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Abstract
In this paper, we discuss the concept of total graph and computed some topological indices.
If Θ is a simple graph, then the elements of Θ are the vertices ΘV and edges ΘE . For e =
uú ∈ ΘE , the vertex u and edge e, as well as ú and e, are incident. We define the general
harmonic (GH) index and general sum connectivity (GS) index for graph Θ regarding
incident vertex-edge degrees as: Hα(Θ) =

∑
eú

( 2
ℵú+ℵe

)α and χ̂α(Θ) =
∑

eú(ℵú + ℵe)α,
where α is any real number. In this article, we derive the closed formulas for a few
standard graphs for (GH) and (GS) indices and then go on to calculate the lowest and
the greatest general harmonic index, as well as the general sum-connectivity index, for
various graphs that correspond to their total graphs.

Mathematics Subject Classification (2020). 05C07,05C09,05C10.

Keywords. general harmonic index; general sum connectivity index; incident; total
graphs

1. Introduction
Chemical Graph Theory is a branch of Mathematical Chemistry that uses graph theory

tools numerically to analyze chemical phenomena [3,23]. It has a significant impact on the
realm of chemical sciences [10]. The vertices of a molecule are the atoms, and the links
between the atoms are the valency bonds. A topological descriptor is an extracted numer-
ical value from the molecular graph [24,25]. It is used to understand the physicochemical
properties of chemical compounds [11, 12]. The interesting characteristic of topological
indices is to apprehend a couple of the features of an atomic structure in a single number.
Starting with Wiener’s foundational work [29], plenty of topological descriptor have been
anticipated and investigated [28].
Let Θ = (ΘV ,ΘE) be a simple graph having l vertices and m edges, with vertex and edge
sets ΘV and ΘE , individually. And ℵu is used to symbolize the degree of vertex u [17,18].
In a simple graph Θ, uú is the symbol for the edge e that connects the vertices u and ú.
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For the edgee = uú of the graph Θ, then the vertices u and ú are associated with edge e.
The degree of an edge ℵe is calculated by the formula ℵe = ℵu + ℵú − 2, where uú = e.
The total Γ(Θ) graph is a derived graph with (Γ(Θ))V = ΘV + ΘE and uú ∈ (Γ(Θ))E ⇔
u and ú are associated or incident in Θ. For more details see [26,27].
During the past few decades, edge end-vertex degrees were employed to calculate topolog-
ical indices. Several indices have been recognized as helpful tools in theoretical-chemistry.
The most familiar of these descriptors is discussed in [22] . This molecular descriptor
(Randić sum connectivity) has been the subject of over a thousand studies and a number
of books [14,21]. Scientists have been working on improving the Randić index’s predictive
power for many years. As a result, a significant amount of additional topological indices,
analogous to the novel Randić index, are introduced. The Zagreb type indices are the
most important Randić successors [13]. The harmonic index, described in [8], is another
noteworthy topological descriptor and is defined as:

H(Θ) =
∑

uú∈ΘE

2
(ℵu + ℵú)

.

Favaron et al. in [9] explored the connection between the harmonic index and graph
eigenvalues. Zhong [31, 32] calculates the extreme values of harmonic indices for trees,
general graphs, and unicyclic graphs. The general harmonic index is introduces by Yan et
al. in [30] and is defined as:

Hα(Θ) =
∑

uú∈ΘE

( 2
ℵu + ℵú

)α
.

Getting inspiration from the Randić [1], Zagreb [12], and harmonic indices, two new
indices namely, the sum connectivity and the general sum connectivity indices were defined
by Zhou and Trinajstic in [33,34] as:

χ̂(Θ) =
∑

uú∈ΘE

1√
ℵu + ℵú

.

χ̂α(Θ) =
∑

uú∈ΘE

(
ℵu + ℵú

)α
.

Some extremal characteristics of χ̂(Θ) and χ̂α(Θ) are discussed in [5, 6, 35]. To account
for contributions from pairs of nearby vertices, the Zagreb type indices were suggested.
Following them, a slew of other indices are calculated [2, 7]. After being inspired by
Kulli’s work [15,16,19,20], we define the generalized harmonic index and generalized sum
connectivity index regarding incident vertex-edge degrees.

