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Introduction 

Graphs are very powerful modelling tools and widely used 

to represent data and systems in a connected world, yet 

representing systems with pairwise interactions via graphs 

is a challenge where describing group interactions 

explicitly is not possible [1]. However, real-world systems, 

such as collaboration networks, gene interaction networks, 

computer networks, social networks involve the interaction 

of more than two units, dependencies between more than 

two variables, or properties of collections of more than two 

objects [2]. For example, co-authorship publication data, 

collaboration datasets, chemical processes, neural systems 

seem to display group interactions. For such representative 

structures, hypergraphs and simplicial complexes  are 

suitable for modeling, analyzing, and expression of 

complex systems [3]. Hypergraph theory was introduced 

by Berge [8]. It has a strong theory for solving real world 

problems. It can be used to model complex, group 

structured relational data. We can say that hypergraphs 

offer better solutions for modeling group interactions. 

Unlike a graph, the idea of a hypergraph is to widen the 

edges to connect more than two nodes as seen in Figure 1 

[4]. Hypergraphs have identities related to a number of 

other mathematical structures important in data science, 

including finite topologies, simple complexes, and Sperner 

systems. A suitable structure enables the use of a wider 

range of mathematical methods. Some interactions, when 

simplified into pairwise relations and modeled using a 

graph, can exhibit a very different nature than when their 

actual complexity is modeled using a hypergraph [5].  

We need to learn more information about the structure of 

systems. The similarity of system elements provides 

information about the structure. In this study, similarity of 

nodes or hyperedges was measured by using intersection 

and union which is set operations. Jaccard similarities of 

nodes and hyperedges were obtained. For centrality, these 

values were used for entropy calculations. 

The entropy of node explains which nodes play an 

important role [6]. Entropy, which measures variation, 

amount of information, uncertainty, offers a convenient 

way of centrality. The entropy value of each node or 

hyperedge also provides a value for centrality. Parameters 

determine whether centrality is a local or global [7]. We 

know that the degree is a local measure. We will see 
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ABSTRACT 

 
 

Hypergraphs and simplicial complexes can be used to model higher-order interactions. Graphs are limited 

to model and describe pairwise interactions. In this study, the issue of centrality in hypergraphs was 
studied. We introduce centrality measures based on the entropy of nodes and hyperedges in the 

hypergraphs. Until now, a lot of measures from various perspectives have been proposed to identify 

influential nodes, yet non provides a complete solution to the centrality problem. Because there are 
different perspectives on centrality. It is important to try different models to reach a solution in centrality 

problems. Entropy, which is a measure of uncertainty, is a guide in centrality measurements. It can produce 

ideal solutions for centrality. In complex systems, the entropy can be measured by different methods. In 
this study, the entropy calculation was made according to the union, intersection, and jaccard similarity 

values for nodes. The way that similarity is measured indicates the type of centrality. Local centralities 

were detected more precisely when the degree and union similarity values were used. The intersection and 
jaccard similarities showed us the global centralities. Traditional methods of centrality were also compared 

with the results of the proposed method. The accuracy of the method was tested with different hypergraph 

datasets. It has been shown that we can produce efficient results with different similarity parameters 

according to our wishes in hypergraphs. 
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whether the centrality measures with union, intersection 

and jaccard values will give local or global results. 

 

Figure 1. Representation of graph and hypergraph. 

In this study, a method was proposed to identify influential 

nodes or hyperedges within the hypergraphs. The 

importance of the subject studied has been tried to be 

emphasized with the questions given below. What 

advantages do hypergraphs offer us? When should it be 

preferred to use hypergraphs instead of graphs? How to 

solve centrality problems with hypergraphs? The role of 

hypergraph models in solving various problems in higher-

order systems was investigated. 

The contribution of this study to the literature can be listed 

as follows: 

1. A new method is proposed for the identification of 

central nodes and hyperedges in hypergraphs. 

2. It has been shown that entropy is an efficient method for 

centrality calculations in hypergraphs. 

3. It has been shown that node and hyperedge entropies can 

be measured using similarity values over neighborhood. 

4. A method has emerged where hypergraph structures can 

be solved with same role for nodes and hyperedges. 

5. Local and global centrality measures can be made by our 

method. 

This paper is structured as follows: In section 2, the 

literature was reviewed. Section 3 describes the basic 

concepts that used in the proposed method. In Section 4, 

the method is explained with an example application. 

Section 5 presents experimental results and analyzes with 

3 datasets, and Section 6 provides concluding remarks. 

Preliminaries 

In the study, Feng et al. found that hypergraph betweenness 

centrality is a superior method for identifying important 

genes. Hypergraph models were used to identify critical 

genes of biological networks. A comparison was made 

between the graphs and hypergraphs centrality measures. 

It was aimed to find critical genes effective in viral 

infection from genomic expression data sets. Networks 

extracted from correlation or mutual information  [8]. 

Zhou et al. generalized the powerful spectral clustering 

methodology working on undirected graphs to 

hypergraphs. They developed algorithms for transductive 

classification and hypergraph embedding based on the 

spectral hypergraph clustering approach. The advantages 

of hypergraphs over graphs were demonstrated with 

applications [9]. 

In Ref. [10], it shows how the concept of network centrality 

can be adapted to supra-binary networks. The use of the 

technique was demonstrated by data on the attacks of 

inhabitants of the Caribbean islands on Spanish settlements 

in the period 1509-1700. 

Hypergraph convolution and hypergraph attention which 

are two end-to-end trainable operators were introduced to 

the family of graph neural networks to efficiently learn 

deep embeddings on higher order graph-structured data. 

With two operators, a graph neural network is extended to 

a more flexible model and applied to various applications 

where non-binary relationships are observed. Extensive 

experimental results with semi-supervised node 

classification demonstrated the effectiveness of 

hypergraph convolution and hypergraph attention [11]. 

