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ABSTRACT 
 

In this work, some set order relations are compared with each other. In addition, it is shown that every weak minimal solution 

of a set valued optimization problem with respect to vector optimization criterion, is also a weak minimal solution with respect 

to set optimization criterion considering some special set orders. 
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1. INTRODUCTION 
 

Set valued optimization theory is based on to solve optimization problems with set valued objective 

maps. There are several approaches to solve set-valued optimization problems. One of them is vector 

optimization criterion and is based on comparing values of range of the objective map. The other one is 

set optimization criterion and presented by Kuroiwa [1-3]. This approach is based on the comparing 

values of objective map. Therefore, some ordering relations are required for this comparison. Kuroiwa 

[2,4], Jahn and Ha [5], Young [6], Nishnianidze [7] and Karaman , Soyertem, Atasever Güvenç, Tozkan, 

Küçük M. and Küçük Y. [8] gave some set order relations. For further researches in this area one can 

see [9-20].   

 

In [5], Jahn and Ha compared relations ≼𝑐, ≼𝑚𝑐, ≼𝑚𝑛, ≼𝑚, ≼𝑠, ≼𝑢, ≼𝑙 . In this study, the relations 

≼𝑐, ≼𝑚𝑐, ≼𝑚𝑛, ≼𝑚, ≼𝑠, ≼𝑢, ≼𝑙 are compared with ≼𝑚1
and ≼𝑚2

. Then, it is shown that every weak 

minimal solution (with respect to vector optimization criterion) of a given set valued optimization 

problem is a weak minimal solution of the problem with respect to ≼𝑐, ≼𝑚𝑐, ≼𝑚𝑛, ≼𝑚, ≼𝑠. For relations 

≼𝑚2
 and ≼𝑙, similar results were given by Khushboo and Lalitha [14] and Hernández and Rodríguez-

Marín [9], respectively.  For ≼𝑚1
 and ≼𝑢 similar results can be obtained.    

 

2. SOME ORDER RELATIONS OF SETS 

 

In this section, we recall the set orders given by Kuroiwa [2,4], Jahn and Ha [5], Young [6], Nishnianidze 

[7] and Karaman, Soyertem, Atasever Güvenç, Tozkan, Küçük M. and Küçük Y. [8], and some 

properties of these relations. 

  

Let (𝑌, ⃦ ⋅  ⃦) be a normed space. A set 𝐾 ⊂ 𝑌 is called a cone if 𝜆𝑦 ∈ 𝐾 for all 𝜆 ≥ 0 and 𝑦 ∈ 𝐾. 

Throughout this work, 𝐾 ⊂ 𝑌 is a nonempty, pointed (𝐾 ∩ (−𝐾) = {0𝑌}), convex cone with nonempty 

interior. 𝐵(𝑥, 𝑟) denotes the closed ball with center 𝑥 and radius 𝑟, 𝑐𝑙𝑆 and 𝑖𝑛𝑡𝑆 denotes the closure and 

interior of a set 𝑆 ⊂ 𝑌, respectively. The algebraic sum and Minkowski (Pontryagin) difference of 𝐴 and 

𝐵 is defined by 𝐴 + 𝐵 = {𝑎 + 𝑏|𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}, 𝐴−̇𝐵 = { 𝑥 ∈ 𝑌 ∣ 𝑥 + 𝐵 ⊂ 𝐴 }, respectively. A set  
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𝐴 ⊂ 𝑌 is called 𝐾-bounded if for each 𝑈 neighborhood of 0𝑌 there exists 𝑡 > 0 such that 𝐴 ⊂ 𝑡𝑈 + 𝐾. 
 

Relations ≤𝐾 and <𝐾 are defined in the following way:  

𝑥 ≤𝐾 𝑦 ⟺ 𝑦 − 𝑥 ∈ 𝐾, 

𝑥 <𝐾 𝑦 ⟺ 𝑦 − 𝑥 ∈ 𝑖𝑛𝑡 𝐾. 

Also, note that ≤𝐾 is an order relation on 𝑌. 
Definition 2.1. Let ∅ ≠ 𝐴 ⊂ 𝑌. 

i. If 𝐴 ∩ (�̅� − 𝐾) = {�̅�} then �̅� ∈ 𝐴 is called a minimal element of 𝐴. min 𝐴 denotes the set of all 

minimal elements of 𝐴 .  

ii. If A∩ (�̅� − 𝑖𝑛𝑡𝐾) = ∅ then �̅� ∈ 𝐴 is called a weak minimal element of 𝐴. 𝑤 min 𝐴 denotes the 

set of all weak minimal elements of 𝐴. 

iii. If 𝐴 ∩ (�̅� + 𝐾) = {�̅�} then �̅� ∈ 𝐴 is called a maximal element of 𝐴. max 𝐴 denotes the set of all 

maximal elements of 𝐴 .  

 

In this article, 𝒫(𝑌) denotes the nomempty subsets of  𝑌  and 

ℳ ≔ { 𝐴 ∈ 𝒫(𝑌) ∣∣ min 𝐴 and max 𝐴 are nonempty }. 
 

We first recall the set less order relation ≼𝑠 defined by Young [6] and Nishnianidze [7],  𝑢-type less 

order relation ≼𝑢 and 𝑙-type less order relation ≼𝑙 given by Kuroiwa [2,4]. 

 

Definition 2.2. Let 𝐴, 𝐵 ∈ 𝒫(𝑌). 

i. 𝐴 ≼𝑠 𝐵: ⟺ (∀ 𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵: 𝑥 ≤𝐾 𝑦) and (∀ 𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴: 𝑥 ≤𝐾 𝑦) 

ii. 𝐴 ≼𝑢 𝐵: ⟺ (∀ 𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵: 𝑥 ≤𝐾 𝑦) 

iii. 𝐴 ≼𝑙 𝐵: ⟺ (∀ 𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴: 𝑥 ≤𝐾 𝑦) 

 

In the following proposition, characterizations of ≼𝑢, ≼𝑙 and ≼𝑠 are given.  