Definition 1.1. We establish the general harmonic (GH) index for graphs with regard
to incident vertex-edge degrees as:

Hα(Θ) =
∑
eú

( 2
ℵú + ℵe

)α
. (1.1)

Definition 1.2. We establish the general sum-connectivity (GS) index for graphs with
regard to incident vertex-edge degrees as:

χ̂α(Θ) =
∑
eú

(ℵú + ℵe)α. (1.2)

Firstly, we’ll derive the closed formulas for a few standard graphs for equation (1.1)
and equation (1.2). Secondly, we’ll calculate the lowest and the greatest general harmonic
(GH) index, as well as the general sum-connectivity (GS) index, across various graphs
that correspond to their total graphs.
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For n ≥ 4, the path graph Pn has two types of edges | ΘE12 |= 2 and | ΘE22 |= n − 3
while total graph graph of Pn has four types of edges. i-e. | ΓE23 |= 2, | ΓE24 |= 2,
| ΓE34 |= 4, and | ΓE44 |= 4n− 13, see details in Figure 1.

(a) Path Graph P6

1 12222

2 4 4 4 4 4 2

344443 E44

E24E44
E44E44E44E24

E23
E34E44

E44E44

E44
E44

E44E44
E44E34

E23

E34E44E44E34

(b) Total Graph of Path Graph P6

E12 E12
E22E22E22

Figure 1. Graphical illustration of (a)path graph P6 and (b)its total graph Γ(P6)

Theorem 1.3. For n ≥ 4, if Γ(Pn) is the total graph of Pn (path graph), then for α > −2
and α < −2, Pn has the largest and smallest GS index, respectively.

Proof. By using equation (1.2), we can see that

χ̂α(Pn) =
∑
úe

[(ℵú + ℵe)α]

=
2∑

i=1

∑
úu∈Ei(Pn)

[(ℵú + ℵe)α + (ℵu + ℵe)α]

= (2α + 3α) × 2 + 2 × 4α(−3 + n)
= 2α+1 + 2 × 3α + 22α+1(n− 3)

χ̂α(Γ(Pn)) =
∑
úe

[(ℵú + ℵe)α]

=
4∑

i=1

∑
úu∈Ei(Γ(Pn))

[(ℵú + ℵe)α + (ℵu + ℵe)α]

= 2(6α + 8α) + 2(5α + 6α) + 4(8α + 9α) + 2 × 10α(−13 + 4n)
= 2 × 10α(−13 + 4n) + 2 × (5α + 9α) + 4 × (6α + 8α)

χ̂α(Pn) − χ̂α(Γ(Pn)) = 2 × 4α(−3 + n) − 2 × 10α(−13 + 4n) + 2α+1

+ 2 × 3α − 2 × 5α − 4 × 6α − 6 × 8α − 4 × 9α (1.3)
Define h(ν) = 2 × 4α(−3 + ν) − 2 × 10α(−13 + 4ν).
For ν ≥ 4, h(ν) is strictly decreasing function when α > −2, also

h(4) = 2 × 4α − 6 × 10α + 2 × 2α + 2 × 3α − 2 × 5α − 4 × 6α − 6 × 8α − 4 × 9α

= 2 × (2α + 3α − 5α − 6α) − 2 × (3 × 8α + 2 × 9α + 3 × 10α)

< 0, for α > −2.
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Consequently, χ̂α(Pn) − χ̂α(Γ(Pn)) ≤ h(ν) ≤ h(4) < 0 for α > −2. Which implies that
χ̂α(Pn) < χ̂α(Γ(Pn)) for α > −2. By similar calculations, χ̂α(Pn) > χ̂α(Γ(Pn)) for α < −2
and hence the the proof. □

Theorem 1.4. For n ≥ 4, if Γ(Pn) is the total graph of Pn (path graph), then for (2
5)α > 1

4
and (2

5)α < 1
4 , Pn has the smallest and largest GH index, respectively.