Ramadan et al used hypergraphs to model the yeast 

proteome, where proteins are nodes and complexes are 

hyperedges. To define the core proteome, they applied an 

algorithm that finds tightly connected nodes [12]. 

Zhou and Nakhleh examined the claim that metabolic 

networks are hierarchical and small-world networks. The 

reason for this claim was the graph model, Zhou and 

Nakleh modeled the metabolic networks of E. coli as 

hypergraphs rather than graphs, showing that the claimed 

hierarchy and scaling properties were not supported. This 

means: When biological interactions are simplified into 

binary relationships and modeled using a graph, they can 

exhibit a very different structure than when their actual 

state is modeled using a hypergraph [5].  

Multi-morbidity refers to a health condition of having two 

or more concurrent chronic conditions. In the study [13], 

the centrality of the diseases according to the multiple 

status was measured using the hypergraph structure. 

Compared with the graph structure. It has been shown that 

hypergraphs can be used as a valuable tool for analyzing 

poorly understood relationships.  

In the study [14], eigenvector centrality was applied to 

uniform hypergraphs. When the obtained results were 

examined, it was shown that hypergraphs could be 
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analyzed, and different information could be revealed 

about real-world data. 

In the study[15], the authors argue that existing methods, 

which rely on the pairwise correlations between stocks, are 

not sufficient. They propose a new method that uses 

hypergraphs to model the relationships between stocks. 

The authors propose a new model called the hypergraph tri-

attention network (HGTAN). HGTAN is a hierarchical 

attention model that can learn the importance of nodes, 

hyperedges, and hypergraphs during the information 

propagation among stocks. This allows HGTAN to fully 

exploit the potential synergies between stock movements. 

The study [16] proposes a new method for learning brain 

functional connectome (FC) features using a dynamic 

weighted hypergraph convolutional network (dwHGCN). 

The dwHGCN is able to learn the importance of 

hyperedges and assign larger weights to hyperedges with 

higher discriminative power. This weighting strategy also 

improves the interpretability of the model by identifying 

the highly active interactions among ROIs shared by a 

common hyperedge. 

Compared to the previous studies, here, we proposed new, 

effective, and accurate ways to measure centrality in 

hypergraphs. The similarities of the nodes and hyperedges 

were measured in the hypergraphs. Their entropies were 

found with these values and their centrality was shown. 

Methodology 

This section provides the necessary technical background, 

definitions and information for this work. The definitions of 

these methods and metrics are as follows. 

Hypergraphs 

A hypergraph is a generalization of a graph in which an 

edge can contain any number of nodes. Formally, a 

hypergraph 𝐻 can be defined as 𝐻 = (𝑉, 𝐸), where 𝑉 is the 

set of nodes and 𝐸 is the set of non-empty subsets of 𝑉 

called hyperedges or edges. Therefore, 𝐸 is a subset of 

𝑃(𝑉), where 𝑃(𝑉) is the power set of 𝑉. In graphs, edges 

connect pair of nodes, while hyperedges are sets of nodes 

and thus can contain many nodes depending on the 

situation. 

An 𝐻 = (𝑉, 𝐸) undirected hypergraph has the sets 𝑉 =

{𝑣1, 𝑣2, … , 𝑣𝑛} and 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑚}. The union of the 𝑒𝑖 

elements give the set 𝑉. Then 𝐻 has an incidence matrix 

with 𝑛 × 𝑚 dimension. The incidence matrix (𝐼(𝐻)) is a 

matrix that shows the relationship between two object 

classes. If the first class is 𝑉 and the second is 𝐸, the matrix 

has one row for each element of 𝑉 and one column for each 

element of 𝐸. For any value of 𝑖 and 𝑗 in the 𝐼𝑖𝑗  incidence 

matrix, if 𝐼𝑖𝑗 = 1 then 𝑣𝑖 ∈  𝑒𝑗, otherwise  𝐼𝑖𝑗 = 0. These 

values can be taken as weighted values. 

𝐼𝑖𝑗 = {
1    𝑖𝑓 𝑣𝑖 ∈  𝑒𝑗

0    𝑖𝑓 𝑣𝑖 ∉  𝑒𝑗
 (1) 

                                                                                                                   

Some data structures can be given as an example to 

understand the hypergraphs. For example, a hypergraph 

can be created where each node represents an author and 

each hyperedge represents an article written by several co-

authors. An article with 𝑘 authors has a hyperedge 

containing 𝑘 nodes. This way, authors with closer 

collaboration are connected by more hyperedges. 

Considering a human brain network, if brain regions are 

defined as nodes, the neurological interaction of these brain 

regions can be expressed as a hyperedge. If proteins are 

defined as nodes and protein complexes can be thought of 

as hyperedges. 

The hypergraphs provide a rich modeling framework, 

algorithms will necessarily be problem-specific and differ 

in complexity from algorithms used for graphs [17]. 

Similarity 

The similarity rates of the nodes give us various 

information about the network. Similarity metrics are 

important for recommendation systems, link prediction etc. 

Similarity values used in this study were measured over 

neighborhoods. Two nodes are neighbors if there is an edge 

connecting them. If they have large overlap between their 

neighboring set of nodes, nodes are considered similar 

[18]. The common neighbor adopts the idea that two 

strangers with mutual friends are more likely to meet than 

those without mutual friends. Nodes with many common 

neighbors have high similarity. Most similarity-based 

algorithms use common neighbor information. It is widely 

used in the predictions of whom nodes can connect with in 

the future [19][20]. 