 

Proposition 2.3.[5] Let 𝐴, 𝐵 ∈ 𝒫(𝑌). Then,  
𝐴 ≼𝑙 𝐵 ⟺ 𝐵 ⊂ 𝐴 + 𝐾
𝐴 ≼𝑢 𝐵 ⟺ 𝐴 ⊂ 𝐵 − 𝐾
𝐴 ≼𝑠 𝐵 ⟺ 𝐵 ⊂ 𝐴 + 𝐾 𝑎𝑛𝑑 𝐴 ⊂ 𝐵 − 𝐾.

 

 

Definition 2.4. [5] Let 𝐴, 𝐵 ∈ 𝒫(𝑌).  The relation ≼𝑐 is defined as  

𝐴 ≼𝑐 𝐵 ∶⟺ (𝐴 = 𝐵) 𝑜𝑟 (𝐴 ≠ 𝐵 and ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵: 𝑥 ≤𝐾 𝑦) 

is called certainly less order relation. 

  

Proposition 2.5. [5] Let 𝐴, 𝐵 ∈ 𝒫(𝑌). Then we have  

𝐴 ≼𝑐 𝐵 ⟺ (𝐴 = 𝐵) 𝑜𝑟 (𝐴 ≠ 𝐵 and 𝐵 − 𝐴 ⊂ 𝐾). 

 

Now, we recall ≼𝑚 minmax less order relation, ≼𝑚𝑐 minmax certainly less order relation, ≼𝑚𝑛  the 

minmax certainly nondominated order relation are defined by Jahn and Ha [5].  

 

Definition 2.6. [5] Let 𝐴, 𝐵 ∈ ℳ.   

i. 𝐴 ≼𝑚 𝐵 ∶⟺ min 𝐴 ≼𝑠 min 𝐵 and max 𝐴 ≼𝑠 max 𝐵 

ii. 𝐴 ≼𝑚𝑐 𝐵 ∶⟺ (𝐴 = 𝐵) or (𝐴 ≠ 𝐵 and min 𝐴 ≼𝑐 min 𝐵 𝑎𝑛𝑑 max 𝐴 ≼𝑐 max 𝐵) 

iii. 𝐴 ≼𝑚𝑛 𝐵 ∶⟺ (𝐴 = 𝐵) or (𝐴 ≠ 𝐵 and max 𝐴 ≼𝑠 min 𝐵) 

 

Definition 2.7. [5] Let 𝐴 ∈ ℳ.  If  
min 𝐴 + 𝐾 = 𝐴 + 𝐾 and max 𝐴 − 𝐾 = 𝐴 − 𝐾 

or equivalently  

𝐴 ⊂ min 𝐴 + 𝐾 and 𝐴 ⊂ max 𝐴 − 𝐾 

then 𝐴 is said to have quasi domination property.  
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Throughout this paper, ℳ0 denotes the family of sets with quasi domination property. 

 

Now, we recall the comparisons of order relations given above.  

Proposition 2.8. [5] Let 𝐴, 𝐵 ∈ 𝒫(𝑌). Then,  

i. 𝐴 ≼𝑠 𝐵 implies 𝐴 ≼𝑙 𝐵, 

ii. 𝐴 ≼𝑠 𝐵 implies 𝐴 ≼𝑢 𝐵 

iii. 𝐴 ≼𝑙 𝐵 does not always imply 𝐴 ≼𝑢 𝐵 and vice versa.  

 

Proposition 2.9. [5] Let 𝐴, 𝐵 ∈ ℳ0 with 𝐴 ≠ 𝐵. Then,  

i. 𝐴 ≼𝑐 𝐵 ⟹ 𝐴 ≼𝑚𝑐 𝐵 ⟹ 𝐴 ≼𝑚 𝐵 ⟹ 𝐴 ≼𝑠 𝐵 

ii. 𝐴 ≼𝑐 𝐵 ⟹ 𝐴 ≼𝑚𝑛 𝐵 ⟹ 𝐴 ≼𝑚 𝐵 

iii. 𝐴 ≼𝑚𝑛 𝐵 does not always imply 𝐴 ≼𝑚𝑐 𝐵 and vice versa.  

 

The following set order relations ≼𝑚1
and ≼𝑚2

were introduced by Karaman, Soyertem, Atasever 

Güvenç, Tozkan, Küçük M. and Küçük Y. [8]  

 

Definition 2.10. Let 𝐴, 𝐵 ∈ 𝒫(𝑌).  

i. 𝐴 ≼𝑚1
𝐵: ⟺ (𝐵−̇𝐴) ∩ 𝐾 ≠ ∅, 

ii. 𝐴 ≼𝑚2
𝐵: ⟺ (𝐴−̇𝐵) ∩ (−𝐾) ≠ ∅. 

iii. 𝐴 ≺𝑚1
𝐵: ⟺ (𝐵−̇𝐴) ∩ (𝑖𝑛𝑡𝐾) ≠ ∅, 

iv. 𝐴 ≺𝑚2
𝐵: ⟺ (𝐴−̇𝐵) ∩ (−𝑖𝑛𝑡𝐾) ≠ ∅, 

 

 Note that ≼𝑚1
and ≼𝑚2

 are partial order relations on  ℬ(𝑌) = {𝐴 ∈ 𝒫(𝑌) ∣ 𝐴 is bounded}. 

 

Strict order relations ≺𝑢, ≺𝑙 , ≺𝑠 and ≺𝑐 are defined in the following way [9]: 

 

Definition 2.11. Let 𝐴, 𝐵 ∈ 𝒫(𝑌). 

i. 𝐴 ≺𝑢 𝐵: ⟺ 𝐴 ⊂ 𝐵 − 𝑖𝑛𝑡(𝐾) 

ii. 𝐴 ≺𝑙 𝐵: ⟺ 𝐵 ⊂ 𝐴 + 𝑖𝑛𝑡(𝐾) 

iii. 𝐴 ≺𝑠 𝐵: ⟺  𝐴 ≺𝑢 𝐵 and 𝐴 ≺𝑙 𝐵 

iv. 𝐴 ≺𝑐 𝐵: ⟺  𝐵 − 𝐴 ⊂ 𝑖𝑛𝑡(𝐾) 

 

In addition, ≺𝑚, ≺𝑚𝑐  and ≺𝑚𝑛 are defined in the following way: 

 

Definition 2.12. Let 𝐴, 𝐵 ∈ ℳ.  
i. 𝐴 ≺𝑚 𝐵: ⟺ min 𝐴 ≺𝑠 min 𝐵 and max 𝐴 ≺𝑠 max 𝐵 

ii. 𝐴 ≺𝑚𝑐 𝐵: ⟺ min 𝐴 ≺𝑐 min 𝐵 and max 𝐴 ≺𝑐 max 𝐵 

iii. 𝐴 ≺𝑚𝑛 𝐵: ⟺ max 𝐴 ≺𝑠 min 𝐵. 
 

