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Abstract 

Ecological risk in the mouth of Kepez Stream has recently increased notably due to waste from the Kepez settlement, agricultural 

activity in the Kepez delta, maritime traffic in the Çanakkale Strait, and summer houses in the coastal area. This study analyzed the 

ecological risk of 10 sediment samples along the bed in the mouth of Kepez Stream to shed light on anthropogenically induced 

pollution. The pollution proxies such as chlorophyll degradation products, heavy metal concentrations and organic carbon of the 

sediment samples were determined. Enrichment Factor (EF), Contamination Factor (CF), Geoaccumulation Index (Igeo) and 

Potential Ecological Risk Index (PER) were calculated from the results obtained. Spearman's correlation analysis and factor analysis 

were also performed. The obtained data show that there is moderate enrichment of Zn, As and Co, a significant level of Pb, and very 

high level of Cr in the sediments of Kepez Stream. Ni enrichment was determined to be excessive and poses a high potential 

ecological risk. Cleaning and rehabilitation need to be carried out urgently in the mouth of Kepez Stream. It should be determined 

whether metals are being transmitted to aquatic organisms, and measures should be taken to reduce the sources of pollution. 
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Introduction 

Estuaries and coastal ecosystems are productive, rich and 

hydrologically variable areas that support 75% of the 

world's population (; Gönenç and Wolflin 2004; Paerl 

2006; Rodrigues-Filho et al., 2023). The chemical, 

physical and biological interactions between seawater 

and freshwater are very important in terms of the 

properties of the suspended particles in the water column 

carrying the elements (Zhai et al., 2021). 

Metal accumulations caused by the rapid social 

development associated with human activity have 

become a topic of worldwide interest in the last decade 

(Yang et al., 2021).While one source of metals deposited 

in soil, sediment, and water is the weathering of rocks 

and natural processes, such as volcanic eruptions, 

another source is anthropogenic activities. After the 

Industrial Revolution, human intervention caused 

significant degradation by disrupting the water and 

sediment quality of rivers, which are fragile living 

spaces. Today, common sources of pollution are 

industrial wastes (Yuan et al., 2019; Khan et al., 2019), 

excessive use of fertilizers in agriculture, and pesticides 

used for pest control (Tepe and Aydın, 2017), domestic 

and/or urban wastes, and fossil fuels in thermal power 

plants. The metals released from the consumption of 

these metals reach the coasts via rivers and accumulate 

in shallow waters, especially in the sediments of gulfs 

and harbors (Palas, 2020; Özkan et al., 2022) or coastal 

lakes and lagoons (Kükrer et al., 2020; Öztura, 2023; 

Kumaş and Akyüz, 2023). 

The sediments, which are enriched with metals but 

provide a source of nutrients for benthic organisms due 

to the micronutrient trace elements they contain, also 

form a natural reservoir for many fish species living and 

feeding in the bottom waters (Ustaoğlu et al., 2017). 

Metals are major pollutants of sediment and are 

characterized by their long residence time, toxicity, 

resistance to microbial degradation, and insidiousness 

(Wang et al., 2021). Metals enriched in sediments 

accumulate especially in surface sediments, and when 

they reach high concentrations, they exhibit toxic effects 

because they do not dissolve in water (Engin et al., 2020; 

Fural et al., 2021). Thus, since metals cannot be 

metabolized easily in living organisms, they accumulate 

in soft tissues over time and can cause serious health 

problems by being carried into the food chain (Saha et 

al., 2017). Therefore, the concentrations of elements 

such as Cd, Pb, Zn are frequently studied and monitored 

to avoid their adverse effects on ecosystem and public 

health (Shahabi-Ghahfarokhi et al., 2021) 

As all over the world, there are ecological risks arising 

from the accumulation of heavy metals due to human 

influence in the rivers and ports that are exposed to the 

sediment load of the rivers in Türkiye (Aksu, 1998; 

Bakan and Özkoç, 2007; Karadede-Akın and Ünlü, 

2007; Doğan-Sağlamtimur et al., Subaşı, 2018; Varol, 

2011; Ustaoğlu and Tepe, 2018, 2019; Eker, 2020; 

