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Branched continued fraction representations of ratios of Horn’s
confluent function H6

TAMARA ANTONOVA, ROMAN DMYTRYSHYN*, AND SERHII SHARYN

ABSTRACT. In this paper, we derive some branched continued fraction representations for the ratios of the Horn’s
confluent function H6. The method employed is a two-dimensional generalization of the classical method of constructing
of Gaussian continued fraction. We establish the estimates of the rate of convergence for the branched continued fraction
expansions in some region Ω (here, region is a domain (open connected set) together with all, part or none of its
boundary). It is also proved that the corresponding branched continued fractions uniformly converge to holomorphic
functions on every compact subset of some domain Θ, and that these functions are analytic continuations of the ratios
of double confluent hypergeometric series in Θ. At the end, several numerical experiments are represented to indicate
the power and efficiency of branched continued fractions as an approximation tool compared to double confluent
hypergeometric series.
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1. INTRODUCTION

This paper deals with branched continued fraction representations for the ratios of the Horn’s
confluent function H6, which occurs in [27] (see also [24, Subsection 5.7.1]) of second-order
hypergeometric series of two variables. The branched continued fraction representations under
consideration will be two-dimensional generalization of the classical Gaussian continued fraction,
or rather its confluent case. Necessarily, due to the convergence of branched continued frac-
tions, this requires restrictions on the allowed values of the parameters of the Horn’s confluent
function H6.

J. Horn [27] listed all convergent hypergeometric series of the second order: 14 complete
series, including Appell’s hypergeometric series F1, F2, F3, and F4, dating back to 1880 [6], and
20 of their confluent cases. In [24, Section 5.9], for each function in Horn’s list a system of two
partial differential equations is given, which has this function as a solution. For the basics of
hypergeometric functions of two variables, see, for instance, [7, Chapter 9], [24, Section 5.9–2.12],
and [25, Chapter 1].

In order for a branched continued fraction to be a representation of a function, it is required
to solve such problems: to construct the branched continued fraction expansion, to prove the
convergence of the constructed expansion, and last, more important, to prove the convergence
of the branched continued fraction to the function of which it is an expansion.

For Appell’s hypergeometric functions, branched continued fraction representations were
derived in [8, pp. 244–252] for F1, in [15] for F3, and in [16, 26] for F4. A branched continued
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fraction expansion for function F2 was constructed in [13], but the problem of its convergence
remains open. In [1], it is represented a branched continued fraction representations for the
Horn’s function H3. At last, in [18], it is indicated which three- and four-term recurrent relations
give similar expansions for the Horn’s function H4. Some interesting and different branched
continued fraction representations of other hypergeometric series can be found in [2, 3, 14, 28, 29,
31], and some special analytic functions of one or several variables in [19, 20, 21, 22, 23, 30, 32].

The contents of this paper are as follows. In Section 2, we derive three different formal
branched continued fraction expansions for three different ratios of the Horn’s confluent func-
tion H6. In Section 3, we establish the estimates of the rate of convergence for the branched
continued fractions mentioned above. We also prove that the branched continued fraction
expansions converge to the functions, which are analytic continuations of Horn’s confluent
function H6 ratios in some domain (here, domain is an open connected set), i.e., our main result
is formulated in the Theorem 3.3. Finally, in Section 4, we present some numerical experiments
to indicate the power and efficiency of branched continued fractions as an approximation tool
compared to double confluent hypergeometric series.

2. EXPANSIONS

The Horn’s confluent function H6 [27] is defined as double power series by

H6(a, c; z) =

∞∑
m,n=0

(a)2m+n

(c)m+n

zm1 z
n
2

m!n!
, |z1| < 1/4,(2.1)

where a, c are complex numbers, c 6∈ {0,−1,−2, . . .}, (·)k is the Pochhammer symbol, z =
(z1, z2) ∈ C2.

Throughout the paper, let [·] be an integer part of a number. We set I0 = {1, 2, 3} and for
k ∈ N we introduce the following sets of multiindices

Ik = {i(k) = (i0, i1, i2, . . . , ik) : i0 ∈ I0, 2− [(ir−1 − 1)/2] ≤ ir ≤ 3− [(ir−1 − 1)/2], 1 ≤ r ≤ k}.

Using the idea of combining several branched continued fraction expansions into one form
using the Kronecker delta symbol, proposed in [1], we will prove the following theorem.