Proposition 2.13. Let 𝐴, 𝐵 ∈ ℳ. Then the following relations are satisfied: 

i. 𝐴 ≺𝑐 𝐵 implies 𝐴 ≺∗ 𝐵 where ∗∈ {𝑚𝑐, 𝑚𝑛, 𝑚, 𝑠, 𝑢, 𝑙}, 
ii. If 𝐵−̇𝐴 ≠ ∅ then 𝐴 ≺𝑐 𝐵 implies 𝐴 ≺𝑚1

𝐵 , 

iii. If 𝐴−̇𝐵 ≠ ∅ then 𝐴 ≺𝑐 𝐵 implies 𝐴 ≺𝑚2
𝐵, 

iv. 𝐴 ≺𝑚𝑐 𝐵 implies 𝐴 ≺𝑚 𝐵 , 
v. If 𝐴, 𝐵 ∈ ℳ0 then 𝐴 ≺𝑚𝑛 𝐵 implies 𝐴 ≺𝑚 𝐵, 𝑎𝑛𝑑 𝐴 ≺𝑚 𝐵 implies 𝐴 ≺𝑠 𝐵.  

 

Proof: The proofs of each relation above may easily be carried out similar to the proof of Proposition 

2.9 (Proposition 3.10 in [5]) and Proposition 3.1 considering 𝐾 + 𝑖𝑛𝑡 𝐾 ⊂ 𝑖𝑛𝑡 𝐾 and therefore omitted 

here.  

 

Definition 2.14. [5,8,9] Let 𝒮 ⊂ 𝒫(𝑌) and ∗∈ {𝑢, 𝑙, 𝑠, 𝑚, 𝑐, 𝑚𝑛, 𝑚𝑐, 𝑚1, 𝑚2}.  
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i. 𝐴 ∈ 𝒮 is called a ∗-minimal element of  𝒮 if for any 𝐵 ∈ 𝒮 such that 𝐵 ≼∗ 𝐴 implies 𝐴 ≼∗ 𝐵. 
The family of  ∗-minimal elements of  𝒮 is denoted by ∗ − min 𝒮.   

ii. 𝐴 ∈ 𝒮 is called a weak ∗-minimal element of  𝒮 if for any 𝐵 ∈ 𝒮 such that 𝐵 ≺∗ 𝐴 implies 

𝐴 ≺∗ 𝐵. The family of weak ∗-minimal elements of  𝒮 is denoted by ∗ −𝑤 min 𝒮.   

 

Let 𝑋 ≠ ∅, 𝐹: 𝑋 ⇉ 𝑌 be a set valued map. The set valued optimization problem is defined as  

(𝑃) {
min 𝐹(𝑥)
𝑠. 𝑡. 𝑥 ∈ 𝑋.

   

There are three solution concepts for this optimization problem: Vector optimization, set optimization 

and lattice criteria.   

 

In vector optimization criterion, 𝑥0 is called a minimal solution (weak minimal solution) of (𝑃) if there 

exists 𝑦0 ∈ 𝐹(𝑥0) such that 𝑦0 ∈ min 𝐹(𝑋) (𝑦0 ∈ 𝑤 min 𝐹(𝑋))  where 𝐹(𝑋) = ⋃ 𝐹(𝑥)𝑥∈𝑋 .  (𝑥0, 𝑦0) 

is called a minimizer (weak minimizer) of (𝑃). The set of all minimal (weak minimal) solutions of (𝑃) 

is denoted by 𝐸𝑓𝑓(𝐹, 𝑋) (𝑤𝐸𝑓𝑓(𝐹, 𝑋)). 
 

Set optimization criterion is based on finding efficient sets of the family ℱ(𝑋) = { 𝐹(𝑥) ∣ 𝑥 ∈ 𝑋 } with 

respect to given set order relation. In set optimization criterion, we denote problem (𝑃) as (∗ −𝑃) where 

≼∗is the set order relation considered in the problem.  In this criterion, 𝑥0 is called a ∗-minimal solution 

( weak ∗ − minimal solution) of (∗ −𝑃) if 𝐹(𝑥0) ∈∗ − min ℱ(𝑋) (𝐹(𝑥0) ∈∗ − w min ℱ(𝑋)). The set 

of all ∗ −minimal (weak ∗ − minimal) solutions of (∗ −𝑃) is denoted by ∗ −𝐸𝑓𝑓(𝐹, 𝑋)  
(∗ −𝑤𝐸𝑓𝑓(𝐹, 𝑋)).  
 

 

3. COMPARISON OF SET ORDER RELATIONS 

 

In this section, relations ≼𝑐, ≼𝑚𝑐, ≼𝑚𝑛, ≼𝑚, ≼𝑠, ≼𝑢, ≼𝑙  are compared with ≼𝑚1
and ≼𝑚2

.  

 

Proposition 3.1. Let 𝐴, 𝐵 ∈ 𝒫(𝑌).   

i. If 𝐵−̇𝐴 ≠ ∅ and 𝐴 ≼𝑐 𝐵 then 𝐴 ≼𝑚1
𝐵 and if 𝐴−̇𝐵 ≠ ∅ and 𝐴 ≼𝑐 𝐵 then 𝐴 ≼𝑚2

𝐵, 

ii. 𝐴 ≼𝑚1
𝐵 does not always imply  𝐴 ≼𝑐 𝐵 and 𝐴 ≼𝑚2

𝐵 does not imply  𝐴 ≼𝑐 𝐵. 