Let 𝑥 and 𝑦 be nodes. Let 𝛤(𝑥) be the set of nodes 

connected to 𝑥. Let 𝛤(𝑦) be the set of nodes connected by 

𝑦. Accordingly, the common neighbor value is the 

intersection of the two sets as, 

𝐶𝑁𝑥𝑦 = 𝑆𝑥𝑦 = |𝛤(𝑥) ∩ 𝛤(𝑦)| (2) 

 

The sum of neighbors is the union of the sets of neighbors 

of x and y as, 

𝑆𝑁𝑥𝑦 = 𝑆𝑥𝑦 = |𝛤(𝑥) ∪ 𝛤(𝑦)| (3) 

 

Jaccard similarity is the number of common neighbors of 

two nodes divided by the number of union sets of 

neighbors. If two nodes have the same neighbors, the 



DUJE (Dicle University Journal of Engineering) 14:3 (2023) Page 407-419 

 

410 
 

jaccard similarity value is 1. Conversely, if they have no 

common neighbors, their similarity is 0. 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝑥𝑦 = 𝑆𝑥𝑦 =
|𝛤(𝑥) ∩ 𝛤(𝑦)|

|𝛤(𝑥) ∪ 𝛤(𝑦)|
 (4) 

 

Entropy 

The traditional measure of uncertainty is entropy, 

commonly referred to as the measure of Shannon 

information [21]. The entropy value tells the uncertainty of 

a system or, conversely, the amount of information it 

contains. It is possible to measure and interpret the network 

complexity in this way. It is a probabilistic calculation 

method [22]–[24]. If there is a probability of 𝑛 states 

occurring in a system, and the probability of each state 

occurring is represented by 𝑝, the entropy of the system is 

calculated as  

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝑝𝑖𝑙𝑜𝑔2𝑝𝑖

𝑛

𝑖=1

 (5) 

 

When one of the probabilities is 1 and the others are 0, its 

value is zero and the entropy is minimal. If all probability 

values are the same and 𝑝1 = 𝑝2 = ⋯ = 𝑝𝑛 = 1/𝑛,  then 

entropy is also maximum. 

While calculating entropy, node or hyperedge degrees in 

the incidence matrix (𝐼𝑖𝑗) is used in the equations below. 

The link weight of 𝑛𝑜𝑑𝑒 𝑖 and ℎ𝑦𝑝𝑒𝑟𝑒𝑑𝑔𝑒 𝑗 is represented 

by the value 𝑤𝑖𝑗 .  It must be noted that the node and the 

hyperedge can switch roles. 

 

𝑑(𝑣𝑖) = ∑ 𝑤𝑖𝑗
𝑚
𝑗=1 ,  𝑑(𝑒𝑖) = ∑ 𝑤𝑖𝑗

𝑛
𝑗=1    

(6) 

              

𝑝(𝑣𝑖𝑗) =
𝑤𝑖𝑗

∑ 𝑤𝑖𝑗
𝑚
𝑗=1

 ,  𝑝(𝑒𝑖𝑗) =
𝑤𝑖𝑗

∑ 𝑤𝑖𝑗
𝑛
𝑗=1

                                                                                              (7) 

  

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝒗𝒊) = − ∑ 𝑝(𝑣𝑖𝑗)𝑙𝑜𝑔2𝑝(𝑣𝑖𝑗)𝑚
𝑗=1 , 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝒆𝒊) = − ∑ 𝑝(𝑒𝑖𝑗)𝑙𝑜𝑔2𝑝(𝑒𝑖𝑗)𝑛
𝑗=1  

(8) 

 

How to measure the entropy has attracted much attention 

[25]. The entropy calculation was made according to the 

union, intersection and jaccard similarity values. It 

transforms from incidence matrix to weighted adjacency 

matrix (𝐴) that is, similarity matrix (𝑆)  in a sense while 

performing union, intersection and jaccard calculations. 

The incidence matrix of measure 𝑛𝑥𝑚 becomes 𝑛𝑥𝑛 for 

nodes and 𝑚𝑥𝑚 for hyperedges. The method is better 

understood if the sample application in Section 4 is 

examined. Let 𝑆𝑖𝑗  be our jaccard, intersection and union 

similarity matrix. Let it be 𝑛𝑥𝑛 in size for nodes. 

Probability values for entropy are calculated as  

𝑝(𝑣𝑖𝑗) =
𝑆𝑖𝑗

∑ 𝑆𝑖𝑗
𝑛
𝑗=1

 ,    𝑝(𝑒𝑖𝑗) =
𝑆𝑖𝑗

∑ 𝑆𝑖𝑗
𝑚
𝑗=1

    (9) 

 

Centrality 

Centrality measures are used to identify the most important 

nodes of a network. While expressing centrality, we can 

describe it as influential nodes in a social network, nodes 

that accelerate the spread of information, points we call 

hubs in a transportation network, nodes that strengthen the 

network or key elements that direct the operation of the 

system. Generally, centrality measures are used in 

networks to estimate the potential monitoring and control 

capabilities that nodes may have over the communication 

flowing in the network [26]. In the dynamic behavior of the 

network system, the effect of central nodes in the 

organizational structure is more [27], [28]. 

Centrality is one of the most studied topics in network 

analysis. Many methods for centrality have been proposed 

in the literature to analyze the internal topology of a 

particular network and to find active nodes. Degree [29], 

closeness [30], betweenness [30], eigenvector [31] and 

pagerank [32] are the most commonly used measures of 

centrality [33]–[37]. 

Degree centrality allows us to evaluate based on the 

number of neighbors. It doesn't offer much information 

about the network. It is restricted to the node. 

Betweenness centrality looks at how many times the 

shortest path between any pair of nodes in the network 

passes over a node and selects critical nodes accordingly. 

The critical node indicates how well it mediates the 

communication of other nodes. 

Closeness centrality is a measure in a network that is 

calculated as the sum of the length of the shortest paths 

between the node and all other nodes in the network. The 

central node is the closer to the other nodes. These nodes 

have the shortest distances to all other nodes and can spread 

information very efficiently through a network. 