Theorem 2.1. Let for all i0 ∈ I0

Ri0(a, c; z) =
H6(a, c; z)

H6(a+ δ1i0 + δ2i0 , c+ δ2i0 + δ3i0 ; z)
,(2.2)

where δji is the Kronecker delta. Then for each i0 ∈ I0, the ratio Ri0(a, c; z) has a formal branched
continued fraction expansion of the form

1− a

2c
δ3i0 +

3−[(i0−1)/2]∑
i1=2−[(i0−1)/2]

Pi(1)(z)

Qi(1) +

3−[(i1−1)/2]∑
i2=2−[(i1−1)/2]

Pi(2)(z)

Qi(2) +
. . . ,(2.3)
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where for i(1) ∈ I1
Pi(1)(z) = pi0,i1(a, c; z)

=



−2
a+ 1

c
z1, if i0 = 1, i1 = 2,

−z2
c
, if i0 = 1, i1 = 3,

−(2c− a)(a+ 1)

c(c+ 1)
z1, if i0 = 2, i1 = 2,

− c− a
c(c+ 1)

z2, if i0 = 2, i1 = 3,

a

2c
, if i0 = 3, i1 = 1,
a

2c(c+ 1)
z2, if i0 = 3, i1 = 2,

(2.4)

for i(k + 1) ∈ Ik+1, k ≥ 1,

Pi(k+1)(z) = pik,ik+1

(
a+ k −

k−1∑
r=0

δ3ir , c+ k −
k−1∑
r=0

δ1ir ; z

)

=



−
2(a+ k −

∑k−1
r=0 δ

3
ir

+ 1)

c+ k −
∑k−1

r=0 δ
1
ir

z1, if ik = 1, ik+1 = 2,

− z2

c+ k −
∑k−1

r=0 δ
1
ir

, if ik = 1, ik+1 = 3,

−
(2c− a+ k +

∑k−1
r=0(δ3ir − 2δ1ir ))(a+ k −

∑k−1
r=0 δ

3
ir

+ 1)

(c+ k −
∑k−1

r=0 δ
1
ir

)(c+ k −
∑k−1

r=0 δ
1
ir

+ 1)
z1, if ik = 2, ik+1 = 2,

−
c− a+

∑k−1
r=0(δ3ir − δ

1
ir

)

(c+ k −
∑k−1

r=0 δ
1
ir

)(c+ k −
∑k−1

r=0 δ
1
ir

+ 1)
z2, if ik = 2, ik+1 = 3,

a+ k −
∑k−1

r=0 δ
3
ir

2(c+ k −
∑k−1

r=0 δ
1
ir

)
, if ik = 3, ik+1 = 1,

a+ k −
∑k−1

r=0 δ
3
ir

2(c+ k −
∑k−1

r=0 δ
1
ir

)(c+ k + 1−
∑k−1

r=0 δ
1
ir

)
z2, if ik = 3, ik+1 = 2,

(2.5)

and for i(k) ∈ Ik, k ≥ 1,

Qi(k) = qik

(
a+ k −

k−1∑
r=0

δ3ir , c+ k −
k−1∑
r=0

δ1ir

)

= 1−
a+ k −

∑k−1
r=0 δ

3
ir

2(c+ k −
∑k−1

r=0 δ
1
ir

)
δ3ik .(2.6)

Proof. The formal identities

H6(a, c; z) = H6(a+ 1, c; z)− 2(a+ 1)

c
z1H6(a+ 2, c+ 1; z)− 1

c
z2H6(a+ 1, c+ 1; z),(2.7)

H6(a, c; z) = H6(a+ 1, c+ 1; z)− (a+ 1)(2c− a)

c(c+ 1)
z1H6(a+ 2, c+ 2; z)

− c− a
c(c+ 1)

z2H6(a+ 1, c+ 2; z),(2.8)
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and

H6(a, c; z) =
a

2c
H6(a+ 1, c+ 1; z) +

2c− a
2c

H6(a, c+ 1; z)

+
a

2c(c+ 1)
z2H6(a+ 1, c+ 2; z)(2.9)

are easily verified from (2.1). Dividing (2.7) by H6(a + 1, c; z), (2.8) by H6(a + 1, c + 1; z), and
(2.9) by H6(a, c+ 1; z), we get

R1(a, c; z) = 1− 2(a+ 1)

c
z1

1

R2(a+ 1, c; z)
− 1

c
z2

1

R3(a+ 1, c; z)
,(2.10)

R2(a, c; z) = 1− (a+ 1)(2c− a)

c(c+ 1)
z1

1

R2(a+ 1, c+ 1; z)
− c− a
c(c+ 1)

z2
1

R3(a+ 1, c+ 1; z)
(2.11)

and

R3(a, c; z) =
2c− a

2c
+

a

2c

1

R1(a, c+ 1; z)
+

a

2c(c+ 1)
z2

1

R2(a, c+ 1; z)
,(2.12)

respectively. It is obvious that for i ∈ I0 the identities (2.10)–(2.12) can be written as

Ri(a, c; z) = 1− a

2c
δ3i +

3−[(i−1)/2]∑
j=2−[(i−1)/2]

pi,j(a, c; z)

Rj(a+ 1− δ3i , c+ 1− δ1i ; z)
,(2.13)

where pi,j(a, c; z), (i, j) ∈ I1 are defined as (2.4).
Now, we can construct branched continued fractions for ratios Ri0(a, c; z) for all i0 ∈ I0.