 

Proof: i. Let 𝐴 ≼𝑐 𝐵. If 𝐴 = 𝐵 then it is obvious that 𝐴 ≼𝑚1
𝐵. If 𝐴 ≠ 𝐵 then, by Proposition 2.5,  

𝐵 − 𝐴 ⊂ 𝐾. Since 𝐵−̇𝐴 ⊂ 𝐵 − 𝐴 we have 𝐵−̇𝐴 ⊂ 𝐾 which completes the proof.  

ii. See Example 3.2. 

  

Example 3.2. Let 𝑌 = ℝ2, 𝐾 = ℝ+
2 , 𝐶 = 𝐵((0,0), 1) and 𝐷 = 𝐵((0,0), 2). Then 𝐷−̇𝐶 = 𝐶. Hence, 

(𝐷−̇𝐶) ∩ 𝐾 ≠ ∅ and (𝐷−̇𝐶) ∩ (−𝐾) ≠ ∅. Then, we have 𝐶 ≼𝑚1
𝐷 and 𝐷 ≼𝑚2

𝐶, respectively. 

However, 𝐶 − 𝐷 = 𝐷 − 𝐶 = 𝐵((0,0), 3) ⊄ 𝐾 which means 𝐷 ⋠𝑐 𝐶 and 𝐶 ⋠𝑐 𝐷.  

 

Proposition 3.3.[8] Let 𝐴, 𝐵 ∈ 𝒫(𝑌). Then,  

i. 𝐴 ≼𝑚1
𝐵 ⟹  𝐴 ≼𝑢 𝐵 and 𝐴 ≼𝑚2

𝐵 ⟹  𝐴 ≼𝑙 𝐵, 

ii. 𝐴 ≼𝑢 𝐵 does not imply 𝐴 ≼𝑚1
𝐵 and 𝐴 ≼𝑙 𝐵 does not imply 𝐴 ≼𝑚2

𝐵. 

 

Proposition 3.4. Let 𝐴, 𝐵 ∈ 𝒫(𝑌). Then, the following relations are satisfied: 

i. If 𝐴 ≼𝑙 𝐵, 𝐵−̇𝐴 ≠ ∅ and 𝐴 is 𝐾-bounded then 𝐴 ≼𝑚1
𝐵. 

ii. If 𝐴 ≼𝑢 𝐵, 𝐴−̇𝐵 ≠ ∅ and 𝐵 is −𝐾-bounded then 𝐴 ≼𝑚2
𝐵. 

iii. 𝐴 ≼𝑚1
𝐵 does not imply 𝐴 ≼𝑙 𝐵 and 𝐴 ≼𝑚2

𝐵 does not imply 𝐴 ≼𝑢 𝐵. 

 

Proof: i. Let 𝐴 ≼𝑙 𝐵 and 𝑦 ∈  𝐵−̇𝐴. Then 𝐵 ⊂ 𝐴 + 𝐾 and 𝑦 + 𝐴 ⊂ 𝐵. This implies 
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𝑦 + 𝐴 ⊂ 𝐵 ⊂ 𝐴 + 𝐾. 

 

                                (3.1) 

Let 𝑎 be a fixed arbitrary element of 𝐴. From (3.1) there exists 𝑎1 ∈ 𝐴 such that 𝑦 + 𝑎 ∈ 𝑎1 + 𝐾. For 

𝑎1 ∈ 𝐴 there exists 𝑎2 ∈ 𝐴 such that 𝑦 + 𝑎1 ∈ 𝑎2 + 𝐾. By this way, we construct a sequence {𝑎𝑛} in 𝐴 

which satisfies 𝑦 + 𝑎𝑛−1 ∈ 𝑎𝑛 + 𝐾 for all 𝑛 ∈ ℕ. Since 𝐾 is a convex cone we have  

𝑛𝑦 + 𝑎 + 𝑎1 + 𝑎2 + ⋯ + 𝑎𝑛−1 ∈ 𝑎1 + 𝑎2 + ⋯ + 𝑎𝑛 + 𝐾 

for all 𝑛 ∈ ℕ. Hence, 𝑦 ∈
𝑎𝑛−𝑎

𝑛
+ 𝐾 for all 𝑛 ∈ ℕ. Since 𝐴 is 𝐾-bounded so is 𝐴 − 𝑎. Thus, for closed 

unit ball 𝐵(0𝑌, 1) there exists 𝑡 ∈ ℝ such that  

𝑦 ∈
𝑎𝑛 − 𝑎

𝑛
+ 𝐾 ⊂

𝐴 − 𝑎

𝑛
+ 𝐾 ⊂

𝑡

𝑛
𝐵(0𝑌, 1) + 𝐾.   

 

         (3.2) 

As 𝐾 is closed we obtain 𝑦 ∈ 𝐾 by taking limit 𝑛 → ∞ in (3.2). Hence, 𝐵−̇𝐴 ⊂ 𝐾 which implies 

𝐴 ≼𝑚1
𝐵.  

ii. It can be proved similar to (i).  

iii. See Example 3.5.  

 

Example 3.5. Let 𝑌 = ℝ2,  𝐾 = ℝ+
2 ,  𝐴 = 𝐵((0,0), 1),  𝐵 = [−1,1] × [−1,1]. Since 𝐵−̇𝐴 = {(0,0)},  

we have (𝐵−̇𝐴) ∩ 𝐾 ≠ ∅ and (𝐵−̇𝐴) ∩ (−𝐾) ≠ ∅. So, 𝐴 ≼𝑚1
𝐵 and 𝐵 ≼𝑚2

𝐴, respectively. In 

addition, since 𝐵 ⊄ 𝐴 + 𝐾 and 𝐵 ⊄ 𝐴 − 𝐾,  it follows that 𝐴 ⋠𝑙 𝐵 and 𝐵 ⋠𝑢 𝐴, respectively.  

  

Observe that Proposition 3.4 (i) may not be true without 𝐾-boundedness of 𝐴 or the condition 𝐵−̇𝐴 ≠ ∅ 

as shown in the following example.  