This eigenvector centrality is based on the value of the 

immediate neighbours of each node. The importance of a 

node is related to how important its neighbors are. It is 

based on the eigenvalue. The value of a node depends on 

the value of the nodes linked to it. This measure is not 

preferred in large networks [38]. 
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The purpose of pagerank is to identify nodes that have 

many connections to other important nodes. It indicates the 

probability that the node will be visited in a random walk. 

It works better for directional networks. It is similar to 

eigenvector centrality. 

Entropy is used in centrality measurements. If we want to 

measure the effect of a node on the network, entropy values 

can guide us in this regard. Entropy centrality allows for 

state-of-the-art centrality in centrality analyses, thus 

distinguishing network nodes locally central and globally 

central. It generates the centrality result according to the 

selected link parameters. 

Method with Sample Application 

In our study, analysis was performed on data suitable for 

the hypergraphs. Most tabular real-world data are in this 

format. The proposed method was tried to be shown on the 

sample data set. The synthetic data with 4 nodes and 3 

hyperedges used in this study are given in Table 1 and 

visualization in Figure 2.  

Table 1. Incidence matrix of the sample dataset 

  𝒆𝟎 𝒆𝟏 𝒆𝟐 Node degree 

𝒗𝟎 1 1 1 3 

𝒗𝟏 1 0 1 2 

𝒗𝟐 1 1 0 2 

𝒗𝟑 0 0 1 1 

𝒗𝟒 1 1 0 2 

Hyperedge degree 4 3 3 Sum=10 

 

The nodes degree or hyperedges degree are calculated as 

follows. 

𝑁𝑜𝑑𝑒𝑑𝑒𝑔𝑟𝑒𝑒 = 𝑑(𝑣𝑖) = ∑ 𝑤𝑖𝑗

𝑚

𝑗=1

 (10) 

𝐻𝑦𝑝𝑒𝑟𝑒𝑑𝑔𝑒𝑑𝑒𝑔𝑟𝑒𝑒 = 𝑑(𝑒𝑖) = ∑ 𝑤𝑖𝑗

𝑛

𝑗=1

 (11) 

 

In hypergraphs, the roles can be changed for hyperedges 

and nodes in the process steps. In the example, operations 

for nodes can be done for hyperedges. We denote the 

transpose of Incidence matrix 𝐼 by 𝐼𝑇.  

 

Figure 2. Hypergraph representation of the sample dataset 

The intersection and union similarity values were found 

from the incidence matrix as in Table 2. In addition, one 

can state that a similarity matrix of nodes and hyperedges 

was created by intersection or union values. In a sense, 

hypergraphs were converted into graphs mode. 

The intersection values of the nodes were calculated 

according to how many common hyperedges they were 

members of. For example, if the value of 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡(𝑣0, 𝑣1) 

is 2, that means there are 2 hyperedges where both nodes 

are elements. The union values of the nodes were 

calculated according to the total number of hyperedges that 

these nodes are elements. It suffices for one or both of the 

nodes to be elements of the hyperedge, for the hyperedge's 

interior. For example, when 𝑢𝑛𝑖𝑜𝑛(𝑣0, 𝑣1) is 3, it indicates 

that there are 3 hyperedges where either or both two nodes 

are members. 

Table 2. Intersection and union similarity matrices  

Nodes intersection Nodes union 

  𝒗𝟎 𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒   𝒗𝟎 𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒 

𝒗𝟎 0 2 2 1 2 𝒗𝟎 0 3 3 3 3 

𝒗𝟏 2 0 1 1 1 𝒗𝟏 3 0 3 2 3 

𝒗𝟐 2 1 0 0 2 𝒗𝟐 3 3 0 3 2 

𝒗𝟑 1 1 0 0 0 𝒗𝟑 3 2 3 0 3 

𝒗𝟒 2 1 2 0 0 𝒗𝟒 3 3 2 3 0 

 

Jaccard similarity values in Table 3 are also calculated 

from intersection and union similarity values with Eq. 4. 

From here, the effect of the nodes and hyperedges in the 

system was identified by the help of entropy. Degree, 

intersection, union and jaccard similarity values were used 

while calculating entropy. Accuracy may vary on status as 

there are different perspectives on centrality calculations. 

The nodes or hyperedges with a high entropy value are the 

effective ones. 
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Table 3. Jaccard similarity matrix 
 

𝒗𝟎 𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒 

𝒗𝟎 0 0,67 0,67 0,33 0,67 

𝒗𝟏 0,67 0 0,33 0,5 0,33 

𝒗𝟐 0,67 0,33 0 0 1 

𝒗𝟑 0,33 0,5 0 0 0 

𝒗𝟒 0,67 0,33 1 0 0 

 

When examined Table 4, it shows the order of centrality 

with jaccard as 𝑣0 > 𝑣1 > 𝑣2 = 𝑣4 > 𝑣3. As it can be 

seen in the Figure 2, those with the same degrees received 

equal value in degree centrality. Sorting according to the 

results obtained with intersection and jaccard was similar. 

For jaccard and intersection on hyperedges, there is an 

ordering as 𝑒0 > 𝑒2 > 𝑒1. When we look at the entropy 

values calculated with degrees at the hyperedges, the 

degrees e1 and e2 are the same. An anomaly has occurred 

in the union entropy. Jaccard and intersection again 

showed similar behavior.  