Proof. By using equation (1.1), we can see that

Hα(Pn) =
∑
úe

( 2
ℵú + ℵe

)α

=
2∑

i=1

∑
úu∈Ei(Pn)

[
( 2
ℵú + ℵe

)
+

( 2
ℵu + ℵe

)
]

= 2 × (1 + (2
3

)α) + 2 × ( 1
2α

)(−3 + n)

Hα(Γ(Pn)) =
∑
úe

( 2
ℵú + ℵe

)α

=
4∑

i=1

∑
úu∈Ei(Γ(Pn))

[
( 2
ℵú + ℵe

)
+

( 2
ℵu + ℵe

)
]

= ( 2
5α

)(−13 + 4n) + 4 ×
[
(1
4

)α + (2
9

)α]
+ 2 ×

[
(1
3

)α + (1
4

)α]
+ 2 ×

[
(2
5

)α + (1
3

)α]

Hα(Pn) −Hα(Γ(Pn)) = 2
2α

× (−3 + n) − ( 2
5α

) × (−13 + 4n) + 2

+ 2 × (2
3

)α − 2 × (2
5

)α − ( 4
3α

) − ( 2
4α

) − ( 4
2α

) − 4 × (2
9

)α.(1.4)

Define g(µ) = 2
2α (µ− 3) − (−13 + 4µ) × ( 2

5α ).
For µ ≥ 4, g(µ) is strictly decreasing function when (2

5)α > 1
4 , also g(4) < 0 also holds for

(2
5)α > 1

4 Consequently, Hα(Pn) − Hα(Γ(Pn)) ≤ g(µ) ≤ g(4) < 0 for (2
5)α > 1

4 . Which
implies that Hα(Pn) < Hα(Γ(Pn)) for (2

5)α > 1
4 . By similar calculations, Hα(Pn) >

Hα(Γ(Pn)) for (2
5)α < 1

4 and hence the the proof. □

For n ≥ 3, the cyclic graph Cn is 2 regular graph, so there is only one type of edges
ΘE22 with frequency n. If Γ(Cn) is the total graph of cycle Cn, then it is a 4 regular graph.
There is only one type of edges ΓE44 with frequency 4n The total graph derived from the
cyclic graph Cn has 2n vertices and edges 4n, see details in Figure 2.

Theorem 1.5. For n ≥ 3, Γ(Cn) has the greatest and the smallest GS index for α < −2
and α > −2, respectively.

Proof. By using equation (1.2), we can see that

χ̂α(Cn) =
∑
úe

[(ℵú + ℵe)α]

=
∑

úu∈E(Cn)
[(ℵú + ℵe)α + (ℵu + ℵe)α]

= 2n× 4α
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(a) Cycle Graph C6 (b) Total Graph of Cycle Graph C6
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Figure 2. Graphical illustration of (a)cycle graph C6 and (b)its total graph Γ(C6)

χ̂α(Γ(Cn)) =
∑
úe

[(ℵú + ℵe)α]

=
∑

úu∈E(Γ(Cn))
[(ℵú + ℵe)α + (ℵu + ℵe)α]

= 8n× 10α

χ̂α(Cn) − χ̂α(Γ(Cn)) = 2n× 4α − 8n× 10α (1.5)

Define h(ν) = 2ν × 4α − 8ν × 10α. Also,

h(3) = 6 × 4α − 12 × 10α

= 6 × 4α(1 − 2(5
2

)α)

< 0, ⇔ (5
2

)α >
1
2
.

which holds for α > −2, so h(3) < 0 for α > −2. And h′(ν) = 2(4α − 4 × 10α) < 0 for
α > −2. Consequently, χ̂α(Cn)−χ̂α(Γ(Cn)) ≤ h(ν) ≤ h(3) < 0 for α > −2. Which implies
that χ̂α(Cn) < χ̂α(Γ(Cn)) for α > −2. By similar calculations, χ̂α(Cn) > χ̂α(Γ(Cn)) for
α < −2 and hence the the proof. □

Theorem 1.6. For n ≥ 3, Γ(Cn) has the greatest and the smallest GH index for (2
5)α < 1

4
and (2

5)α > 1
4 , respectively.

Proof. By using equation (1.1), we can see that

Hα(Cn) =
∑
úe

( 2
ℵú + ℵe

)α

=
∑

úu∈E(Cn)
[
( 2
ℵú + ℵe

)α +
( 2
ℵu + ℵe

)α]

= 2 ×
( 2
2 + 2

)α × n = 2n× (1
2

)α
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Hα(Γ(Cn)) =
∑
úe

( 2
ℵú + ℵe

)α

=
∑

úu∈E(Γ(Cn))
[
( 2
ℵú + ℵe

)α +
( 2
ℵu + ℵe

)α]

= 2 ×
( 2
4 + 6

)α × 4n = 8n× (1
5

)α

Hα(Cn) −Hα(Γ(Cn)) = 2n× (1
2

)α − 8n× (1
5

)α (1.6)