 

Example 3.6. Let 𝑌 = ℝ2,  𝐾 = ℝ+
2 ,  𝐴 = 𝐵((0,0), 2),  𝐶 = 𝐵((2,2), 1). It is obvious that 𝐴 ≼𝑙 𝐶 and 

𝐶−̇𝐴 = ∅. So, we have 𝐴 ⋠𝑚1
𝐶.  

 In addition, let 𝐶 = {0} × (−∞, 0], 𝐷 = (0, ∞) × (−∞, 0). It can be seen that 𝐶 is not 𝐾-bounded 

and 𝐶 ≼𝑙 𝐷. Since, 𝐷−̇𝐶 = 𝐷 and 𝐷 ∩ 𝐾 = ∅ we obtain 𝐶 ⋠𝑚1
𝐷. 

  

 The following corollary is obtained directly from the definition of ≼𝑠, Proposition 3.3 and 

Proposition 3.4.  

 

Corollary 3.7. Let 𝐴, 𝐵 ∈ 𝒫(𝑌), 𝐴 be 𝐾-bounded, 𝐵 be −𝐾-bounded, 𝐵−̇𝐴 ≠ ∅, 𝐴−̇𝐵 ≠ ∅  and 𝐾 be 

closed. Then, 

𝐴 ≼𝑠 𝐵 ⟺ 𝐴 ≼𝑚1
𝐵 and 𝐴 ≼𝑚2

𝐵. 

 

 The following example shows that 𝐴 ≼𝑠 𝐵 does not always imply 𝐴 ≼𝑚1
𝐵 and 𝐴 ≼𝑚2

𝐵. 

Example 3.8. Let 𝑌 = ℝ2, 𝐾 = ℝ+
2 . 

i. If 𝐴 = {(−1,0)} ∪ 𝑖𝑛𝑡 𝐾, 𝐵 = {(0,0)} ∪ 𝑖𝑛𝑡 𝐾, then we have 𝐴 ≼𝑠 𝐵. Since 𝐴−̇𝐵 = 𝑖𝑛𝑡 𝐾 and 

(𝐴−̇𝐵) ∩ (−𝐾) = ∅ we get 𝐴 ⋠𝑚2
𝐵. 

ii. For 𝐴 = {(0,0)} ∪ (−𝑖𝑛𝑡𝐾), 𝐵 = {(1,0)} ∪ (−𝑖𝑛𝑡𝐾) one can see that 𝐵−̇𝐴 = −𝑖𝑛𝑡 𝐾  and 

hence 𝐴 ⋠𝑚1
𝐵. Furthermore we have 𝐴 ≼𝑠 𝐵.  

 

Remark 3.9. In Example 3.8 (i), as 𝐵−̇𝐴 = {(1,0)} + 𝑖𝑛𝑡 𝐾 we have  𝐴 ≼𝑚1
𝐵. Therefore, 𝐴 ≼𝑚1

𝐵 

does not imply 𝐴 ≼𝑚2
𝐵. In addition in Example 3.8 (ii), since 𝐴−̇𝐵 = {(−1,0)} − 𝑖𝑛𝑡 𝐾 we obtain 

𝐴 ≼𝑚2
𝐵. Hence, 𝐴 ≼𝑚1

𝐵 does not necessarily follow from 𝐴 ≼𝑚2
𝐵.  

 

Corollary 3.10. Let 𝐴, 𝐵 ∈ ℳ0,  𝐵−̇𝐴 ≠ ∅, 𝐴 be  𝐾-bounded and 𝐾 be closed. Then, the following are 

satisfied: 

i. If 𝐴 ≼𝑚 𝐵 then 𝐴 ≼𝑚1
𝐵, 

ii. If 𝐴 ≼𝑚𝑛 𝐵 then 𝐴 ≼𝑚1
𝐵, 
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iii. 𝐴 ≼𝑚1
𝐵 does not imply 𝐴 ≼𝑚 𝐵 and 𝐴 ≼𝑚𝑛 𝐵.  

 

Proof: (i) and (ii) are proved by using Proposition 2.9 and Proposition 3.4. For (iii) see Example 3.12. 

 

Corollary 3.11. Let 𝐴, 𝐵 ∈ ℳ0, 𝐴−̇𝐵 ≠ ∅, 𝐵 be −𝐾-bounded and 𝐾 be closed. Then, the following are 

satisfied: 

i. If 𝐴 ≼𝑚 𝐵 then 𝐴 ≼𝑚2
𝐵, 

ii. If 𝐴 ≼𝑚𝑛 𝐵 then 𝐴 ≼𝑚2
𝐵, 

iii. 𝐴 ≼𝑚2
𝐵 does not imply 𝐴 ≼𝑚 𝐵 and 𝐴 ≼𝑚𝑛 𝐵.  

 

Proof: (i) and (ii) can be proved similar with Corollary 3.10 (i,ii). For (iii) see Example 3.12.  

 

Example 3.12. Let 𝐵 = [−2,1] × [−1,1] and 𝐴 = 𝐵((0,0), 1). As 𝐵−̇𝐴 = [−1,0] × {0} we have 

𝐴 ≼𝑚1
𝐵. Since min 𝐴 = { (𝑥, 𝑦) ∣∣ 𝑥2 + 𝑦2 = 1, 𝑥, 𝑦 ≤ 0 }, min 𝐵 = {(−2, −1)} we have min 𝐵 ⊄

min 𝐴 + 𝐾. So, min 𝐴 ⋠𝑠 min 𝐵 i.e. 𝐴 ⋠𝑚 𝐵. In addition, max 𝐴 = { (𝑥, 𝑦) ∣∣ 𝑥2 + 𝑦2 = 1, 𝑥, 𝑦 ≥ 0 }. 

Since min 𝐵 ⊄ max 𝐴 + 𝐾,  max 𝐴 ⋠𝑠 min 𝐵. Hence, we get 𝐴 ⋠𝑚𝑛 𝐵. 
 