Table 4. Entropy values with different parameters 

Nodes entropy 
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𝒗𝟎 1,58 𝒗𝟎 1.95 𝒗𝟎 2 𝒗𝟎 1,95 

𝒗𝟏 1 𝒗𝟏 1.92 𝒗𝟏 1,98 𝒗𝟏 1,94 

𝒗𝟐 1 𝒗𝟐 1.52 𝒗𝟐 1,98 𝒗𝟐 1,46 

𝒗𝟑 0 𝒗𝟑 1 𝒗𝟑 1,98 𝒗𝟑 0,97 

𝒗𝟒 1 𝒗𝟒 1.52 𝒗𝟒 1,98 𝒗𝟒 1,46 

Hyperedges entropy 
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𝒆𝟎 2 𝑒0 0,97 𝑒0 0,99 𝑒0 0,93 

𝒆𝟏 1,58 𝑒1 0,81 𝑒1 0,99 𝑒1 0,74 

𝒆𝟐 1,58 𝑒2 0,92 𝑒2 1 𝑒2 0,92 

 

Experimental Results 

The proposed model for centrality was applied to three 

different datasets. Two of them are Almoincidence and 

Bcancer datasets in hypergraph structure from Ucinet [39]. 

The other is a drug-target interaction network that contains 

information about which genes (i.e., the proteins encoded 

by the genes) are targeted by drugs on the US market [40]. 

Results show the effectiveness of our proposed method. 

Since our aim is to calculate centrality, examining degree 

centrality values, which is the most basic centrality 

calculation, can be supportive to evaluate the results. These 

values can be seen in the Figure 3. Almoincidence dataset 

contains weighted values. In this dataset, the results are 

calculated and evaluated using the weighted values. 
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Bcancer dataset 

 

Drug-Target dataset 

Figure 3. Nodes and hyperedges with the highest degrees in datasets: Almoincidence dataset (a, b), Bcancer dataset (c, 

d), Drug-Target dataset (e, f) 

 

Degree centrality provides a local measure for centrality. 

This can be used to compare the results obtained with the 

proposed method. The top nodes and hyperedges with the 

highest degree are shown in Figure 3. 

Almoincidence 

This dataset contains the actors/actress and the movies they 

acted. The network consists of 94 nodes and 13 

hyperedges. In addition, for this dataset, measurements 

were made with closeness, betweenness, eigenvector and 

pagerank, which are popular centrality measurements used 

to give an idea. It is important that which similarity matrix 

was used when calculating these centralities. There exist 

challenges to overcome while utilizing the jaccard, for 

example, a fully connected structure can occur. In this case, 

centrality measures may not be discriminative. In order to 

pass this problem, the mean of the jaccard values can be 

taken as the threshold value and the similarity values can 

be converted to 0 and 1 accordingly. It can be done with 

traditional centrality measurements over the generated 

neighborhood matrix. When tried, traditional centrality 

measurements with jaccard for this dataset lost data, the 

most central node such as JoSalcedo could not be found. 

When considered logically and tried, it was seen that the 

intersection should be chosen as the most suitable matrix 

for these traditional centrality measurements. The results 

obtained according to the intersection are given in the 

Table 5. 

When the results are compared with the ranking obtained 

by the proposed method, they show very close similarity. 
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Table 5. Top 15 centrality measure values for actors/actress 

betweenness closeness  eigenvector  pagerank 

JoSalcedo 0.219234 JoSalcedo 1 JoSalcedo 0.2969519 JoSalcedo 0.043025 

PeAlmodovar 0.219234 PeAlmodovar 1 PeAlmodovar 0.2969519 PeAlmodovar 0.043025 

AgAlmodovar 0.0585377 AgAlmodovar 0.75 AgAlmodovar 0.2275763 AgAlmodovar 0.0286903 

EsGarcia 0.0585377 EsGarcia 0.75 EsGarcia 0.2275763 EsGarcia 0.0286903 

CaMaura 0.0385087 CaMaura 0.6888889 CaMaura 0.1912972 CaMaura 0.0239346 

ALFernandez 0.0261302 ALFernandez 0.6503497 ChLampreave 0.1670298 ALFernandez 0.0207551 

MaParedes 0.021283 ChLampreave 0.6413793 KiManver 0.1649636 ChLampreave 0.0194753 