Ustaoğlu et al., 2020a, 2020b; Akarsu et al., 2022; 

Kükrer et al., 2022; Ustaoğlu and Islam, 2020; Ustaoğlu, 

2021). These ecological risks form part of a wide variety 
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Fig. 1. Location of study area (a) and sampling sites on Google Earth Images (b-c). SÇ: Strait of Çanakkale. Last access 

to Google Earth Images. 

of anthropogenic processes throughout the country 

during the Anthropocene (Cürebal et al., 2015). As is 

well-known, the Marmara Region is one of the most 

polluted regions in Türkiye due to agricultural, industrial 

and urban wastes. 

In this study, the potential caused by urban and industrial 

wastes, secondary residences, pollutants from 

agricultural activities (chemical fertilizers, pesticides, 

etc.) and ensuing toxic elements was investigated. 

According to the results of the geochemical analysis, we 

assessed the pollution and ecological risk for the amount 

of heavy metals determined at the sampling stations. 

Study Area 

Kepez Stream is located in the South Marmara section of 

the Marmara Region in Türkiye and flows into the 

Çanakkale Strait (Fig. 1a-b). It has a much smaller 

drainage area (95.56 km²) compared to the basins of 

River Sarıçay to the north and Karamenderes Stream to 

the south (Erginal et al., 2002). The stream, which forms 

an alluvial filled plain that is followed up to 11 km 

inland from the shoreline, ends in a delta intruding 1.5 

km into the Çanakkale Strait. According to the 92-year 

data of Çanakkale Meteorology Station covering the 

years 1929-2021 (URL1), the annual average 

temperature is 15.2°C. The average highest temperatures 

are experienced in July and August (30.7°C), and the 

lowest temperatures are experienced in January (3.2°C). 

The annual average rainfall is 625.5 mm. December has 

the highest precipitation average (105.6 mm), while 

August has the lowest (9.2 mm) average. 

Materials and Methods 

For the ecological risk analysis, bottom sediment 

samples were collected using a Van Veen grab from 10 

stations in the source direction, starting from the mouth 

of Kepez Stream where it empties into the Çanakkale 

Strait (Fig. 1c). Chlorophyll degradation products (CDP) 

were measured from wet samples of all the sediment 

samples collected, on average 200 grams. Organic 

carbon was measured from powder samples that were 

dried in an oven at 85°C and pounded in a porcelain 

mortar using the Walkley-Black titration method 

(Gaudette et al. 1974). Metal measurements were 

performed with Inductive Conjugated Plasma Optical 

Emission Specrometry (ICP-OES) at the laboratories of 

Bureau Veritas in Ankara. 

 

Ecological Risk Indexes 

The enrichment factor (EF), contamination factor (CF) 

modified contamination factor (mCd), potential 

ecological risk index (PER) and geo-accumulation 

index (Igeo) were calculated from the obtained ICP-

OES data. Detailed information about these analyses is 

presented below. 

Enrichment Factor (EF) 

In the EF calculation, Fe, Ti or Al, which are the main 

components of the earth's crust, are used as 

conservative elements in order to minimize the error 

due to grain size  

in the sediment (Zhang et al., 2007). EF is calculated 

by the formula: 

EF= (C1 / Cref) sample / (B1 / Bref) background    (Eq. 1) 

Here, Ci is the element concentration, Cref is the 

concentration of the reference element used for 

normalization, Bi is the regional background value of 

the element, and Bref is the background value of the 

reference element selected for normalization. EF 

findings were evaluated considering the following 

ranges (Sutherland, 2000); 

EF < 2 deficiency to minimal enrichment, EF = 2 – 5 

moderate enrichment, EF = 5 – 20 significant 
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enrichment, EF = 20 – 40 very high enrichment, EF ≥ 

40 extremely high enrichment. 