Also, we have 𝐵 ≼𝑚2
𝐴. Since max 𝐵 ⋠𝑠 max 𝐴 and max 𝐵 ⋠𝑠 min 𝐴  it follows that 𝐵 ⋠𝑚 𝐴 and 

𝐵 ⋠𝑚𝑛 𝐴, 
 respectively.  

 

Remark 3.13: In Corollary 3.10 and Corollary 3.11 quasi domination property cannot be omitted. For 

example, if 𝐾 = ℝ+
2 , 𝐴 = {0} × [0,1] and 𝐵 = {(0,1)} ∪ ((0, ∞) × (−∞, 0)), then it is obvious that 

𝐵 ∉ ℳ0, min 𝐴 = {(0,0)},min 𝐵 = max 𝐵 = max 𝐴 = {(0,1)}, 𝐵−̇𝐴 = (0, ∞) × (−∞, −1). So, 

𝐴 ≼𝑚 𝐵, 𝐴 ≼𝑚𝑛 𝐵 and 𝐴 ⋠𝑚1
𝐵. A similar example can be given for Corollary 3.11. 

 

Theorem 3.14. Let 𝐴, 𝐵 ∈ ℳ0 and  𝐴 ≼𝑚𝑐 𝐵. The following relations are satisfied:  

i. If 𝐵−̇𝐴 ≠ ∅ then 𝐴 ≼𝑚1
𝐵,  

ii. If 𝐴−̇𝐵 ≠ ∅ then 𝐴 ≼𝑚2
𝐵, 

iii. Neither 𝐴 ≼𝑚1
𝐵 nor 𝐴 ≼𝑚2

𝐵 imply 𝐴 ≼𝑚𝑐 𝐵. 

 

Proof: i.  𝐴 ≼𝑚𝑐 𝐵 means 𝐴 = 𝐵 or 𝐴 ≠ 𝐵 and  

 

min 𝐴 ≼𝑐 min 𝐵,      max 𝐴 ≼𝑐 max 𝐵.    (3.3) 

 

If 𝐴 = 𝐵, the proof is completed. Consider the case 𝐴 ≠ 𝐵. Let 𝑦 ∈ 𝐵−̇𝐴, i.e. 𝑦 + 𝐴 ⊂ 𝐵. Since 𝐵 ∈
ℳ0  and min 𝐴 ⊂ 𝐴 we have  

𝑦 + min 𝐴 ⊂ 𝑦 + 𝐴 ⊂ 𝐵 ⊂ min 𝐵 + 𝐾. 
Then, for arbitrary 𝑎 ∈ min 𝐴 there exists 𝑏 ∈ min 𝐵 and 𝑘 ∈ 𝐾 such that 𝑦 + 𝑎 = 𝑏 + 𝑘. Hence, 𝑦 =
𝑏 − 𝑎 + 𝑘. From (3.3) 𝑎 ≤𝐾 𝑏, i.e. 𝑏 − 𝑎 ∈ 𝐾. In addition, by convexity of 𝐾 we obtain 𝑦 = 𝑏 − 𝑎 +
𝑘 ∈ 𝐾 + 𝐾 ⊂ 𝐾. So, 𝐵−̇𝐴 ⊂ 𝐾 which gives 𝐴 ≼𝑚1

𝐵.  

ii.  It can be proved similar to (i).        

iii. See Example 3.15. 

 

Example 3.15. Let 𝐾 = ℝ+
2 , 𝐴 = 𝐵((0,0), 1), 𝐶 = 𝐵((1,0), 1). It is clear that 𝐶−̇𝐴 = {(1,0)} and  

𝐴 ≼𝑚1
𝐶. Also min 𝐴 = {(𝑥, 𝑦) ∣ 𝑥2 + 𝑦2 = 1, 𝑥, 𝑦 ≤ 0}, min 𝐶 = {(𝑥, 𝑦) ∣ (𝑥 − 1)2 + 𝑦2 = 1, 𝑥 ≤

1, 𝑦 ≤ 0}. Thus, (−1,0) ∈ min 𝐴, (1, −1) ∈ min 𝐶 and (−1,0) ≰𝐾 (1, −1). Therefore, we have 

min 𝐴 ⋠𝑐 min 𝐶 which implies A ⋠𝑚𝑐 𝐶. 
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Remark 3.16. The example given in Remark 3.13 shows that quasi domination property of 𝐵 in 

Theorem 3.14 (ii) is necessary. In this example, 𝐵 does not have quasi domination property. In addition, 

𝐴 ≼𝑚𝑐 𝐵, A ⋠𝑚1
𝐵. Furthermore, since 𝐴−̇𝐵 = ∅ we have A ⋠𝑚2

𝐵. 

 

4. RELATIONS BETWEEN WEAK MINIMAL ELEMENTS WITH RESPECT TO VECTOR 

AND SET OPTIMIZATON CRITERIA 

 

In this section, set of weak minimal elements of a set optimization problem with respect to vector and 

set optimization criteria are compared.  

 

Lemma 4.1. Let 𝒮 ⊂ 𝒫(𝑌). Then 𝐴 ∈ 𝑐 − 𝑤 min  𝒮 if and only if there is no 𝐵 ∈  𝒮 such that 𝐵 ≺𝑐 𝐴.  
 

Proof: Suppose that 𝐵 ∈  𝒮 and 𝐵 ≺𝑐 𝐴. Hence, 𝑏 <𝐾 𝑎 i.e. 𝑎 − 𝑏 ∈ 𝑖𝑛𝑡 𝐾 for all 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. As 

𝐴 ∈ 𝑐 − min  𝒮 we have 𝐴 ≺𝑐 𝐵 which means 𝑎 <𝐾 𝑏 i.e. 𝑎 − 𝑏 ∈ −𝑖𝑛𝑡 𝐾 for all 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵.   
This contradicts with pointedness of 𝐾.  
 

Lemma 4.2. Let 𝒮 ⊂ ℳ. Then 𝐴 ∈ 𝑚𝑐 − 𝑤 min  𝒮 if and only if there is no 𝐵 ∈  𝒮 such that 𝐵 ≺𝑚𝑐 𝐴.  
 