KiManver 0.0196501 KiManver 0.6369863 ALFernandez 0.1645402 MaParedes 0.0190321 

ChLampreave 0.0193637 MaParedes 0.6369863 MaParedes 0.1637093 KiManver 0.018881 

JuSerrano 0.0187646 JuSerrano 0.6283784 JuSerrano 0.1550742 JuSerrano 0.0181879 

CeRoth 0.0179644 CeRoth 0.615894 RdPalma 0.1500216 CeRoth 0.0172539 

RdPalma 0.0100128 RdPalma 0.6118421 AnBanderas 0.1421031 RdPalma 0.0162173 

AnBanderas 0.0084787 AnBanderas 0.6038961 CeRoth 0.1348246 AnBanderas 0.0154106 

NaMartinez 0.007604 BeBonezi 0.5923567 BeBonezi 0.1307885 ViAbril 0.0143355 

ViAbril 0.0065776 BiAndersen 0.5923567 NaMartinez 0.1268467 BiAndersen 0.0142692 

Table 6. The ranking of hyperedge and node centralities for Almoincidence 

Columns (Hyperedges) entropy values 

degree  e_degree 
 

e_union  e_intersection 
 

e_jaccard 

Film1 16  Film1 4 
 

Film2 3.58378  Film6 3.54583 
 

Film6 3.52849 

Film13 15  Film13 3.90689 
 

Film1 3.58314  Film2 3.53608 
 

Film2 3.52568 

Film9 15  Film9 3.90689 
 

Film11 3.58251  Film1 3.52729 
 

Film1 3.50982 

Film7 15  Film7 3.90689 
 

Film3 3.58247  Film11 3.52331 
 

Film11 3.50375 

Film12 14  Film12 3.80735 
 

Film6 3.58228  Film3 3.5106 
 

Film3 3.48715 

Film11 14  Film11 3.80735 
 

Film12 3.5819  Film7 3.50841 
 

Film7 3.47162 

Film10 14  Film10 3.80735 
 

Film10 3.5817  Film13 3.4771 
 

Film13 3.43673 

Film8 14  Film8 3.80735 
 

Film9 3.58146  Film9 3.47038 
 

Film9 3.4358 

Film6 14  Film6 3.80735 
 

Film13 3.5814  Film4 3.45854 
 

Film10 3.42041 

Film5 14  Film5 3.80735 
 

Film8 3.58103  Film8 3.45414 
 

Film4 3.41549 

Film4 14  Film4 3.80735 
 

Film7 3.58092  Film10 3.45363 
 

Film12 3.40769 

Film3 13  Film3 3.70044 
 

Film4 3.58062  Film5 3.44618 
 

Film8 3.40231 

Rows (Nodes) entropy values 

e_degree  e_intersection  e_union  e_jaccard 

JoSalcedo 3.70044 
 

JoSalcedo 6.08382 
 

JoSalcedo 6.53916 
 

JoSalcedo 6.08382 

PeAlmodovar 3.70044 
 

PeAlmodovar 6.08382 
 

PeAlmodovar 6.53916 
 

PeAlmodovar 6.08382 

AgAlmodovar 3 
 

AgAlmodovar 5.55895 
 

AgAlmodovar 6.52975 
 

AgAlmodovar 5.63864 

EsGarcia 3 
 

EsGarcia 5.55895 
 

EsGarcia 6.52975 
 

EsGarcia 5.63864 

CaMaura 2.58496 
 

CaMaura 5.37144 
 

CaMaura 6.51482 
 

CaMaura 5.48868 

ALFernandez 2.32193 
 

ALFernandez 5.18042 
 

ChLampreave 6.50696 
 

ALFernandez 5.30048 

ChLampreave 2.32193 
 

KiManver 5.13573 
 

ALFernandez 6.50025 
 

MaParedes 5.26779 

AnBanderas 2 
 

MaParedes 5.1334 
 

RdPalma 6.49291 
 

KiManver 5.26249 

JuSerrano 2 
 

ChLampreave 5.10723 
 

AnBanderas 6.49226 
 

ChLampreave 5.23232 

KiManver 2 
 

JuSerrano 5.07424 
 

KiManver 6.48835 
 

JuSerrano 5.1861 

MaParedes 2 
 

CeRoth 5.03418 
 

MaParedes 6.48745 
 

CeRoth 5.03378 

RdPalma 2 
 

RdPalma 4.86 
 

JuSerrano 6.48614 
 

RdPalma 4.99562 

AfBeato 1.58496 
 

AnBanderas 4.81727 
 

BeBonezi 6.45845 
 

AnBanderas 4.93421 
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The similarities of the methods can be explained by 

comparing the number of order-independent common 

nodes for the first 15 nodes. As illustrated in Figure 4 that 

jaccard entropy centrality and betweenness centrality show 

similar behavior. And, intersection entropy centrality and 

eigenvector centrality show similar behavior.  

 

Figure. 4. Comparison of traditional and proposed 

methods over Almoincidence nodes 

When Table 6 is examined, intersection and jaccard gave 

similar results for hyperedges. There are 13 hyperedges in 

total. When we examine Film6, which seems to be the most 

effective in intersection and jaccard, it hosts nodes 

(PeAlmodovar, ALFernandez, AgAlmodovar, 

AnBanderas, BiAndersen, CaMaura, EsGarcia, EuPoncela, 

HeLine, JoSalcedo, MAPCAmpos, MaVelasco, MiMolina, 

NaMartinez). Those are the elements of 3 or more 

hyperedges. In other words, they acted in 3 or more 

movies. That's why the centrality of Film6 turned out to be 

high. As the number of nodes or hyperedges increases and 

their similarity decreases, the ranking will be more 

discriminative. 

Bcancer 

Breast cancer is the most common cancer among 

Hispanic/Latino women and is the leading cause of cancer 

death among this group in the United States [41]. Bcancer 

data from Ucinet database is in weighted hypergraph 

structure. The results of the proposed method were 

evaluated by including weighted values in the calculation. 

The causes of cancer were analyzed over the created 

hypergraph.  

The network consists of 33 nodes and 5 hyperedges. 

Accordingly, the values obtained by the proposed method 

are given in the Table 7. Smoking was the central node in 

all calculations. Jaccard and intersect gave similar results 

again. 

 