Contamination Factor (CF) and Modified 

Contamination Degree (mCd) 

CF is another method used to determine the possible 

human effect on the environment and to classify 

environmental pollution (Hakanson, 1980). It is 

obtained by dividing the current metal concentration by 

the background metal concentration. According to 

Hakanson (1980), CF; low contamination (CF<1), 

moderate contamination (1≤CF<3), high contamination 

(3≤CF<6) and very high contamination (CF>6). CF is 

calculated as: 

CF = Cİ / Cni    (Eq. 2) 

In the formula, Ci is the element concentration, and Cni 

is the background value of the element. Geochemical 

normalization is not performed in the CF calculation. 

For this reason, CF has some disadvantages in 

eliminating the errors from the grain size. mCd has 

been developed to eliminate this disadvantage 

(Abrahim and Parker, 2008). mCd is calculated as: 

mCd = (Σ i=1
i=n)CF / n   (Eq. 3) 

In the formula, CF is the contamination factor; and n is 

the number of elements used in the analysis. mCd 

findings are evaluated as follows; mCd<1.5 very low, 

1.5 <mCd<2 low, 2 <mCd<4 medium, 4 <mCd<8 high, 

8 <mCd<16 very high, 16 <mCd<32 extremely high, 

and mCd> 32 ultra-high (Abrahim and Parker, 2008). 

Potential Ecological Risk Index (PER) 

The potential ecological risk index (PER) developed by 

Hakanson (1980) was used to make predictions about 

the potential toxic effects of metals accumulated in the 

sediment to the ecosystem. The modified risk factor 

(Eri) calculated separately for each metal and the 

potential ecological risk factor (PER), which expresses 

the integrated risk of all metals, are evaluated as 

follows (Hakanson, 1980): 

mEri = E x T    (Eq. 4) 

The 'mEri' used in the formula is the risk factor 

calculated for each metal, 'E' is the enrichment factor, 

and "T is the toxicity coefficient for each metal 

separately. According to Hakanson (1980); low 

potential ecological risk (mEri < 40), medium potential 

ecological risk (40 mEri < 80), significant potential 

ecological risk (80 mEri < 160), high potential 

ecological risk (160 ≤ mEri < 320), and very high 

potential ecological risk (mEri 320) are interpreted as: 

PER = ΣE           (Eq. 5) 

Potential ecological risk (PER) values according to 

Hakanson (1980) are interpreted as low ecological risk 

(PER <150), moderate ecological risk (PER 150 <300), 

significant ecological risk (PER 300 <600), and very 

high ecological risk (PER 2600). 

Toxic Risk Index (TRI) 

To determine the toxicity risk caused by each metal, 

the toxic risk index (TRIi) was used. It is formulated as 

follows (Zhang et al., 2016): 

TRIi
√{(Ci / TEL)

2
+ (Ci / PEL)

2
}

2
     (Eq. 6) 

where Ci is the metal concentration; TEL is the 

threshold effect level; and PEL is the probable effect 

level i  (Macdonald et al., 1997). The total of the 

individual TRIi values for the metals gives the 

integrated TRI thus: 

TRI= ∑ TRIi
n
i=1      (Eq. 7) 

The TRI values are interpreted based on following 

scales: TRI ≤ 5: no toxic risk; 5 < TRI ≤ 10: a low 

toxic risk; 10 < TRI ≤ 15: a moderate toxic risk; 15 < 

TRI ≤ 20: a considerable toxic risk; and TRI > 20: a 

very high toxic risk. 

Geoaccumulation Index (Igeo) 

The geoaccumulation index (Igeo) is another method 

used to determine the anthropogenic effect on the metal 

concentration in the sediment. Igeo provides 

advantages in detecting, identifying and classifying the 

contamination present in samples. The Igeo value is 

calculated as (Muller, 1969): 

Igeo = log2 {(Cm / (Bm × 1.5)}   (Eq. 8) 

C used in the formula represents the metal 

concentration, and B denotes the background metal 

concentration. The 'C' used in the formula represents 

the metal concentration, and 'B' the background metal 

concentration. Igeo values are according to Muller 

(1969); Igeo ≤ 0) unpolluted, (0 < Igeo < 1) unpolluted 

to moderately polluted, (1 < Igeo < 2) moderately 

polluted, (2 < Igeo < 3) moderately to strongly polluted, 

(3 < Igeo < 4) strongly polluted, (4 < Igeo < 5) strongly 

to very strongly polluted, and (5 ≤ Igeo) very strongly 

polluted. 