Proof: Let 𝐴 ∈ 𝑚𝑐 − min  𝒮. Suppose there exists 𝐵 ∈  𝒮 such that 𝐵 ≺𝑚𝑐 𝐴. Since 𝐴 ∈ 𝑚𝑐 −
𝑤 min  𝒮, we get 𝐴 ≺𝑚𝑐 𝐵. Hence, we obtain  

min 𝐴 ≺𝑐 min 𝐵, max 𝐴 ≺𝑐 max 𝐵
min 𝐵 ≺𝑐 min 𝐴, max 𝐵 ≺𝑐 max 𝐴.

 

So, we have min 𝐴 ≺𝑐 min 𝐴 and max 𝐴 ≺𝑐 max 𝐴 which is a contradiction.  

 

The converse is obtained directly from the definition of weak 𝑚𝑐-minimal element.  

 

Lemma 4.3. Let 𝒮 ⊂ ℳ0. Then 𝐴 ∈ 𝑚𝑛 − w min  𝒮 if and only if there is no 𝐵 ∈  𝒮 such that 𝐵 ≺𝑚𝑛 𝐴. 
 

Proof: Let 𝐴 ∈ 𝑚𝑛 − w min  𝒮 and there exist 𝐵 ∈  𝒮 such that 𝐵 ≺𝑚𝑛 𝐴. Then,   

min 𝐴 ⊂ max 𝐵 + 𝑖𝑛𝑡(𝐾). (4.1) 

 

As 𝐴 ∈ 𝑚𝑛 − w min  𝒮 we have 𝐴 ≺𝑚𝑛 𝐵 which implies   

 

min 𝐵 ⊂ max 𝐴 + 𝑖𝑛𝑡(𝐾). (4.2) 

  

From (4.1), (4.2), convexity of 𝐾 and since 𝐴, 𝐵 ∈ ℳ0 we get 

 

min 𝐴 ⊂ max 𝐵 + 𝑖𝑛𝑡(𝐾) ⊂ 𝐵 + 𝑖𝑛𝑡 𝐾 ⊂ min 𝐵 + 𝑖𝑛𝑡𝐾 ⊂ max 𝐴 + 𝑖𝑛𝑡(𝐾). 

  

Hence, for arbitrary 𝑦 ∈ min 𝐴 there exist  �̃� ∈ max 𝐴 and 𝑘 ∈ 𝑖𝑛𝑡(𝐾) such that 𝑦 = �̃� + 𝑘. We, 

therefore, obtain �̃� <𝐾 𝑦 that contradicts to 𝑦 ∈ min 𝐴. 

 

The definition of weak 𝑚𝑛-minimal element implies the converse statement.   

 

Lemma 4.4. Let 𝒮 ⊂ ℳ. Then 𝐴 ∈ 𝑚 − w min  𝒮 if and only if there is no 𝐵 ∈  𝒮 such that 𝐵 ≺𝑚 𝐴. 
 

Proof: Let 𝐴 ∈ 𝑚 − w min  𝒮. Suppose that there exist 𝐵 ∈ 𝒮 satisfying 𝐵 ≺𝑚 𝐴. Since 𝐴 ∈ 𝑚 −
w min  𝒮 we get 𝐴 ≺𝑚 𝐵. So, we have  min 𝐵 ⊂ min 𝐴 + 𝑖𝑛𝑡(𝐾) and min 𝐴 ⊂ min 𝐵 + 𝑖𝑛𝑡(𝐾). 
Since 𝐾 is convex min 𝐵 + 𝑖𝑛𝑡𝐾 ⊂ min 𝐴 + 𝑖𝑛𝑡(𝐾) + 𝑖𝑛𝑡 (𝐾) ⊂ min 𝐴 + 𝑖𝑛𝑡 𝐾. Hence,  

min 𝐴 ⊂ min 𝐴 + 𝑖𝑛𝑡(𝐾). Then, for any 𝑦 ∈ min 𝐴 there exists  �̃� ∈ min 𝐴 such that  �̃� <𝐾 𝑦 which 

contradicts to 𝑦 ∈ min 𝐴. 
The converse can be proved by using the definition of weak 𝑚-minimal element.  
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Lemma 4.5: Let 𝒮 ⊂ 𝒫(𝑌), 𝐴 ∈ 𝒮, 𝑤 min 𝐴 ≠ ∅ or 𝑤 max 𝐴 ≠ ∅.  Then 𝐴 ∈ 𝑠 − 𝑤 min 𝐴 if and only 

if there is not any 𝐵 ∈ 𝒮 such that 𝐵 ≺𝑠 𝐴.  

 

Proof: Let 𝐴 ∈ 𝑠 − 𝑤 min 𝐴 and 𝑤 min 𝐴 ≠ ∅. Assume that there exists 𝐵 ∈ 𝒮 such that 𝐵 ≺𝑠 𝐴. Since 

𝐴 ∈  𝑠 − 𝑤 min 𝐴 we have 𝐴 ≺𝑠 𝐵.  So, we obtain 𝐴 ⊂ 𝐵 + 𝑖𝑛𝑡(𝐾), 𝐴 ⊂ 𝐵 − 𝑖𝑛𝑡(𝐾), 𝐵 ⊂ 𝐴 + 𝑖𝑛𝑡(𝐾) 

and 𝐵 ⊂ 𝐴 − 𝑖𝑛𝑡(𝐾). Hence,  

𝐴 ⊂ 𝐴 + 𝑖𝑛𝑡(𝐾) (4.3) 

𝐴 ⊂ 𝐴 − 𝑖𝑛𝑡(𝐾). (4.4) 

 

Therefore, 𝑤 min 𝐴 ⊂ 𝐴 ⊂ 𝐴 + 𝑖𝑛𝑡 𝐾. So, for any 𝑎 ∈ 𝑤 min 𝐴 there exists  �̃� ∈ 𝐴 such that  �̃� <𝐾 𝑎 

which contradicts with 𝑎 ∈ 𝑤 min 𝐴 ≠ ∅.  
 