Setting i = i0, on the first step, from (2.13) for i0 ∈ I0, we obtain

Ri0(a, c; z) = 1− a

2c
δ3i0 +

3−[(i0−1)/2]∑
i1=2−[(i0−1)/2]

pi0,i1(a, c; z)

Ri1(a+ 1− δ3i0 , c+ 1− δ1i0 ; z)

= 1− a

2c
δ3i0 +

3−[(i0−1)/2]∑
i1=2−[(i0−1)/2]

Pi(1)(z)

Ri1(a+ 1− δ3i0 , c+ 1− δ1i0 ; z)
.

It follows from (2.13) that for i1 ∈ I0
Ri1(a+ 1− δ3i0 , c+ 1− δ1i0 ; z)

=qi1(a+ 1− δ3i0 , c+ 1− δ1i0) +

3−[(i1−1)/2]∑
i2=2−[(i1−1)/2]

pi1,i2(a+ 1− δ3i0 , c+ 1− δ1i0 ; z)

Ri2(a+ 2−
∑1

r=0 δ
3
ir
, c+ 2−

∑1
r=0 δ

1
ir

; z)

=Qi(1) +

3−[(i1−1)/2]∑
i2=2−[(i1−1)/2]

Pi(2)(z)

Ri2(a+ 2−
∑1

r=0 δ
3
ir
, c+ 2−

∑1
r=0 δ

1
ir

; z)
,

where Pi(2)(z), i(2) ∈ I2, and Qi(1), i(1) ∈ I1, are defined by (2.5) and (2.6), respectively. Then,
on the second step for i0 ∈ I0, we have

Ri0(a, c; z) = 1− a

2c
δ3i0 +

3−[(i0−1)/2]∑
i1=2−[(i0−1)/2]

Pi(1)(z)

Qi(1)

+

3−[(i1−1)/2]∑
i2=2−[(i1−1)/2]

Pi(2)(z)

Ri2(a+ 2−
∑1

r=0 δ
3
ir
, c+ 2−

∑1
r=0 δ

1
ir

; z)
.
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Next, applying (2.13) after nth steps, for i0 ∈ I0 we get

Ri0(a, c; z) = 1− a

2c
δ3i0 +

3−[(i0−1)/2]∑
i1=2−[(i0−1)/2]

Pi(1)(z)

Qi(1) +

3−[(i1−1)/2]∑
i2=2−[(i1−1)/2]

Pi(2)(z)

Qi(2)

+
. . .

+

3−[(in−2−1)/2]∑
in−1=2−[(in−2−1)/2]

Pi(n−1)(z)

Qi(n−1)

+

3−[(in−1−1)/2]∑
in=2−[(in−1−1)/2]

Pi(n)(z)

Rin(a+ n−
∑n−1

r=0 δ
3
ir
, c+ 2−

∑n−1
r=0 δ

1
ir

; z)
,

where Pi(1)(z), i(1) ∈ I1, Pi(k)(z), i(k) ∈ Ik, 2 ≤ k ≤ n, and Qi(k), i(k) ∈ Ik, 1 ≤ k ≤ n− 1, are
defined by (2.4), (2.5), and (2.6), respectively. Finally, by (2.13), we obtain the formal branched
continued fraction expansions (2.3) for ratios (2.2) for all i0 ∈ I0. �

3. CONVERGENCE

In this section, we consider some question of convergence of the branched continued fractions
(2.3). We refer the readers to [1, 5, 12] for the notations and definitions used below.

Let i0 be an arbitrary index from the set I0. For the ’tails’ of the approximants of the branched
continued fraction (2.3), we set

G
(r)
i(r)(z) = Qi(r), i(r) ∈ Ir, r ≥ 1,(3.14)

and

G
(r)
i(k)(z) = Qi(k) +

3−[(ik−1)/2]∑
ik+1=2−[(ik−1)/2]

Pi(k+1)(z)

Qi(k+1) +

3−[(ik+1−1)/2]∑
ik+2=2−[(ik+1−1)/2]

Pi(k+2)(z)

Qi(k+2)

+
. . .

+

3−[(ir−1−1)/2]∑
ir=2−[(ir−1−1)/2]

Pi(r)(z)

Qi(r)
,

where i(k) ∈ Ik, 1 ≤ k ≤ r − 1, r ≥ 2. Then, it is easily seen that relations

G
(r)
i(k)(z) = Qi(k) +

3−[(ik−1)/2]∑
ik+1=2−[(ik−1)/2]

Pi(k+1)(z)

G
(r)
i(k+1)(z)

, i(k) ∈ Ik, 1 ≤ k ≤ r − 1, r ≥ 2(3.15)

hold. It follows that for each n ≥ 1 the nth approximant

f (i0)n (z) = 1− a

2c
δ3i0 +

3−[(i0−1)/2]∑
i1=2−[(i0−1)/2]

Pi(1)(z)

Qi(1) +

3−[(i1−1)/2]∑
i2=2−[(i1−1)/2]

Pi(2)(z)

Qi(2)

+
. . .