Table 7. The ranking of hyperedge and node centralities for Bcancer 

Columns (Hyperedges) entropy values 

degree  e_degree 
 

e_intersection 
 

e_union 
 

e_jaccard 

Physicians 376  Mexican 3.51035 
 

Anglo 1.9699 
 

Physicians 1.99488 
 

Anglo 1.92586 

Mexican 273  Salvador 3.48718 
 

Mexican 1.94908 
 

Salvador 1.99338 
 

Mexican 1.91209 

Anglo 232  Physicians 3.38983 
 

Chicanas 1.94566 
 

Mexican 1.99242 
 

Physicians 1.90489 

Chicanas 219  Chicanas 3.35887 
 

Physicians 1.93291 
 

Chicanas 1.99199 
 

Chicanas 1.90475 

Salvador 195  Anglo 3.19052 
 

Salvador 1.83659 
 

Anglo 1.9917 
 

Salvador 1.79108 

Rows (Nodes) entropy values 

e_degree 
 

e_jaccard 
 

e_intersection 
 

e_union 

Smoking 2.3049 
 

Smoking 4.76513 
 

Smoking 4.76513 
 

Smoking 5 

Birthcontrol 1.9647 
 

Familyhistory 4.76513 
 

Familyhistory 4.76513 
 

Familyhistory 5 

Neverbreastfeed 1.8728 
 

Birthcontrol 4.63419 
 

Birthcontrol 4.59708 
 

Birthcontrol 4.99131 

Familyhistory 1.8077 
 

Blows 4.47119 
 

Blows 4.44228 
 

Blows 4.99114 

Blows 1.7997 
 

Neverbreastfeed 4.47119 
 

Neverbreastfeed 4.44228 
 

Neverbreastfeed 4.99114 

Fatdiet 1.4059 
 

Nochildren 4.40815 
 

Nochildren 4.40386 
 

Fatdiet 4.96807 

Chemicalsinfood 0.9991 
 

Fatdiet 4.37386 
 

Fatdiet 4.30423 
 

Chemicalsinfood 4.96069 

Fibrocystic 0.995 
 

Fibrocystic 4.11798 
 

Fibrocystic 4.0958 
 

Lackmedicalattn 4.96069 

Pollution 0.9825 
 

Chemicalsinfood 4.00621 
 

Chemicalsinfood 4.00182 
 

Pollution 4.95784 

Illegaldrugs 0.9819 
 

Lackmedicalattn 4.00621 
 

Lackmedicalattn 4.00182 
 

Nochildren 4.93597 

Nochildren 0.9673 
 

Probprodmilk 3.95958 
 

Probprodmilk 4.00163 
 

Probprodmilk 4.93479 

Fondling 0.9569 
 

Fondling 3.95958 
 

Fondling 4.00163 
 

Fondling 4.93479 

Lackmedicalattn 0.9474 
 

Lackhygiene 3.95958 
 

Lackhygiene 4.00163 
 

Lackhygiene 4.93479 
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Lackhygiene 0.9457 
 

Illegaldrugs 3.95958 
 

Illegaldrugs 4.00163 
 

Illegaldrugs 4.93479 

Probprodmilk 0.9103 
 

Pollution 3.78052 
 

Pollution 3.72193 
 

Fibrocystic 4.92809 

Implants 0 
 

Breast-Feeding 3.54759 
 

Breast-Feeding 3.70044 
 

Largebreasts 4.91239 

Wildlife 0 
 

Alcohol 3.54759 
 

Alcohol 3.70044 
 

Caffeine 4.91239 

Abortions 0 
 

Obesity 3.3674 
 

Obesity 3.58496 
 

Radiation 4.90318 

Dirtywork 0 
 

Hormonesupps 3.3674 
 

Hormonesupps 3.58496 
 

Diet 4.90318 

Breast-Feeding 0 
 

Latechildren 3.3674 
 

Latechildren 3.58496 
 

Justhappens 4.90318 

Alcohol 0 
 

Cancerhistory 3.3674 
 

Cancerhistory 3.58496 
 

Breast-Feeding 4.90215 

Largebreasts 0 
 

Age 3.3674 
 

Age 3.58496 
 

Alcohol 4.90215 

Caffeine 0 
 

Ethnicity 3.3674 
 

Ethnicity 3.58496 
 

Implants 4.87561 

Radiation 0 
 

Earlymenses 3.3674 
 

Earlymenses 3.58496 
 

Wildlife 4.87561 

Diet 0 
 

Implants 3.22661 
 

Implants 3.45943 
 

Abortions 4.87561 

Justhappens 0 
 

Wildlife 3.22661 
 

Wildlife 3.45943 
 

Dirtywork 4.87561 

Obesity 0 
 

Abortions 3.22661 
 

Abortions 3.45943 
 

Obesity 4.84096 

Hormonesupps 0 
 

Dirtywork 3.22661 
 

Dirtywork 3.45943 
 

Hormonesupps 4.84096 

Latechildren 0 
 

Largebreasts 3.11291 
 

Largebreasts 3.32193 
 

Latechildren 4.84096 

Cancerhistory 0 
 

Caffeine 3.11291 
 

Caffeine 3.32193 
 

Cancerhistory 4.84096 

Age 0 
 

Radiation 3.04719 
 

Radiation 3.32193 
 

Age 4.84096 

Ethnicity 0 
 

Diet 3.04719 
 

Diet 3.32193 
 

Ethnicity 4.84096 

Earlymenses 0 
 

Justhappens 3.04719 
 

Justhappens 3.32193 
 

Earlymenses 4.84096 

 

Drug-Target Interaction Network 

Drug targets are molecules that play a critical role in drug 

transport, delivery, or activation. For drug target 

discovery, drug design, drug docking or screening, drug 

metabolism prediction, drug interaction prediction, and 

general pharmaceutical research, drug target information 

is used [40]. The network consists of 284 nodes and 3648 

hyperedges. 

 

Table 8. The ranking of hyperedge and node centralities for Drug-Target Interaction 