If we suppose 𝑤 max 𝐴 ≠ ∅ then (4.4) contradicts with 𝑤 max 𝐴 ≠ ∅. 
 

The converse is obtained directly from the definition of weak 𝑠-minimal element.  

 

Lemma 4.6 [9]: Let 𝒮 ⊂ 𝒫(𝑌), 𝐴 ∈ 𝒮,  𝑤 min 𝐴 ≠ ∅. Then 𝐴 ∈ 𝑙 − 𝑤 min 𝐴 if and only if there is not 

any 𝐵 ∈ 𝒮 such that 𝐵 ≺𝑙 𝐴.  

 

Following theorems state that every weak minimal solution of the set valued optimization problem (𝑃) 

with respect to vector optimization criterion is also a weak minimal solution of (∗ −𝑃) where  

∗∈ {𝑐, 𝑚𝑐, 𝑚𝑛, 𝑚, 𝑠, 𝑙} .    

 

Theorem 4.7: 𝑤𝐸𝑓𝑓(𝐹, 𝑋) ⊂ 𝑐 − 𝑤𝐸𝑓𝑓(𝐹, 𝑋).  
 

Proof: Let 𝑥0 ∈ 𝑤𝐸𝑓𝑓(𝐹, 𝑋) and  (𝑥0, 𝑦0) be a weak minimizer of (𝑃). Assume that 𝑥0 ∉ 𝑐 −
𝑤𝐸𝑓𝑓(𝐹, 𝑋). So there is  �̃� ∈ 𝑋 such that 𝐹(�̃�) ≺𝑐 𝐹(𝑥0). So we have 𝑦 <𝐾  𝑦0 for all 𝑦 ∈ 𝐹(�̃�). This 

contradicts with 𝑦0 ∈ 𝑤 min 𝐹(𝑋).  
 

Theorem 4.8. [9] If 𝑥0 ∈ 𝑋 is a weak minimal solution of (𝑃) then 𝑥0 is weak minimal solution of 
(𝑙 − 𝑃). 

 

Theorem 4.9. 𝑤𝐸𝑓𝑓(𝐹, 𝑋) ⊂ 𝑠 − 𝑤𝐸𝑓𝑓(𝐹, 𝑋). 
Proof: Let 𝑥0 ∈ 𝑤𝐸𝑓𝑓(𝐹, 𝑋). Theorem 4.8 gives that 𝑥0 is weak 𝑙-minimal solution. Suppose that 𝑥0 ∉
𝑠 − 𝑤𝐸𝑓𝑓(𝐹, 𝑋). Then from Lemma 4.5 there exists  �̃� ∈ 𝑋 satisfying 𝐹(�̃�) ≺𝑠 𝐹(𝑥0). So, we get 

𝐹(�̃�) ≺𝑙 𝐹(𝑥0) that contradicts with weak 𝑙 −minimality of 𝑥0 by Lemma 4.6. 

 

The following theorem is a result of Theorem 4.9, Proposition 2.13 and Lemma 4.2-4.5.  

 

Theorem 4.10. Let 𝐹 has quasi domination property (i.e. 𝐹(𝑥) ∈ ℳ0 for all 𝑥 ∈ 𝑋). 

Then 𝑤𝐸𝑓𝑓(𝐹, 𝑋) ⊂ 𝑚𝑛 − 𝑤𝐸𝑓𝑓(𝐹, 𝑋),  𝑤𝐸𝑓𝑓(𝐹, 𝑋) ⊂ 𝑚𝑐 − 𝑤𝐸𝑓𝑓(𝐹, 𝑋), 𝑤𝐸𝑓𝑓(𝐹, 𝑋) ⊂ 𝑚 −
𝑤𝐸𝑓𝑓(𝐹, 𝑋) .  
 

Proof: Suppose 𝑥0 ∈ 𝑤𝐸𝑓𝑓(𝐹, 𝑋) but 𝑥0 ∉ 𝑚𝑛 − 𝑤𝐸𝑓𝑓(𝐹, 𝑋). Then from Lemma 4.3 there exists  �̃� ∈
𝑋 satisfying 𝐹(�̃�) ≺𝑚𝑛 𝐹(𝑥0).  So, from Proposition 2.13 we obtain 𝐹(�̃�) ≺𝑠 𝐹(𝑥0). However, 

Theorem 4.9 gives that 𝑥0 is a weak 𝑠- minimal solution which contradicts the inequality 

𝐹(�̃�) ≺𝑠 𝐹(𝑥0). 
 

Proof can be done similar for the problems  (𝑚𝑐 − 𝑃) and (𝑚 − 𝑃). 
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Remark 4.11. Quasi domination property is necessary in Theorem 4.10. For example, if the set valued 

map 𝐹: {1,2} → ℝ2 is defined as 𝐹(1) = {(−1,1)} ∪ { (0, 𝑦) ∣∣ 𝑦 < 0 } and 𝐹(2) = {(−2,0)} ∪
{ (0, 𝑦) ∣∣ 𝑦 < 0 }, then it is obvious that 𝐹(1) and 𝐹(2) don’t have quasi domination property.  As 

𝑤 min(𝐹(1) ∪ 𝐹(2)) = {(−2,0)} ∪ { (0, 𝑦) ∣∣ 𝑦 < 0 } we obtain (1, (0, −1)) and (2, (0, −1)) is a weak 

minimizer of (𝑃). Hence, 𝑥0 = 1 and 𝑥0 = 2 weak minimal solutions of (𝑃).  
 

In addition, since min 𝐹(1) = max 𝐹(1) = {(−1,1)}, min 𝐹(2) = max 𝐹(2) = {(−2,0)} we have  

 𝐹(2) ≺𝑚𝑐 𝐹(1), 𝐹(2) ≺𝑚𝑛 𝐹(1), 𝐹(2) ≺𝑚 𝐹(1).  So, 𝑥0 = 1 is the unique weak minimal solution of 

(𝑚𝑐 − 𝑃), (𝑚𝑛 − 𝑃) and (𝑚 − 𝑃).  

 

A similar result for relation ≼𝑚2
 was obtained by Khushboo and Lalitha in [14].  
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