Define f(ν) = 2ν × (1
2)α − 8ν × (1

5)α. Also,

f(3) = 6
2α

− 24
5α

= 6 × ( 1
2α

− 4
5α

)

< 0, ⇔ (2
5

)α >
1
4

So f(3) < 0 for (2
5)α > 1

4 . And f ′(ν) = 2( 1
2α − 4 × 1

5α ) < 0 for (2
5)α > 1

4 . Consequently,
Hα(Cn) − Hα(Γ(Cn)) ≤ f(ν) ≤ f(3) < 0 for (2

5)α > 1
4 . Which implies that Hα(Cn) <

Hα(Γ(Cn)) for (2
5)α > 1

4 . By similar calculations, Hα(Cn) > Hα(Γ(Cn)) for (2
5)α < 1

4 and
hence the the proof. □

Lemma 1.7. Γ(Kn) is (2n − 2) regular graph and has order and size n2+n
2 and n

2 · (n −
1)(n+ 1) respectively.

Proof. Each vertex, say u′, will be connected to n − 1 vertices, see details in Figure 3.
As a result, these vertices will be connected to u′ by n− 1 edges. Therefore, the degree of
u′ in Γ(Kn) will be 2n− 2. i-e. Γ(Kn) is 2n− 2 regular. As | V (Kn) |= n and | E(Kn) |=
n
2 × (n− 1), so by using definition of Γ(Kn), | V (Γ(Kn)) |= n

2 × (n− 1) +n = n2+n
2 . Using

the regularity and order of Γ(Kn), we have
∑

u′∈V (Γ(Kn))(ℵu′) = n2+n
2 · (2n− 2). With the

help of Hand shaking lemma, | E(Γ(Kn)) |= n
2 · (n− 1)(n+ 1). □

(a) Complete Graph K3 (b) Total Graph of Complete Graph K3
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Figure 3. Graphical illustration of (a)complete graph K3 and (b) its total graph
Γ(K3)

Lemma 1.8. Let β ≥ 3, the function ϕ(β) is a strictly decreasing and increasing function
for α > −1

3 and α < −1
3 respectively, where

ϕ(β) = β(β − 1)[(3β − 5)α − (β + 1)(6β − 8)α]
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Proof.
ϕ′(β) = (3β − 5)α−1[

(2β − 1)(3β − 5) + 3αβ(β − 1)
]

− (6β − 8)α−1[
(2β − 1)(β + 1) + (β2 − β)(6β − 8) + (β2 − β)(β + 1) × 6α

]
= (3β − 5)α−1[

(6 − 3α)β2 + (−13 + 3α)β + 5
]

− (6β − 8)α−1[
6(1 + α)β3 − 12β2 + 9β − 1

]
(1.7)

The convexity of xα−1 together with the Jensen’s inequality implies that
(6β − 8)α−1 < (3β − 5)α−1 + 3(β − 1)α−1

Therefore, by using above inequality in equation (1.7), we have
ϕ′(β) < (3β − 5)α−1[

(−6 − 6α)β3 + (18 − 3α)β2 + (−22 + 3α)β + 6
]

ϕ(β) < (3β − 5)α−1g(β) < 0
for β ≥ 4 and α > −1

3 , where g(β) = a1β
3+a2β

2+a3β+6, and a1 = −6−6α, a2 = 18−3α,
a3 = −22 + 3α. Since 1 ≤ α− 1 ≤ 2 implies that 2 ≤ α ≤ 3. Consequently, ϕ(β) is strictly
decreasing for α > −1

3 . Similarly, we can show ϕ(β) strictly increasing for α < −1
3 . □

Lemma 1.9. Let ϑ ≥ 3, the function Ω(ϑ) is a strictly decreasing and increasing function
for α < −1

2 and α > −1
2 respectively, where

Ω(ϑ) = 2αϑ(ϑ− 1)
[ 1
(3ϑ− 5)α

− (ϑ+ 1)
(6ϑ− 8)α

]
Proof.

