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Abstract: In this study, an approach for artificial neural network (ANN) was presented to 

predict and control arithmetical mean surface roughness value (Ra), machining properties of 

wood materials densified by compressing in a computer numerical control (CNC) machine. 

Black poplar (Populus nigra L.) tree species were used as the experimental material. After 

specimens were densified by Thermo-Mechanical (TM) method at 0%, 20%, and 40% ratios, 

machining process of specimens were performed at 1000, 1500, and 2000 mm/min feed 

speeds and in 12000, 15000, 18000 rpm rotation speed on a CNC vertical wood machining 

center by using two different cutters. Data used for the training and testing of an ANN. Cutter 

type, compression ratio, feed rate, and spindle speed were selected as Four parameters. While 
hidden layer of the Ra model has ten neurons, one hidden layer was used, Compression ratio 

is the most significant parameter, followed by feed speed for Ra values. surface roughness 

increases with increased feed rate. Ra values in training, validation, and testing the data set 

for Ra were 0.97122, 0.8538, and 0.76685, respectively. The Mean Square Error (MSE) value 

was determined as 0.0019914 test of the network. The proposed ANN model came to 

agreement with the measured values in predicting surface roughness Ra values of MAPE. 

The MAPE value was calculated as 6.61, which can be considered a very good prediction 

(MAPE< 10 % = very good prediction). The study showed that obtained ANN prediction 

model is a practical and efficient tool to model the Ra of wood. For reducing energy, time 

and cost in the wood industry (densification and CNC wood machining), current research 

results can be implemented. 
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1. INTRODUCTION 

 

From the past to the present, development of different 

"Wood Modification Methods" have been performed 

because of all scientific studies carried out to rule out 

some of the unfavourableness of wood material. Wood 

modification applications were carried out to change or 

improve wood material properties (Şenol and Budakci, 

2016; Senol, 2018). 
 

The solid wood is mainly considered too soft or too 

weak for use in construction, which requires high 

strength, hardness, and durability. However, using wood 

material by increasing density can be an option in 

comparison to other materials (Blomberg and Persson, 

2004; Pelit et al., 2014). The density of solid wood is 

mechanical (Rautkari, 2012) and machining (Lin et al., 

2006; Malkocoglu and Ozdemir, 2006; Malkocoglu, 

2007; Zhong et al., 2013; Pinkowski et al., 2018; 
Sofuoglu et al., 2022) significantly affect its properties. 

There is a relation between the surface quality of 
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machined solid wood and its density, denser wood 

presents the best quality of the machined surface (Lopes 

et al., 2014; Sofuoglu et al., 2022). When examined in 

general, hardness, mechanical and physical properties 

increase, surface roughness and wettability decrease, 

and occurrence of spring back as a negative situation 

may be seen, contingent on the increase in density in 

compressed densified wood species. 

 

Before the compressed wood materials are converted 

into the final product, they must be machined with the 
machines used in the machining of classical solid wood, 

as well as with modern computer-aided machining 

centers. The results obtained in this study will determine 

the parameters to obtain the highest surface quality. 

Efficiency will increase, and the next step, such as 

sanding, will need to be omitted or minimally applied. 

 

For this purpose, in this study, the poplar tree species 

that is frequently produced and used worldwide were 

machined by using Computer Numerical Control with 

today's technology, after intensification. Wood 

machining parameters with different values affecting the 
surface quality were used; determination of 

densification effect for the processing properties and 

determination of optimum parameters for obtaining the 

smoothest surface were aimed. 

 

Neural networks are frequently applied in many 

industrial applications. They are suitable for modeling 

various manufacturing functions due to their ability to 

learn complex non-linear and multivariable 

relationships between process parameters (Karayel, 

2009). Using artificial neural networks (ANNs) have 
been applied in wood and wood-based materials science 

and the wood machining industry, such as in recognition 

of wood species (Esteban et al., 2009), the drying of 

solid wood  (Wu and Avramidis, 2007) the mechanical 

properties (Fernández et al., 2012; Tiryaki and Aydin, 

2014), machining parameters optimization (Sofuoglu, 

2015; Gurgen et al., 2021), wood surface roughness 

(Ayanleye et al., 2021; Gurgen et al., 2021) the 

classification of wood and wood-based materials defects 

(Avramidis and Iliadis, 2005; Pan et al., 2021), the 

analysis of moisture (Zhang et al., 2016), noise emission 

in the machining of wood (Ozşahin and Singer, 2022) 
and fracture toughness of wood (Samarasinghe and 

Jamieson, 2007). 

 

Investigation and evaluation of Ra CNC machining 

experiments for black poplar wood species were carried 

out in this study. Modeling the effects of some 

machining parameters on the Ra in CNC machining 

densified by compressing is the main objective of the 

present study.  