Columns (Hyperedges) entropy values 

e_degree 
 

e_jaccard 
 

e_intersection 
 

e_union 

G3356 6.5546 
 

G55244 11.6245 
 

G7155 11.5844 
 

G3356 11.8323 

G3357 6.4757 
 

G1576 11.5811 
 

G7018 11.583 
 

G3357 11.8323 

G151 6.4429 
 

G4215 11.5575 
 

G6326 11.5604 
 

G3358 11.8323 

G150 6.4263 
 

G5604 11.5575 
 

G1021 11.5576 
 

G135 11.8322 

G3274 6.4263 
 

G51347 11.5519 
 

G140469 11.5576 
 

G140 11.8322 

G3350 6.4263 
 

G57551 11.5519 
 

G1612 11.5576 
 

G150 11.8322 

G3358 6.4263 
 

G6198 11.5519 
 

G1613 11.5576 
 

G151 11.8322 

G140 6.4094 
 

G146802 11.5513 
 

G23604 11.5576 
 

G152 11.8322 

G1814 6.4094 
 

G7018 11.5488 
 

G23678 11.5576 
 

G153 11.8322 

G4988 6.4094 
 

G120892 11.5443 
 

G27330 11.5576 
 

G155 11.8322 

G3362 6.3923 
 

G6790 11.5399 
 

G340156 11.5576 
 

G1814 11.8322 

G135 6.375 
 

G316 11.5319 
 

G5585 11.5576 
 

G3274 11.8322 

G152 6.375 
 

G1021 11.5286 
 

G5588 11.5576 
 

G3350 11.8322 

G153 6.3576 
 

G140469 11.5286 
 

G5592 11.5576 
 

G3351 11.8322 

G155 6.3576 
 

G1612 11.5286 
 

G57118 11.5576 
 

G3362 11.8322 

Rows (Nodes) entropy values 

e_degree 
 

e_jaccard 
 

e_intersection 
 

e_union 

CID000000271 11.4717 
 

CID000002812 6.9733 
 

CID000002812 7.00897 
 

CID000000271 8.14421 

CID005329102 7.98299 
 

CID000004932 6.9457 
 

CID000003198 6.96694 
 

CID005329102 8.04102 
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CID000002801 7.6865 
 

CID000002156 6.9412 
 

CID000004601 6.88436 
 

CID000002801 8.02022 

CID000002818 7.6865 
 

CID000003198 6.8822 
 

CID000004932 6.88323 
 

CID000002818 8.02009 

CID000004543 7.63662 
 

CID000003117 6.8818 
 

CID000002156 6.88286 
 

CID000004543 8.01574 

CID000003715 7.58496 
 

CID000002756 6.796 
 

CID000003957 6.86086 
 

CID000003715 8.01144 

CID000004585 7.57743 
 

CID000002153 6.6629 
 

CID000002267 6.82818 
 

CID000004585 8.00802 

CID000003696 7.56224 
 

CID000005035 6.6602 
 

CID000124087 6.81632 
 

CID000005002 8.00627 

CID000005002 7.56224 
 

CID000005253 6.5964 
 

CID000005035 6.8 
 

CID000003696 8.00559 

CID000002160 7.54689 
 

CID000004601 6.573 
 

CID000002099 6.79511 
 

CID000002726 8.00406 

CID000002726 7.53916 
 

CID000124087 6.5128 
 

CID000005530 6.77392 
 

CID000002160 8.00377 

CID000002995 7.53916 
 

CID000002267 6.4922 
 

CID000004473 6.77196 
 

CID000002995 8.00259 

CID000003386 7.53138 
 

CID000004543 6.4908 
 

CID000003042 6.73112 
 

CID000036811 8.00257 

CID000004449 7.53138 
 

CID000002818 6.4876 
 

CID000004178 6.70111 
 

CID000002520 8.00232 

CID000002771 7.52356 
 

CID000002801 6.4826 
 

CID000003117 6.69876 
 

CID000004449 8.0018 

 

When gene centrality was examined, degree and union 

showed similar behavior. The number of genes with similar 

values in intersection was high. In this dataset, the 

difference was more for jaccard and intersection for 

ranking order as seen in Table 8. G7018, G1021, G140469, 

G1612 are the common genes in the top 15 for jaccard and 

intersection. 

The degree entropy value of the drug CID000000271 was 

higher than the others. This became the highest influential 

node or hyperedge for degree and union. The most 

influential for jaccard and intersection was 

CID000002812. The number of common elements in the 

top 15 for the jaccard and intersection results indicates the 

similarity of the calculation method. 

Although CID000000271's rating is too high, it did not 

appear in the top positions in jaccard and intersection. This 

shows that when global measurements are desired, 

intersection and jaccard similarity parameters can be used. 

Discussions 

Since hypergraphs contain multidimensional information, 

more factors are effective in the measurement of centrality. 

It allows the inclusion of relevant data with any number of 

conditions. Therefore, a multidimensional and detailed 

centrality measure is obtained. Changing the representation 

of nodes and hyperedges allows centralities to be viewed 

from two angles. In addition, measuring weights over 

similarity is a measure obtained by considering the whole 

network. It can be a guide in analyzing relationships that 

cannot be seen, especially as the data grows. The 

computational cost is also lower in hypergraphs. 

Hypergraphs are more flexible than graphs, which can 

make them easier to use in a variety of applications. More 

is said with less data. Centrality calculation for all data with 

multidimensional interaction can be easily done in this 

way. The entropy used for centrality provided a convenient 

solution for interpreting the local and global potential of 

the node or hyperedge in the network. Although the most 

influential nodes are located at the center of the network, it 

is difficult to distinguish what type of influence they exert 

on the network [42], [43]. The effect type of nodes on the 

network was tried to be understood with the results of 

different entropy calculations. The choice of similarity type 

used for entropy indicated the direction of the effect. 

Conclusions 

This paper presented a new efficient centrality 

measurement for the nodes of a hypergraph. A new method 

for measuring centrality over entropy using the 

neighborhood-based similarity values of nodes and 

hyperedges. In order to investigate the efficiency of the 

proposed method, we carried out experiments on several 

networks and demonstrated the effectiveness. Applying the 

method to different types of datasets yielded accurate 

results. It enabled us to reach global and local results 

according to our similarity choice in hypergraphs. 

Centrality measurement was performed separately for 

nodes and hyperedges. Since the hypergraphs were 

converted into graphs over similarity, the weight value, 

which in a sense expresses the importance of the edge, was 

given. Therefore, loss of information was reduced. Since 

these weights are used in entropy measurements, their 

effects on the whole system were measured. Measuring 

centrality in hypergraphs that contain multiple aspects of 

the interaction environment gave us more information. 

This analysis can be applied to a wide variety of networks. 
Hypergraphs can be more scalable than graphs for certain 

problems, such as clustering and recommender systems. 

This is because hyperedges can represent multiple 

relationships between vertices, which can help to reduce 

the number of vertices and edges that need to be 

considered. They are able to model complex relationships, 

they can be more scalable, and they are more flexible. As a 

result, hypergraphs are becoming increasingly popular in a 

variety of applications. 
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