Ω′(ϑ) = 2α(2ϑ− 1)
[ 1
(3ϑ− 5)α

− ϑ+ 1
(6ϑ− 8)α

]
+ 2α(ϑ2 − ϑ)

[ 3α
(3ϑ− 5)α

− 1
(6ϑ− 8)α

+ 6α(ϑ+ 1)
(6ϑ− 8)2

]
= 1

(3ϑ− 5)alpha

[
2ϑ− 1 + 3α(ϑ2 − ϑ)

3ϑ− 5
]

− 1
(6ϑ− 8)α

[
(2ϑ− 1)(ϑ+ 1) − (ϑ2 − ϑ)

]
+ 6(ϑ+ 1)ϑ(ϑ− 1)

(6ϑ− 8)2 × α

= 1
(3ϑ− 5)α

[
(6 + 3α)ϑ2 + (−13 − 3α)ϑ− 5

]
+ 6α(ϑ+ 1)ϑ(ϑ− 1)

(6ϑ− 8)2

− 1
(6ϑ− 8)α

[ϑ2 + 2ϑ− 1]

≤ 1
(3ϑ− 5)α

[
(6 + 3α)ϑ2 + (−13 − 3α)ϑ− 5

]
+ 6α(ϑ+ 1)ϑ(ϑ− 1)

(6ϑ− 8)2

= f(ϑ) + g(ϑ) (1.8)

where f(ϑ) = 1
(3ϑ−5)α

[
(6 + 3α)ϑ2 + (−13 − 3α)ϑ − 5

]
and g(ϑ) = 6α(ϑ+1)ϑ(ϑ−1)

(6ϑ−8)2 both are
strictly decreasing for α < −1

2 and are strictly increasing for α > −1
2 . Consequently,

inequality 1.8 implies that Ω(ϑ) is strictly decreasing for α < −1
2 . Similarly, we can show

Ω(ϑ) is strictly increasing for α > −1
2 □

Theorem 1.10. If Γ(Kn) is the total graph of complete graph where n ≥ 3, then Kn give
the largest and the smallest GS index for α < −1

3 and α > −1
3 respectively. Furthermore,

for α = 1
3 and β = 3

χ̂α(Kn) = χ̂α(Γ(Kn))
.
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Proof.

χ̂α(Kn) =
∑
úe

[(ℵú + ℵe)α]

=
∑

úu∈E(Kn)
[(ℵú + ℵe)α + (ℵu + ℵe)α]

= n(n− 1)
2

× 2 × (3n− 5)α

= n(n− 1)(3n− 5)α

χ̂α(Γ(Kn)) =
∑
úe

[(ℵú + ℵe)α]

=
∑

úu∈E(Γ(Kn))
[(ℵú + ℵe)α + (ℵu + ℵe)α]

= n(n− 1)(n+ 1)(6n− 8)α

χ̂α(Kn) − χ̂α(Γ(Kn)) = n(n− 1)[(3n− 5)α − (n+ 1)(6n− 8)α].
By using Lemma 1.8, the function ψ(n) = n(n−1)[(3n−5)α −(n+1)(6n−8)α is increasing
and decreasing for α < −1

3 and α > −1
3 respectively. Also ψ(3) = 6(4α − 4 · 10α) < 0 if and

only if
(2

5
)α
< 4 which holds for α > −1

3 . Therefore χ̂α(Kn) < χ̂α(Γ(Kn)). By the similar
argument for α < −1

3 , we have the result χ̂α(Kn) > χ̂α(Γ(Kn)). Finally, for α = −1
3 and

n = 3, we have χ̂α(Kn) = χ̂α(Γ(Kn)). □
Theorem 1.11. If Γ(Kn) is the total graph of complete graph where n ≥ 3, then Kn give
the largest and the smallest GH index for α > −1

2 and α < −1
2 respectively.

Proof.

Hα(Kn) =
∑
úe

[
( 2
ℵú + ℵe

)α]

=
∑

úu∈E(Kn)
[
( 2
ℵú + ℵe

)α +
( 2
ℵu + ℵe

)α]

= 2 ×
( 2
3n− 5

)α × n

2
· (n− 1)

= n2α

(3n− 5)α
× (n− 1)

Hα(Γ(Kn)) =
∑
úe

[
( 2
ℵú + ℵe

)α]

=
∑

úu∈E(Γ(Kn))
[
( 2
ℵú + ℵe

)α +
( 2
ℵu + ℵe

)α]

= 2 ×
( 2
2n− 2 + 4n− 6

)α × n(n− 1)(n+ 1)
2

= 2α

(6n− 8)α
× n(n− 1)(n+ 1)

Hα(Kn) −Hα(Γ(Kn)) = 2αn(n− 1)
[ 1
(3n− 5)α

− (n+ 1)
(6n− 8)α

]
.