+

3−[(in−1−1)/2]∑
in=2−[(in−1−1)/2]

Pi(n)(z)

Qi(n)

can be written as

f (i0)n (z) = 1− a

2c
δ3i0 +

3−[(i0−1)/2]∑
i1=2−[(i0−1)/2]

Pi(1)(z)

G
(n)
i(1)(z)

.
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In addition, it can be shown (see [12, p. 28]) that for m > n and n ≥ 1

f (i0)m (z)− f (i0)n (z)

=(−1)n
3−[(i0−1)/2]∑

i1=2−[(i0−1)/2]

3−[(i1−1)/2]∑
i2=2−[(i1−1)/2]

. . .

3−[(in−1)/2]∑
in+1=2−[(in−1)/2]

∏n+1
k=1 Pi(k)(z)∏n+1

k=1 G
(m)
i(k)(z)

∏n
k=1G

(n)
i(k)(z)

,

provided G
(r)
i(k)(z) 6= 0 for all i(k) ∈ Ik, 1 ≤ k ≤ r, r ∈ {m,n}, which for convenience we will

write as

f (i0)m (z)− f (i0)n (z) = (−1)n
3−[(i0−1)/2]∑

i1=2−[(i0−1)/2]

. . .

3−[(in−1)/2]∑
in+1=2−[(in−1)/2]

Pi(1)(z)

G
(q)
i(1)(z)

×
[(n+1)/2]∏

k=1

Pi(2k)(z)

G
(r)
i(2k−1)(z)G

(r)
i(2k)(z)

[n/2]∏
k=1

Pi(2k+1)(z)

G
(q)
i(2k)(z)G

(q)
i(2k+1)(z)

,(3.16)

where q = m, r = n, if n is even, and q = n, r = m, if n is odd.
To prove the main result, we will state the following theorem.

Theorem 3.2. Let a and c be real constants such that

a ≥ 0, c ≥ a+ 1 + δ1i0 for all i0 ∈ I0.(3.17)

Then for each i0 ∈ I0 :

(A) The branched continued fraction (2.3) converges to a finite value f (i0)(z) for each z ∈ Ω, where

Ω = {z ∈ R2 : −L1 ≤ z1 ≤ 0, −L2 ≤ z2 ≤ 0},(3.18)

L1 and L2 are positive constants such that 2L2 < c+ 1, and it converges uniformly on every
compact subset of an interior of Ω.

(B) If f (i0)n (z) denotes the nth approximant of the branched continued fraction (2.3), then for each
z ∈ Ω and n ≥ 1

|f (i0)(z)− f (i0)n (z)| ≤Mi0

(
η

η + 1

)n

,(3.19)

where

Mi0 =



2(a+ 1)L1

c
+

2(c+ 1)L2

c(c+ 1− L2)
, if i0 = 1,

(2c− a)(a+ 1)L1

c(c+ 1)
+

2(c− a)L2

c(c+ 1− L2)
, if i0 = 2,

a

2c
+

aL2

2c(c+ 1)
, if i0 = 3,

(3.20)

and

η = max

{
2L1 +

2L2(c+ 1)

c(c+ 1− L2)
,
c+ 1 + L2

c+ 1− 2L2

}
.(3.21)

Proof. The proof is similar to that of Theorem 1 in [1]. In this case, it follows directly from (2.6)
that for all i(k) ∈ Ik, k ≥ 1, the elements Qi(k) = 1 if ik 6= 3. When ik = 3 from (2.6), we have

Qi(k) = 1−
a+ k −

∑k−1
r=0 δ

3
ir

2c+ 2k − 2
∑k−1

r=0 δ
1
ir

≥ 1

2
for all i(k) ∈ Ik, k ≥ 1.(3.22)
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Since

−
k−1∑
r=0

δ3ir =

k−1∑
r=0

(δ1ir − δ
3
ir )−

k−1∑
r=0

δ1ir for all i(k) ∈ Ik, k ≥ 1,

then to prove the validity of (3.22), provided (3.17), it suffices to show that

k−1∑
r=0

(δ1ir − δ
3
ir ) ≤ δ1i0 for all i(k) ∈ Ik, k ≥ 1.(3.23)

Indeed, if k = 1, then for any i0 ∈ I0 inequalities (3.23) are obvious. If i(k) is a fixed arbitrary
multiindex in Ik, k ≥ 2, then for any r, 1 ≤ r ≤ k− 1, there is a possible pair of indices (ir−1, ir),
such as (1, 2), (1, 3), (2, 2), (2, 3), (3, 1), or (3, 2). It clearly follows that (3.23) is valid in these
cases.