Results and Discussion 

Chlorophyll Degradation Products (CDP) and 

Organic Carbon (OC) 

As is known, CDP values represent the primary 

production of water masses and give an idea about the 

role of plant biomass in transporting metals from water 

to sediment (Fig. 2). CDP concentration in Kepez 

Stream sediments varies between 25.50 µg/g and 86.70 

µg/g. The average of all samples is 52,779 µg/g. 

Considering the basin size of the Kepez Stream, it can 

be stated that the CDP level is very high. The value 

range of OC, which plays an important role in the 

transport of metals, was measured between 0.918 and 

1.89 µg/g. The presence of OC in the sediment content 

positively affects the metal transport to the 

environment. Its coexistence and the strong correlation 
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with CDP is suggestive of the contribution of 

phytoplankton (Kükrer et al., 2020). 

Fig. 2. CDP and OC distribution. 

Enrichment Factor (EF) 

EF data evaluated to determine whether the metal 

content comes from natural or anthropogenic sources 

indicate a deficiency to minimal enrichment in Cu, Fe 

and Mn metals according to the Sutherland (2000) 

classification. Transported from natural sources, the 

average values of these metals are 0.61, 1.2 and 1.69, 

respectively (Table 1). Zn, As and Co, which have EF 

averages of 4.07, 2.41 and 3.16, respectively, showed 

moderate enrichment. Pb, which shows an average EF 

value of 5.92, has values between 3.78 and 9.46 in the 

studied samples. This is indicative of a significant 

enrichment of Pb in the sediments. The metals that 

indicate an advanced stage of enrichment are Cr and 

Ni. Cr values vary between 18.48 and 59.02 and the EF 

value is 38.67. This is a sign of very high enrichment in 

terms of Cr. In the metal Ni, enrichment varying 

between 29.59 and 102.86 was determined, and the 

average EF value was found to be as 64.42. This 

explains the extremely high enrichment for Ni. These 

findings support the current data on metal enrichment 

in streams flowing into the Çanakkale Strait. Akarsu et 

al. (2022) determined a very high enrichment in terms 

of Cd, significant enrichment in terms of Cr, Ni, and 

Pb, and a moderate enrichment in terms of As and Mn 

in the sediments of Sarıçay Stream, 5 m north of Kepez 

Stream. This shows that metal enrichment in the 

sediment of these rivers, which are very close to each 

other, has reached a significant level. 

Considering the possible sources of the enriched 

metals, Pb is commonly transported into the 

environment by precipitation from the atmosphere 

(Dang et al., 2021), associated with fossil fuels from 

vehicular traffic and used for heating purposes 

(Dousova et al., 2020). Similar studies reveal that Pb is 

an important source of pollution in port areas (Chen et 

al., 2020; Jeong et al., 2020). Comparable to Pb, the As 

moderately enriched in Kepez Port sediments may also 

be involved in the ecosystem through common sources 

such as traffic, as elsewhere (Bai et al., 2011; Dousova 

et al., 2020). Zn, another moderately enriched metal, 

could be related to domestic wastes and/or port 

activities (Di Beneditto et al., 2019; Merhaby et al., 

2018). 

Showing very high and extremely high enrichment, Ni 

and Cr are also of anthropogenic origin. Ni 

accumulation is referred to the use of coal, diesel, fuel 

oil and the burning of wastes (Cempel and Nikel, 

2006). The source of Cr, on the other hand, is 

wastewater, atmospheric deposition and agricultural 

fertilizers (Quinton and Catt, 2007). The fact that the 

mouth of Kepez Stream is surrounded by agricultural 

lands, along with wastes from the densely populated 

Kepez settlement to the north, sewage from summer 

houses to the south, maritime traffic in the Çanakkale 

Strait and wastes possibly dumped into the waters from 

ships arriving at the port are likely to be among the 

common sources of the metals that we identified. 

      Table 1. Enrichment Factor values. 