By using Lemma 1.9, the function Ω(ϑ) = 2αϑ(ϑ− 1)
[ 1

(3ϑ−5)α − (ϑ+1)
(6ϑ−8)α

]
is increasing and

decreasing for α > −1
2 and α < −1

2 respectively. Also Ω(3) = 6 · 2α
[ 1

4α − 4
10α

]
< 0 if

and only if
(2

5
)α
< 1

4 which holds for α < −1
2 . Therefore Hα(Kn) < Hα(Γ(Kn)). By the

similar argument for α > −1
2 , we have the result Hα(Kn) > Hα(Γ(Kn)). □



On some bounds of degree based topological indices for total graphs 9

Lemma 1.12. For β ≥ 2, the function defined by τ(β) = 2β
[
β × (−2 + 3β)α − β × (2 +

β)(−2 + 6β)α
]

is strictly increasing and decreasing for α < −3 and α > −3 respectively.

Proof.

τ ′(x) = 2β(1 + β ln 2)
[
(−2 + 3β)α − (β + 2)(−2 + 6β)α]

+ 2β × β
[
3α(−2 + 3β)α− 1 − (−2 + 6β)α − (2 + β) × 6α(−2 + 6β)α−1]

= 2α(−2 + 3β)α−1[
(−2 + 3β)(1 + x ln 2) + 3αβ

]
− 2α(−2 + 2β)α−1[

(−2 + 6β)(ln 2(β)2 + 2(1 + ln 2)β + 2) + 6αβ(β + 2)
]
(1.9)

The convexity of uα−1 together with the Jensens inequality implies that

(3β)α−1 > (−2 + 6β)α−1 − (−2 + 3β)α−1

Using above inequality in equation (1.9), we have

τ ′(β) < 2β(−2 + 3β)α−1[
3β − 2 + 3 ln 2β2 − 2 ln 2β + 3βα− (12β2 + 8x− 4

+ 6β3 ln 2 − 2β2 ln 2 + 12β2 ln 2 − 4β ln 2 + 6β2α+ 12βα)
]

= 2β(3β − 2)α−1[
(−6 × ln 2)β3 + (ln 8 − 10 × ln 2 − 12 − 6α)β2

+ (−5 − ln 4 + 4 ln 2 − 9α)β + 2
]

τ ′(β) < 2β(−2 + 3β)α−1 × g(β) (1.10)

where g(β) =
[
(−6× ln 2)β3 +(ln 8−10× ln 2−12−6α)β2 +(−5− ln 4+4 ln 2−9α)β+2

]
g′(β) < 0 for α > −3 and g′(β) > 0 for α < −3, where β ≥ 2. Consequently, τ(β) in
increasing for α < −3 and τ(β) is decreasing for α > −3; β ≥ 2. □

Lemma 1.13. For w ≥ 3, the function defined by ϕ(w) = w × 2w+α
[ 1

(3w−2)α − (w+2)
(6w−2)α

]
is strictly increasing and decreasing for ( 7

16)α < 1
5 and ( 7

16)α > 1
5 respectively.

Lemma 1.13 can be proved analogously. The hypercube Qn is n regular graph with
order and size as 2n and n × 2n−1 respectively , see details in Figure 4. By definition
of total graph, Γ(Qn) has order and size as n · 2n−1 + 2 · 2n−1+ = (n + 2) · 2n−1 and
2n−1 · n(2n+ n2), respectively. Now for the hypercube Qn, we calculate the smallest and

(a) Hyper Cube Graph Q2 (b) Total Graph of Hyper Cube Graph Q2
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2
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4
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E44E44

E44

E44

E44

E44
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Figure 4. Graphical illustration of (a )hypercube Q2 and (b) its total graph
Γ(Q2)

the largest GS index.

Theorem 1.14. Let Γ(Qn) be the total graph of Qn, then for n ≥ 2, Qn has the smallest
and and the greatest GS index for α < −3 and α > −3 respectively.
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Proof.