Let z be an arbitrary fixed point in (3.18) and n be an arbitrary natural number. It is easy to
see from (2.4)–(2.6), (3.14), (3.15), and (3.18) that inequalities

G
(n)
i(k)(z) ≥ 1 for all i(k) ∈ Ik, 1 ≤ k ≤ n,(3.24)

hold for all ik 6= 3. By induction on k, we show that the following inequalities

G
(n)
i(k)(z) ≥ c+ 1− L2

2(c+ 1)
for all i(k) ∈ Ik, 1 ≤ k ≤ n,(3.25)

valid for ik = 3.
For k = n and for each i(n) ∈ In, inequalities (3.25) are obvious. By induction hypothesis

that (3.25) hold for k = r + 1, where r + 1 ≤ n, and for each i(r + 1) ∈ Ir+1, using (2.4), (2.5),
(3.14), (3.18), and (3.22) for any i(r) ∈ Ir we get

G
(n)
i(r)(z) = Qi(r) +

Pi(r),1(z)

G
(n)
i(r),1(z)

+
Pi(r),2(z)

G
(n)
i(r),2(z)

≥ Qi(r) −
|Pi(r),2(z)|
G

(n)
i(r),2(z)

≥ 1

2
−

a+ r −
∑r−1

p=0 δ
3
ip

2(c+ r −
∑r−1

p=0 δ
1
ip

)(c+ r + 1−
∑r−1

p=0 δ
1
ip

)
|z2|

≥ c+ 1− L2

2(c+ 1)
.

Next, we prove that

3−[(ik−1)/2]∑
ik+1=2−[(ik−1)/2]

|Pi(k+1)(z)|
|G(n)

i(k+1)(z)G
(n)
i(k)(z)|

≤ η

η + 1
for all i(k) ∈ Ik, k ≥ 1,(3.26)

where η is defined by (3.21), which are equivalent to

3−[(ik−1)/2]∑
ik+1=2−[(ik−1)/2]

|Pi(k+1)(z)|
|G(n)

i(k+1)(z)|
≤ η

|G(n)
i(k)(z)| −

3−[(ik−1)/2]∑
ik+1=2−[(ik−1)/2]

|Pi(k+1)(z)|
|G(n)

i(k+1)(z)|


for all i(k) ∈ Ik, k ≥ 1. Again, let n be an arbitrary natural number. Since it follows from
(2.4)–(2.6), (3.14), (3.15), (3.18), (3.22), (3.24), and (3.25) that, for any k, 1 ≤ k ≤ n, and i(k) ∈ Ik,
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and for any z ∈ Ω

|G(n)
i(k)(z)| −

3∑
ik+1=2

|Pi(k+1)(z)|
|G(n)

i(k+1)(z)|
= Qi(k) = 1,

if ik 6= 3, and

|G(n)
i(k)(z)| −

2∑
ik+1=1

|Pi(k+1)(z)|
|G(n)

i(k+1)(z)|
≥ Qi(k) − 2

|Pi(k),2(z)|
|G(n)

i(k),2(z)|

≥ 1

2
−

a+ k − 1−
∑k−2

r=0 δ
3
ir

(c+ k − 1−
∑k−2

r=0 δ
1
ir

)(c+ k −
∑k−2

r=0 δ
1
ir

)
|z2|

≥ 1

2
− |z2|
c+ 1

≥ c+ 1− 2L2

2(c+ 1)
,

if ik = 3, then we obtain

3∑
ik+1=2

|Pi(k+1)(z)|
|G(n)

i(k+1)(z)|
≤

2(a+ k −
∑k−1

r=0 δ
3
ir

+ 1)

c+ k −
∑k−1

r=0 δ
1
ir

|z1|+
2(c+ 1)

(c+ k −
∑k−1

r=0 δ
1
ir

)(c+ 1− L2)
|z2|

≤ 2L1 +
2L2(c+ 1)

c(c+ 1− L2)

≤ η,

if ik = 1,

3∑
ik+1=2

|Pi(k+1)(z)|
|G(n)

i(k+1)(z)|
≤

(2c− a+ k +
∑k−1

r=0(δ3ir − 2δ1ir ))(a+ k −
∑k−1

r=0 δ
3
ir

+ 1)

(c+ k −
∑k−1

r=0 δ
1
ir

)(c+ k −
∑k−1

r=0 δ
1
ir

+ 1)
|z1|

+
(c− a+

∑k−1
r=0(δ3ir − δ

1
ir

))(2(c+ 1))

(c+ k −
∑k−1

r=0 δ
1
ir

)(c+ k −
∑k−1

r=0 δ
1
ir

+ 1)(c+ 1− L2)
|z2|

≤ 2L1 +
2L2

c+ 1− L2

≤ η,

if ik = 2, and

2∑
ik+1=1

|Pi(k+1)(z)|
|G(n)

i(k+1)(z)|
≤

a+ k −
∑k−1

r=0 δ
3
ir

2(c+ k −
∑k−1

r=0 δ
1
ir

)
+

a+ k −
∑k−1

r=0 δ
3
ir

2(c+ k −
∑k−1

r=0 δ
1
ir

)(c+ k −
∑k−1

r=0 δ
1
ir

+ 1)
|z2|

≤ 1

2
+

L2

2(c+ 1)