 

2. MATERIAL AND METHOD 

 

Sample preparation  

 

Black poplar (Populus nigra L.) with low density and 

widely grown was selected for the experimental material 

in the study. Specimens were all randomly chosen from 

Afyonkarahisar, Turkey. Conditioning of samples were 

carried out at 20 ± 2 °C and 65 ± 5 °C, with relative 

humidity to moisture content (MC) of about 12%. The 

density of poplar solid wood material at 12% humidity 

was specified as 0.85 g / cm3 (ISO 13061 2014; ISO 

13061-2 2014). Figure 1 shows the experimental process 
of the study. 

 
 

Figure 1. Schematic representation for experimental design
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The densification process by compressing with the 

thermo-mechanical method (Total time = Heating time 

+ 15 min, 0%, 20 %, and 40% ratios) for samples in the 

dimensions given in Table 1 were performed by a 

designed hydraulic press (Gazi University, Ankara / 

Turkey). 

 

Table 1. Pre-compression dimensions of test samples 

(Tosun, 2021) 

 

Compression 

ratio 

Length 

(mm) 

Width 

(mm) 

Thickness 

(mm) 

Control  430 85 20 

20% 430 85 25 

40% 430 85 33.3 

 
After the densification process, a Reksis Rekspeed 2137 

3-axis CNC milling machine (Çözüm Ahsap¸ 

Afyonkarahisar, Turkey) was used to carry out 

experiments. Experiments were carried out with 

different two router cutters (Figure 2). Using new cutters 

for each machining test was provided. Four machining 

parameters were used in the experiment (Table 2) 

 

a 

 
b 

Figure 2. High-speed stell end mills (mm) a) Two-flutes 

straight end mill (Netmak), b) Two-flutes helisel end 

mill (Knob) 

 

Table 2. Assignment of levels to factors (parameters 

used in the face milling of black poplar) (Tosun, 2021) 

 

Machining parameter 

Coded levels 

Level  
1 

Level 
2 

Level 3 

Cutter type 1 2  

Compression ratio (%) 0 20 40 

Feed (mm/min) 1000 1500 2000 

Spindle speed (rpm) 12000 15000 18000 

Cutter 1: Two-flutes straight end mill, Cutter 2: Two-flutes helisel end 

mill 

 

A total of 54 pieces with dimensions of 55x55 mm2 were 

grooved on wood materials by a CNC router (Figure 3).  

 

 
 

Figure 3. CNC process parameters 
 

The optimal network structure for surface roughness 

CNC machining experiments is in Figure 4. 

 

 
 

Figure 4. Optimal network structure for surface 

roughness CNC machining experiments. 

 
Mean absolute percentage error (MAPE), root mean 

square error (RMSE), and correlation coefficient (R2) 

was used to measure performance of the network. 

 

3. RESULTS AND DISCUSSION 

 

Comparison of the measured values and predicted 

values by the neural network model of the Ra is 

presented in Figure 5. Measured and predicted values of 

surface roughness (Ra) and their errors are given in 

Table 3. 
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Figure 5. Comparison of measured and predicted results of Ra 

 

Table 3. Measured and predicted values of Ra and their errors 

Process 

No 

 

Cutter 

type 

Compression 

ratio (%) 

Feed 

(mm/min)  

Spindle 

speed (rpm) 

Measured  

Ra (µm)  

Predicted 

Ra (µm)  

 

 