χ̂α(Qn) =
∑
úe

[(ℵú + ℵe)α]

=
∑

úu∈E(Qn)
[(ℵú + ℵe)α + (ℵu + ℵe)α]

= [(n+ 2(−1 + n)α + (n+ 2(−1 + n)α] · 2n−1 · n
= 2n × n(3n− 2)α

χ̂α(Γ(Qn)) =
∑
úe

[(ℵú + ℵe)α]

=
∑

úu∈E(Γ(Qn))
[(ℵú + ℵe)α + (ℵu + ℵe)α]

= [(2n+ 2(−1 + 2n))α + (2n+ 2(−1 + 2n))α] · 2n−1 · (2 + n) · n
= 2n × (6n− 2)α(2 + n)n

χ̂α(Qn) − χ̂α(Γ(Qn)) = n× 2n[
(3n− 2)α − (n+ 2)(6n− 2)α]

(1.11)
Let τ(u) = x × 2u

[
(3u − 2)α − (u + 2)(6u − 2)α

]
, then by using Lemma 1.12, τ(u) is

strictly increasing and decreasing for α < −3 and α > −3 respectively. Also τ(3) =
24(7α − 5 × (16)α) < 0 for ( 7

16)α < 5, which also satisfied byα > −3. Consequently,
χ̂α(Qn) − χ̂α(Γ(Qn)) ≤ τ(u) ≤ τ(3) < o for α > −3, which implies that χ̂α(Qn) <
χ̂α(Γ(Qn)) for α > −3. By similar calculations, we can show that χ̂α(Qn) > χ̂α(Γ(Qn))
for α < −3. □

Theorem 1.15. Let Γ(Qn) be the total graph of Qn, then for n ≥ 3, Qn has the smallest
and and the greatest GH index for (16

7 )α > 1
5 and (16

7 )α > 1
5 respectively.

Proof.

Hα(Qn) =
∑
úe

[
( 2
ℵú + ℵe

)α]

=
∑

úu∈E(Qn)
[
( 2
ℵú + ℵe

)α +
( 2
ℵu + ℵe

)α]

= n× [
( 2
n+ 2(−1 + n)

)α +
( 2
n+ 2(−1 + n)

)α] × 2n−1

= n× 2n+α

(3n− 2)α

Hα(Γ(Qn)) =
∑
úe

[
( 2
ℵú + ℵe

)α]

=
∑

úu∈E(Γ(Qn))
[
( 2
ℵú + ℵe

)α +
( 2
ℵu + ℵe

)α]

= [
( 2
2(n− 1 + 2n)

)α +
( 2
2(n− 1 + 2n)

)α] · (2n+ n2) · 2n−1

= (2n+ n2) × 2n+α

(6n− 2)α

Hα(Qn) −Hα(Γ(Qn)) = n× 2n+α[ 1
(3n− 2)α

− (n+ 2)
(6n− 2)α

]
. (1.12)
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Let ϕ(u) = u × 2u+α
[ 1

(3u−2)α − (u+2)
(6u−2)α

]
, then by using Lemma 1.13, ϕ(u) is strictly

increasing and decreasing for ( 7
16)α < 1

5 and ( 7
16)α > 1

5 respectively. Also ϕ(3) = 16( 1
7α −

5
(16)α ) < 0 for ( 7

16)α > 1
5 . Consequently, Hα(Qn) − Hα(Γ(Qn)) ≤ ϕ(u) ≤ ϕ(3) < 0,

for ( 7
16)α > 1

5 , which implies that Hα(Qn) < Hα(Γ(Qn)) for ( 7
16)α > 1

5 . By similar
calculations, we can show that Hα(Qn) > Hα(Γ(Qn)) for ( 7

16)α < 1
5 . □

2. Conclusion
The study of structural Graphs Theory is a large and growing field of study. First

strategy for analysing structural qualities is to obtain quantitative measurements that
scramble structural data of the entire system by a real number. The entire structure of
networks has been examined using a vast compendium of quantitative descriptors and re-
lated graphs. The importance of degree-related topological indices in theoretical chemistry
and nanotechnology is highlighted in these studies. As a result, one of the most successful
study areas is the computation of degree-related indices.
This study deals with the derivation of closed expression of (GH) and (GS) indices in
terms of incident vertex-edge degrees for the path graph Pn, cyclic graph Cn, complete
graph Kn, and the hypercube graph Qn for a definite pendent vertex for various esti-
mations of α. Computing favourable results for the extremal (GS) and (GH) indices of
various graphs with fixed parameters would be the most appealing.
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