=
c+ 1 + L2

c+ 1− 2L2

c+ 1− 2L2

2(c+ 1)

≤ c+ 1− 2L2

2(c+ 1)
η,
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if ik = 3. Now, it is easy see from (2.4), (3.18), (3.20), (3.24) and (3.25) that

3−[(i0−1)/2]∑
i1=2−[(i0−1)/2]

|Pi(1)(z)|
|G(q)

i(1)(z)|
≤Mi0 for all i0 ∈ I0 and q ≥ 1.(3.27)

From (3.18), (3.24), and (3.25) it follows that G(q)
i(k)(z) 6= 0 for all i(k) ∈ Ik, 1 ≤ k ≤ q, q ≥ 1, and

for all z ∈ Ω. Hence, applying (3.26) and (3.27) to (3.16) for any m > n ≥ 1 and for any z ∈ Ω,
we obtain

|f (i0)m (z)− f (i0)n (z)| ≤
3−[(i0−1)/2]∑

i1=2−[(i0−1)/2]

|Pi(1)(z)|
|G(q)

i(1)(z)|

(
η

η + 1

)n

≤Mi0

(
η

η + 1

)n

,

where q = m, if n is even, and q = n, if n is odd. From this (A) follows if n→∞. At last, passing
to the limit as m→∞, we get (B). �

Now, we prove our main result.

Theorem 3.3. Let a and c be real constants satisfying the inequalities (3.17), and ν1, ν2, ν3, µ1, µ2, µ3

be positive numbers such that

2ν1
µ2
≤ min

{
1− µ1 −

ν2
cµ3

, 1− µ2 −
ν2

(c+ 1)µ3

}
,

ν3
(c+ 1)µ2

≤ 1

2
− µ3.(3.28)

Then for each i0 ∈ I0 :

(A) The branched continued fraction (2.3) converges uniformly on every compact subset of

Θ = {z ∈ C2 : |z1|+ Re(z1) < 2ν1, |z2|+ Re(z2) < 2ν2, |z2| − Re(z2) < 2ν3}(3.29)

to the function f (i0)(z) holomorphic in Θ.

(B) The function f (i0)(z) is an analytic continuation of (2.2) in the domain (3.29).

Proof. The proof of (A) is similar to the proof of Theorem 2 [1]. Let z be an arbitrary fixed point
in (3.29). Since a and c satisfy (3.17), it follows from the proof of Theorem 2 that inequalities
(3.22) hold for ik = 3, and that for all i(k) ∈ Ik, k ≥ 1, the elements Qi(k) = 1 if ik 6= 3. Now, for
any i(k) ∈ I, k ≥ 1, from (2.4)–(2.6) and (3.29) with ik = 1, we have

|Pi(k),2(z)| − Re(Pi(k),2(z)) =
2(a+ k −

∑k−1
r=0 δ

3
ir

+ 1)

c+ k −
∑k−1

r=0 δ
1
ir

(|z1|+ Re(z1))

< 4ν1,

|Pi(k),3(z)| − Re(Pi(k),3(z)) =
|z2|+ Re(z2)

c+ k −
∑k−1

r=0 δ
1
ir

<
2ν2
c
,



Branched continued fraction representations of ratios of Horn’s confluent function H6 31

and, thus,
3∑

ik+1=2

|Pi(k+1)(z)| − Re(Pi(k+1)(z))

µik+1

<
4ν1
µ2

+
2ν2
cµ3

≤ 2(1− µ1)

= 2(Re(Qi(k))− µ1).

If ik = 2, we obtain

|Pi(k),2(z)| − Re(Pi(k),2(z))

=
(2c− a+ k +

∑k−1
r=0(δ3ir − 2δ1ir ))(a+ k −

∑k−1
r=0 δ

3
ir

+ 1)

(c+ k −
∑k−1

r=0 δ
1
ir

)(c+ k −
∑k−1

r=0 δ
1
ir

+ 1)
(|z1|+ Re(z1))

< 4ν1,

|Pi(k),3(z)| − Re(Pi(k),3(z))

=
c− a+

∑k−1
r=0(δ3ir − δ

1
ir

)

(c+ k −
∑k−1

r=0 δ
1
ir

)(c+ k −
∑k−1

r=0 δ
1
ir

+ 1)
(|z2|+ Re(z2))

<
2ν2
c+ 1

,

and, thus,
3∑

ik+1=2

|Pi(k+1)(z)| − Re(Pi(k+1)(z))

µik+1

<
4ν1
µ2

+
2ν2

(c+ 1)µ3

≤ 2(Re(Qi(k))− µ2).

