic and geometric dimensions 

(Budha and Bhardwaj, 2019). Thus, object-based 

classification accuracy (STEP method) was used to 

define the thematic and geometric accuracies. STEP 

method was used to understand the reliability of thematic 

attributes (shape, theme, edge, and positional similarity) 

carried by classified objects (Budha and Bhardwaj, 2019; 

Lizarazo, 2014). The STEP accuracy analysis presented 

that thematically larger water bodies (snow fed Mahakali 

River, natural lakes) can be extracted more accurately 

than smaller water bodies (irrigation canals, artificial 

ponds). The background of the the large water had been 

contrasting with its surroundings, along with its higher 

resolution, the information about large water bodies can 

be extracted more accurately by the given integrated 

index method (Du et al., 2016; F. Yang et al., 2017).  

Table 6 shows the accuracy measures obtained from 

STEP accuracy analysis. 

Shape similarity was observed with lower values in 

larger water bodies such as braided snow-fed rivers 

followed by artificial ponds. It was found higher in 
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compacted large natural lakes and mountain-originated 

rivers. The geometric form of spatial objects helped to 

describe the shape of the extracted region based on how 

it deviated from the specified geometry, i.e., circle (used 

in this study), square, or triangle (Cai et al., 2018; 

Lizarazo, 2014). In braided water bodies of large rivers, 

sand pixels are mixed with water pixels leading to an 

overestimation of water bodies within the flood plain. 

On the other hand, the mixed vegetation cover along 

artificial ponds obscured the water pixels leading to an 

underestimation of water bodies. Thematic properties of 

spatial objects refer to non-metric attributes such as 

natural lakes, artificial ponds, and river water categories. 

It describes how well the classified objects represent 

categories assigned to reference objects. Natural large 

water bodies (snow-fed rivers and natural lakes) had a 

high value of thematic similarity index as they 

overlapped almost entirely with the reference objects. 

The extracted information of smaller water bodies had a 

lower thematic similarity value as it did not completely 

coincide with the reference objects. The edge or 

boundary can be defined as the set of line segments that 

represent the limit of an entity (Aher et al., 2017; Kaplan 

and Avdan, 2017). The extracted information on 

mountain-originated rivers had excellently performed 

when considering the exterior and interior boundaries of 

corresponding objects despite just optimum accuracy in 

detecting boundaries of water bodies of other types. The 

direct position of an object can be described by a single 

set of coordinates (Lizarazo, 2014) within a coordinate 

reference system. A position similarity index considers 

the centroid position of classified and reference objects. 

Due to the smaller size of the irrigation canal and the 

meandering nature of the mountain-fed river, this index 

is lower. The positional accuracy for all other types of 

water bodies is excellent. 

Table 6: STEP Metrics For Classified Water Bodies 

Using Integrated Index Method. 

Experimental 

Site 

Shape 

Similar

ity 

Theme 

Similari

ty 

Edge 

Simila

rity 

Position 

Similari

ty 

Site A (Snow 

fed River) 

0.20 0.83 0.69 0.99 

Site B 

(Mountain fed 

River) 

0.71 0.52 0.99 0.20 

Site C 

(Groundwater 

fed River) 

- - - - 

Site D 

(Natural 

Lake) 

0.77 0.86 0.83 0.97 

Site E 

(Artificial 

Ponds) 

0.30 0.57 0.60 0.78 

Site F 

(Irrigation 

Canal) 

0.52 0.17 0.75 0.57 

For an appraisal of the performance of Sentinel-2 images 

using the index method presented here, the procedure 

was applied in a similar region. The test was conducted 

in locations like Chitwan Valley and Morang District, 

which have identical physiography to the study site. The 

test study showed promising results that were similar to 

the calibration sites. The accuracy of the results obtained 

from the Chitwan region was 91.39%, and that of the 

Morang region was 97.42%, respectively estimated using 

a classical confusion matrix. Positional accuracy was 

lower in Chitwan which can be attributed to the 

overestimation of water bodies that stand specifically 

near high built-up density areas. Whereas the accuracy in 

the Terai region was observed highly comparable to that 

of the experimental site. 

Conclusion 

The multispectral Sentinel-2 images have higher spatial 

as well as temporal resolution when compared to similar 

freely available satellite datasets. Such features make 

Sentinel-2 imagery highly effective in information 

extraction regarding the dimensions of water bodies and 

monitoring their changes. In this method, integrated 

index-based waterbody extraction, various thresholds 

were applied in different sites in each calibrated and test 

site. As the indices are sensitive to varying 

environmental components, thresholding should be done 

before the enactment of the method. Although the results 

were satisfactory in different experimental and test sites, 

some issues remain to be considered. There are issues 

such as shadow due to the sun’s height and mountain 

topography), atmospheric conditions, water bodies’ state 

of pollution, and eutrophication. All of these factors 

affect the reflection activity of water bodies, which 

subsequently impacts the extraction of water bodies. 

This has been observed in test Chitwan and Morang, 

which affects the overall accuracy of water body 

extraction. This study assesses the applicability of the 

semi-automated water-based index techniques in 

delineating the extent of water bodies in the various area 

of foothills of the central Himalayas using Sentinel-2 

multispectral data. The study revealed that the 

identification of the optimum threshold value should be 

used to extract water bodies efficiently from Sentinel-2 

data. 
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