Error 

% 

1 1  0 1000 12000 4.61 4.48 2,82 

2 1 0 1000 15000 4.41 3.63 17,69 

3 1 0 1000 18000 3.94 3.94 0,00 

4 1 0 1500 12000 4.26 4.67 -9,62 

5 1 0 1500 15000 4.61 4.27 7,38 

6 1 0 1500 18000 4.91 4.83 1,63 

7 1 0 2000 12000 4.93 5.10 -3,45 

8 1 0 2000 15000 4.74 4.96 -4,64 

9 1 0 2000 18000 5.25 5.23 0,38 

10 1 20 1000 12000 4.05 4.53 -11,85 

11 1 20 1000 15000 3.94 3.88 1,52 

12 1 20 1000 18000 3.35 3.43 -2,39 

13 1 20 1500 12000 5.33 4.95 7,13 

14 1 20 1500 15000 3.91 4.74 -21,23 

15 1 20 1500 18000 3.80 3.94 -3,68 

16 1 20 2000 12000 5.45 5.47 -0,37 

17 1 20 2000 15000 5.20 4.87 6,35 

18 1 20 2000 18000 5.03 4.07 19,09 

19 1 40 1000 12000 2.72 2.94 -8,09 

20 1 40 1000 15000 2.60 2.81 -8,08 

21 1 40 1000 18000 2.32 2.58 -11,21 

22 1 40 1500 12000 2.86 3.21 -12,24 

23 1 40 1500 15000 3.50 3.49 0,29 

24 1 40 1500 18000 3.04 3.11 -2,30 

25 1 40 2000 12000 3.59 4.27 -18,94 

26 1 40 2000 15000 3.92 4.21 -7,40 

27 1 40 2000 18000 3.31 3.34 -0,91 

28 2 0 1000 12000 4.57 4.80 -5,03 

29 2 0 1000 15000 4.75 4.92 -3,58 

30 2 0 1000 18000 5.29 5.33 -0,76 

31 2 0 1500 12000 5.10 4.73 7,25 

32 2 0 1500 15000 5.42 4.92 9,23 

33 2 0 1500 18000 5.27 5.39 -2,28 

34 2 0 2000 12000 4.64 4.71 -1,51 

35 2 0 2000 15000 5.21 5.07 2,69 
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36 2 0 2000 18000 6.02 5.76 4,32 

37 2 20 1000 12000 3.45 4.45 -28,99 

38 2 20 1000 15000 4.36 4.33 0,69 

39 2 20 1000 18000 4.22 4.26 -0,95 

40 2 20 1500 12000 4.80 4.73 1,46 

41 2 20 1500 15000 3.68 4.34 -17,93 

42 2 20 1500 18000 4.41 4.15 5,90 

43 2 20 2000 12000 4.43 4.80 -8,35 

44 2 20 2000 15000 4.14 4.23 -2,17 

45 2 20 2000 18000 3.68 3.90 -5,98 

46 2 40 1000 12000 3.44 3.02 12,21 

47 2 40 1000 15000 3.30 2.97 10,00 

48 2 40 1000 18000 2.50 2.75 -10,00 

49 2 40 1500 12000 2.87 3.03 -5,57 

50 2 40 1500 15000 3.16 2.95 6,65 

51 2 40 1500 18000 2.76 2.71 1,81 

52 2 40 2000 12000 2.88 3.06 -6,25 

53 2 40 2000 15000 2.86 2.96 -3,50 

54 2 40 2000 18000 2.78 2.75 1,08 

   

 
 

Figure 6. Performance of ANN model 

 

In the literature, The MSE values were calculated as 

1.05 and 3.70 surface roughness for solid wooden edge-

glued panels (Sofuoglu, 2015) and the MAPE, RMSE, 

and R2 values of the testing period of the ANN model 

were found as 8.556, 1.245, and 0.9814%, respectively 

(Ozsahin and Singer, 2021). In this study, The Mean 

Square Error value was determined as 0.0019914 test of 

the network. MSE value is satisfactory for the accuracy 

of models. The performance of the ANN model for black 

poplar was shown in Figure 6. 

  
One of the values to measure network ability to predict 

correctly is mean absolute percentage error (MAPE). 

MAPE values of artificial networks estimating the 

surface roughness of different materials under different 

machining conditions were reported as 3,866 for solid 

wood material (Pinus sylvestris) Gurgen et al. (2022) 

and 20,18 for massive wooden edge-glued panels 

(Sofuoglu, 2015). If the (MAPE) values are less than 

10%, it is considered acceptable for a prediction with 

high accuracy (Nazerian et al., 2020).  In this study, 

MAPE value was calculated as 6.61, which can be 
considered a good prediction. Figure 7 presents the 

relationship between the experimental results and 

theANN-predicted results. The measured Ra values of 

the samples show similarity with the values predicted by 

the ANN model. While the R-value is high in training 

(R=0.97122), it is lower in validation (R=0.8538) and 

Test (R=0.76685). Wood material has a heterogeneous 

structure. The roughness data obtained from a 

heterogeneous structure may cause this. 

  



60 

Figure 7. Relationship between experimental results and ANN-predicted results 

 

4. CONCLUSIONS 

 

In this study, the effects of cutter type, compression 
ratio, feed, and spindle speed on the Ra of wood were 

investigated and modeled using the ANN. The predicted 

Ra from the model is close to the values measured 

experimentally. The conclusions were summarized as 

follows: 

 

1. Compression ratio is the most significant 

parameter, followed by feed speed for Ra values.  

2. Feed rate is an important parameter, and surface 

roughness increases with increased feed rate. 

3. The ANN modeling approach can be applied in 

predicting the Ra of wood samples under given 
conditions when the training of the model is 

properly completed. 

4. R2 values in training, validation, and testing the data 

set for Ra are 0.97122, 0.8538, and 0.76685, 

respectively. 

5. The Mean Square Error (MSE) value was 

determined as 0.0019914 test of the network. MSE 

value is satisfactory for the accuracy of models.  

6. The proposed ANN model came agreement with the 

measured values in predicting surface roughness 

Ra values of MAPE. The MAPE value was 
calculated as 6.61, which can be considered a very 

good prediction (MAPE < 10% = very good 

prediction). 

7. In further research, the ANN approach can be used 
to predict the surface roughness of different 

wooden materials.  
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