At last, if ik = 3 we get

|Pi(k),1(z)| − Re(Pi(k),1(z)) =
a+ k −

∑k−1
r=0 δ

3
ir

2(c+ k −
∑k−1

r=0 δ
1
ir

)
−

a+ k −
∑k−1

p=r δ
3
ir

2(c+ k −
∑k−1

r=0 δ
1
ir

)

= 0,

|Pi(k),2(z)| − Re(Pi(k),2(z)) =
a+ k −

∑k−1
r=0 δ

3
ir

2(c+ k −
∑k−1

r=0 δ
1
ir

)(c+ k + 1−
∑k−1

r=0 δ
1
ir

)
(|z2| − Re(z2))

<
2ν3
c+ 1

,

and, thus,
2∑

ik+1=1

|Pi(k+1)(z)| − Re(Pi(k+1)(z))

µik+1

< 2

(
1

2
− µ3

)
≤ 2(Re(Qi(k))− µ3).

Thus, by Lemma 1 [4], for all i(k) ∈ Ik, 1 ≤ k ≤ n, n ≥ 1, and for all z ∈ Θ the following
inequalities hold

Re(G
(n)
i(k)(z)) ≥ µk,

where G(n)
i(k)(z), i(k) ∈ Ik, 1 ≤ k ≤ n, n ≥ 1, are defined by (3.14) and (3.15). The approximants

f
(i0)
n (z), n ≥ 1, of (2.3) form a sequence of functions holomorphic in (3.29).
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At last, it remains to show that the branched continued fraction (2.3) converges uniformly
on compact subsets of Θ. Let K is an arbitrary compact subset of (3.29). Then there exists an
open ball around the origin with radius R, containing K. By (2.4), for the any z ∈ K and for any
n ≥ 1, we get

|f (i0)n (z)| ≤ 1 +
a

2c
δ3i0 +

3−[(i0−1)/2]∑
i1=2−[(i0−1)/2]

|Pi(1)(z)|
µi(1)

= Ci0(K),

where

Ci0(K) =



2(a+ 1)R

cµ2
+

R

cµ3
, if i0 = 1,

(2c− a)(a+ 1)R

c(c+ 1)µ2
+

(c− a)R

c(c+ 1)µ3
, if i0 = 2,

a

2cµ1
+

aR

2c(c+ 1)µ2
, if i0 = 3.

It follows that for each i0 ∈ I0 the sequence {f (i0)n (z)} is uniformly bounded on K, and hence it
is uniformly bounded on every compact subset of the domain (3.29). We set δ = min{c/4, ν1, ν3}.
Then, by Theorem 2, the sequence {f (i0)n (z)} converges in

∆ = {z ∈ C2 : −δ < Re(zk) < 0, Im(zk) = 0, k = 1, 2},

which is the real neighborhood of the point z(0) = (−δ/2,−δ/2) in Θ. Furthermore, it is clear
that ∆ ⊂ Θ. Thus, by Theorem 3 [1] (see also Theorem 2.17 [12]), for each i0 ∈ I0 the branched
continued fraction (2.3) converges uniformly on compact subsets of Θ to the function f (i0)(z)
holomorphic in Θ. This proves (A).

Finally, the proof of (B) is analogous to the proof of Theorem 2 [1]; hence it is omitted. �

Setting a = 0 and i0 = 1 (or i0 = 2 and replacing c by c− 1) in Theorem 3.3, we get a corollary.

Corollary 3.1. Let c be real constant such that c ≥ 2, and ν1, ν2, ν3, µ1, µ2, µ3 be positive numbers
satisfying the inequalities (3.28). Then for i0 = 1 (or i0 = 2):

(A) The branched continued fraction

1

1 +

3∑
i1=2

Pi(1)(z)

Qi(1) +

3−[(i1−1)/2]∑
i2=2−[(i1−1)/2]

Pi(2)(z)

Qi(2) +
. . .

+

3−[(ik−1−1)/2]∑
ik=2−[(ik−1−1)/2]

Pi(k)(z)

Qi(k) +
. . . ,(3.30)

where for i(1) ∈ I1

Pi(1)(z) =

−
2

c
z1, if i1 = 2,

−z2
c
, if i1 = 3,

(3.31)
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for i(k + 1) ∈ Ik+1, k ≥ 1,

Pi(k+1)(z)

=



−
2(k −

∑k−1
r=1 δ

3
ir

+ 1)

c+ k −
∑k−1

r=1 δ
1
ir
− 1

z1, if ik = 1, ik+1 = 2,

− z2

c+ k −
∑k−1

r=1 δ
1
ir
− 1

, if ik = 1, ik+1 = 3,

−
(2(c− 1) + k +

∑k−1
r=1(δ3ir − 2δ1ir ))(k −

∑k−1
r=1 δ

3
ir

+ 1)