Sampling site Cu Pb Zn Ni Fe As Co Cr Mn 

K1 0.75 5.68 5.45 58.79 0.00011 2.12 2.71 40.86 1.49 

K2 0.72 5.99 5.40 60.60 0.00011 2.63 2.98 38.63 1.78 

K3 0.71 5.96 5.18 56.53 0.00011 1.84 2.89 34.43 1.43 

K4 0.59 5.83 4.26 52.65 0.00010 2.24 2.71 32.28 1.48 

K5 0.44 4.12 2.48 102.86 0.00011 1.90 3.73 55.25 1.44 

K6 0.69 5.65 3.94 48.69 0.00010 1.51 2.46 30.41 1.28 

K7 0.28 3.78 1.77 29.59 0.00009 2.56 1.91 18.48 1.65 

K8 0.49 4.95 3.19 42.04 0.00010 2.08 2.35 26.23 1.38 

K9 0.66 7.77 3.70 91.49 0.00015 3.31 4.69 51.15 2.29 

K10 0.77 9.46 5.30 100.90 0.00 3.84 5.18 59.02 2.63 

Average 0.61 5.92 4.07 64.42 0.00012 2.41 3.16 38.67 1.69 

Geoaccumulation Index (Igeo) 

Geoaccumulation averages of the studied samples 

based on Muller’s (1969) classification are in good 

agreement with the EF results (Table 2; Fig. 3). Kepez 

Stream sediments are unpolluted in terms of Cu, Al and 

Mn, since the values are below 0. The average Igeo 

values of As (0.34) and Co (0.72) point to unpolluted 

to moderate pollution for these metals. On the other 

hand, the Pb and Zn values are 1.64 and 1.07, 

respectively, indicating that the sediments are 

moderately polluted. The highest values determined in 

metals were in Ni (5.03) and Cr (4.32). This means that 

the sediments are strongly to very strongly polluted in 

terms of these metals. These data are similar to the 

Sarıçay sediments which have high values for Pb and 
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Ni (Akarsu et al., 2022). Possible sources of enriched 

elements are as given in section 3.2. 

Fig. 3. Geoaccumulation index box whisker diagram. 

Modified Contamination Degree (mCd) 

The modified contamination degree (mCd) is an 

integrated version of the separately calculated CF 

values for each element and allows for a contamination 

assessment by looking at a single value for a region. 

The mCd values in the studied samples were calculated 

in the range of 8.09-24.44 (Table 3). The average mCd 

value is 12.27. The mCd value (24.44) representing an 

extremely high range was determined in only one of 

the sampling stations. In all of the other samples, the 

values ranged between 8 and 12.29, representing a very 

high mCd. 

Among the stations, the highest mCd value was 

determined at K5, indicating a high contamination 

class. Values at all other stations are in the very high 

contamination class. According to these results, the 

port is under intense anthropogenic pressure and K5 is 

the point where pollutants accumulate most heavily. 

The largest contribution to the mCd values comes from 

Ni and Cr, respectively. With these two elements under 

control, normalization of values can be expected. 

Modified risk (RI) and Potential Ecological Risk 

(PER) Indexes 

The individual risk levels for each metal were 

calculated using the RI. The metal with the highest 

mean RI is Ni, which has a high level of risk (Table 4). 

This is followed by Cr, with moderate risk. The risk 

levels of other elements are low. The point 

distributions of Ni are in the high-very high range, and 

of Cr in the medium-important range. Among the 

elements with a low level of risk, Pb reached the 

intermediate level pointwise at sampling point 10. This 

indicates that this element has the potential to reach 

dangerous levels in the future. Cr is an element with 

mutagenic and carcinogenic effects. The high level of 

ecological risk in the study area is a situation that 

should be taken into account (Bazrafshan et al., 2016). 

The important health effects of Ni with high risk levels 
can be listed as follows: cardiovascular and kidney 

system poisoning, lung fibrosis, and skin allergies 

(Denkhaus and Salnikow, 2002). 

According to the integrated potential ecological risk 

(PER) values of the elements, the average risk level in 

the port is significant. The point distribution of risks is 

between medium and very high. The section with the 

highest risk is K10 and K9, respectively. 

Toxic Risk Index (TRI) 

The determined TRI values range from 8.34 to 23.49 

and vary from low to very high (Table 5). The mean 

value indicates a moderate toxic risk. The station with 

the highest toxic risk is station 5, and stations 9 and 10 

are the stations with the least toxic risk. The 

contributions of the elements to TRI are listed as 

follows: Ni (53%), Cr (17%), As (13%), Cu (7%), Zn 

(6%) and Pb (4%). 

Factor Analysis 

According to the factor analysis performed to 

determine possible sources of metal concentrations 

obtained from surface sediment samples, the studied 

metals as well as CDP and OC are grouped under three 

factors (Table 6). Accordingly, TOC, Mn, Fe, As and 

Al constitute Factor 1. These components must have 

common lithogenic sources and the metals were 

attached to the organic carbon and precipitated in the 
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sediment. Thus, the plant biome is efficient in 

transport. In the second factor, there are CDP, TOC, 

Cu, Pb and Zn. The algal community makes an 

important contribution to the transport of these metals. 

In other words, they must have been taken into the cell 

and carried by the algae that settled on the bottom after 

they died. On the other hand, plant biomass has an 

effect on the transport of these metals. Ni, Co and Cr 

make up the third factor load. 

Table 2. Geoaccumulation index values. 

Sampling 

site 
Cu Pb Zn Ni Fe As Co Cr Al Mn 

K1 -1.3507 1.5654 1.5075 4.9378 -14.0791 0.1472 0.4972 4.4129 -0.9398 -0.3613 

K2 -1.3507 1.7097 1.5619 5.0492 -14.0020 0.5257 0.7037 4.3995 -0.8721 -0.0382 

K3 -1.2206 1.8410 1.6399 5.0877 -13.8865 0.1472 0.7968 4.3723 -0.7334 -0.2132 

K4 -1.4062 1.9024 1.4509 5.0781 -13.8658 0.5257 0.7968 4.3723 -0.6402 -0.0789 

K5 -1.5867 1.6394 0.9086 6.2827 -13.5316 0.5257 1.4972 5.3859 -0.4018 0.1257 

K6 -1.1244 1.9024 1.3819 5.0097 -13.8455 -0.0048 0.7037 4.3304 -0.5959 -0.2385 

K7 -1.9911 1.7769 0.6815 4.7466 -13.6154 1.2176 0.7968 4.0674 -0.1404 0.5819 

K8 -1.5550 1.7769 1.1409 4.8621 -13.7925 0.5257 0.7037 4.1816 -0.5317 -0.0697 

K9 -2.3237 1.2243 0.1528 4.7822 -14.4270 -0.0048 0.4972 3.9434 -1.7334 -0.5389 

K10 -2.4936 1.1248 0.2881 4.5402 -14.6096 -0.1747 0.2562 3.7665 -2.1167 -0.7199 

Average -1.6403 1.6463 1.0714 5.0376 -13.9655 0.3431 0.7249 4.3232 -0.8705 -0.1551 

Table 3. Modified contamination degree values. 

Sampling site Cu Pb Zn Ni As Co Cr Mn mCd 

K1 0.5882 4.4393 4.2646 45.9732 1.661 2.117 31.9527 1.1677 11.52 

K2 0.5882 4.9065 4.4286 49.6644 2.159 2.443 31.6568 1.4608 12.16 

K3 0.6437 5.3738 4.6747 51.0067 1.661 2.606 31.0651 1.2940 12.29 

K4 0.5660 5.6075 4.1006 50.6711 2.159 2.606 31.0651 1.4202 12.27 

K5 0.4994 4.6729 2.8157 116.7785 2.159 4.235 62.7219 1.6366 24.44 

K6 0.6881 5.6075 3.9092 48.3221 1.495 2.443 30.1775 1.2714 11.74 

K7 0.3774 5.1402 2.4057 40.2685 3.488 2.606 25.1479 2.2453 10.21 

K8 0.5105 5.1402 3.3078 43.6242 2.159 2.443 27.2189 1.4292 10.73 

K9 0.2997 3.5047 1.6676 41.2752 1.495 2.117 23.0769 1.0325 9.309 

K10 0.2664 3.2710 1.8316 34.8993 1.329 1.792 20.4142 0.9107 8.089 

Average 0.5028 4.7664 3.3406 52.2483 1.977 2.541 31.4497 1.3868 12.28 

Table 4. Modified risk (RI) and potential ecological risk (PER) values. 

Sampling 

site 
Cu Pb Zn Ni Fe As Co Cr Mn PER 

K1 3.67 27.74 5.33 287.33 - 10.83 10.38 5.29 39.94 390.53 

K2 3.50 29.25 5.28 296.16 - 10.90 12.87 5.82 37.75 401.57 

K3 3.48 29.10 5.06 276.28 - 10.73 8.99 5.64 33.65 372.97 

K4 2.87 28.47 4.16 257.31 - 10.20 10.96 5.29 31.55 350.84 

K5 2.14 20.11 2.42 502.68 - 10.90 9.29 7.29 53.99 608.86 

K6 3.38 27.61 3.85 237.95 - 10.03 7.36 4.81 29.72 324.73 

K7 1.35 18.45 1.72 144.61 - 8.58 12.52 3.74 18.06 209.06 

K8 2.40 24.21 3.11 205.47 - 9.95 10.17 4.60 25.64 285.58 

K9 3.24 37.96 3.61 447.14 - 14.75 16.19 9.17 50 582.09 

K10 3.76 46.22 5.17 493.14 - 16.95 18.77 10.12 57.69 651.85 

Average 2.98 28.91 3.97 314.81 - 11.38 11.75 6.18 37.80 417.81 

Table 5. Toxic risk index values. 

Sampling site Cu Pb Zn Ni As Cd Cr Hg TRI 

K1 1.06 0.41 0.96 6.01 1.45 - 2.21 - 12.12 

K2 1.06 0.45 0.99 6.50 1.88 - 2.19 - 13.10 

K3 1.16 0.49 1.05 6.67 1.45 - 2.15 - 13.00 

K4 1.02 0.51 0.92 6.63 1.88 - 2.15 - 13.14 

K5 0.90 0.43 0.63 15.28 1.88 - 4.35 - 23.49 

K6 1.24 0.51 0.88 6.32 1.30 - 2.09 - 12.37 

K7 0.68 0.47 0.54 5.27 3.04 - 1.74 - 11.76 

K8 0.92 0.47 0.74 5.70 1.88 - 1.88 - 11.63 

K9 0.54 0.32 0.37 5.40 1.30 - 1.60 - 9.55 

K10 0.48 0.30 0.41 4.56 1.16 - 1.41 - 8.34 

Average 0.91 0.44 0.75 6.83 7.72 - 2.18 - 12.85 
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Table 6. Factor analysis results. 

Factor 1 Factor 2 Factor 3 

CDP -0.146829 0.893923 0.03541 

TOC 0.583621 0.659154 0.187034 

Cu 0.07143 0.965299 0.171342 

Pb 0.578028 0.749992 0.0727766 

Zn 0.0561943 0.96454 0.00341234 

Ni 0.0829342 0.0235862 0.995051 

Co 0.354501 0.0568508 0.926417 

Mn 0.970089 -0.0328343 0.166793 

Fe 0.774666 0.287769 0.536747 

As 0.965888 -0.140882 0.00696358 

Cr 0.109027 0.145941 0.976479 

Al 0.884022 0.303019 0.300662 

Conclusion 

The antropogenically induced pollution in the mouth of 

Kepez Stream has reached a significant level where 

urban waste, agricultural activities, maritime traffic and 

vacation homes put great pressure on the stream 

ecosystem. The data obtained reveal an ecological risk 

that has reached an alarming level in the mouth of 

Kepez Stream, which flows from the edge of Kepez 

Port. Therefore, it is not in doubt that there is an 

ecological risk in the sediment, especially in terms of 

Pb, Cr and Ni. Therefore, monitoring anthropogenic 

activities around the river and disconnecting it from the 

river can have a significant impact on preventing metal 

accumulations. This study lis the base for future 

studies. This study can be carried forward with the 

determination of metal fractions and more information 

about the bioavailability of metals can be obtained. 
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