(c+ k −
∑k−1

r=1 δ
1
ir
− 1)(c+ k −

∑k−1
r=1 δ

1
ir

)
z1, if ik = 2, ik+1 = 2,

−
c+

∑k−1
r=1(δ3ir − δ

1
ir

)− 1

(c+ k −
∑k−1

r=1 δ
1
ir
− 1)(c+ k −

∑k−1
r=1 δ

1
ir

)
z2, if ik = 2, ik+1 = 3,

k −
∑k−1

r=1 δ
3
ir

2(c+ k −
∑k−1

r=1 δ
1
ir
− 1)

, if ik = 3, ik+1 = 1,

k −
∑k−1

r=1 δ
3
ir

2(c+ k −
∑k−1

r=1 δ
1
ir
− 1)(c+ k −

∑k−1
r=1 δ

1
ir

)
z2, if ik = 3, ik+1 = 2,

(3.32)

and for i(k) ∈ Ik, k ≥ 1,

Qi(k) = 1−
k −

∑k−1
r=1 δ

3
ir

2(c+ k −
∑k−1

r=1 δ
1
ir
− 1)

δ3ik ,(3.33)

converges uniformly on every compact subset of (3.29) to the function f(z) holomorphic in Θ.
(B) The function f(z) is an analytic continuation of H6(1, c; z) in the domain (3.29).

4. NUMERICAL EXPERIMENTS

From [24, Formula (37), p. 236], it follows that Horn’s confluent function H6(1, 2; z) satisfies
the system of two partial differential equations

(4.34)


z1(1− 4z1)

∂2u

∂z21
+ z2(1− 4z1)

∂2u

∂z1∂z2
− z22

∂2u

∂z22
+ (2− 10z1)

∂u

∂z1
− 4z2

∂u

∂z2
− 2u = 0,

z1
∂2u

∂z1∂z2
+ z2

∂2u

∂z22
− 2z1

∂u

∂z1
+ (2− z2)

∂u

∂z2
− u = 0,

where u = u(z) is an unknown function of independent variables z1 and z2. If the conditions of
Corollary 3.1 are satisfied, the branched continued fraction (3.30) satisfies (4.34).

Setting c = 2, ν1 = ν2 = ν3 = 1/20, and µ1 = µ2 = µ3 = 1/5 it is easy to see that the
conditions (3.28) are satisfied. Thus, by Corollary 3.1, the approximations of (3.30) with c = 2
can be used to approximate the solution of (4.34) in the domain (3.29). From (3.31)–(3.32), we
have such the approximations as

f1(z) = 1, f2(z) =
3

3− 3z1 − 2z2
, etc. .

The values of these approximations fn(z) are given in Table 1 together with the values of the
partial sums Sn(z) of H6(1, 2, z) for 1 ≤ n ≤ 10 and for the various values of z. This table shows
the rate of convergence of fn(z) and Sn(z) to u(z) as n increases. We also see that the branched
continued fraction gives better approximations of the solution of (4.34) than double confluent
hypergeometric series.
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TABLE 1. Approximation of the solution of (4.34) by branched continued frac-
tion (3.30) with c = 2 and confluent hypergeometric series H6(1, 2, z)

n fn(−0.2,−0.04) Sn(−0.2,−0.04) fn(0.04, 0.04) Sn(0.04, 0.04)
1 1 0.78 1 1.06
2 0.8152173913043479 0.8682666666666666 1.0714285714285714 1.0650666666666666
3 0.8436283082662936 0.824104 1.066142202005891 1.0655813333333333
4 0.8390655552756958 0.8488421546666667 1.0656278844624396 1.0656393813333334
5 0.8397705605715909 0.8339969065244445 1.0656448968469723 1.0656463745422222
6 0.8396627464248548 0.8433291477625905 1.065647430637354 1.0656472558998347
7 0.8396790254380795 0.8372627668078485 1.0656473978749492 1.0656473706761305
8 0.8396765860675122 0.8413072281608152 1.0656473883827595 1.0656473859992222
9 0.8396769494594616 0.8385568865940254 1.0656473883916724 1.0656473880852033
10 0.839676895549416 0.8404571814141544 1.0656473884206237 1.0656473883736706

From [17, §3.4], it follows that

H6(1, 2, z) =

∫ 1

0

(
(1− 4tz1)−1/2

B(1, 1)
1F2

(
1

2
;

1

2
, 1;

t(1− t)z22
1− 4tz1

)
+

2(t− t2)1/2z2
(1− 4tz1)B(1/2, 3/2)

1F2

(
1;

3

2
,

3

2
;
t(1− t)z22
1− 4tz1

))
dt.(4.35)

(A) � – 5th, � – (4.35), � – 10th (B) � – 5th, � – (4.35), � – 10th

FIGURE 1. The plots of values of the nth approximants of (3.30)

In Figure 1 (A)–(B), we can see the plots of the values of 5th and 10th approximations of (3.30)
approaches to the plot of the function (4.35). Figure 2 (A)–(D) shows the plots where the 10th
approximants of (3.30) guarantees certain truncation error bounds for function (4.35). Finally, in
Table 2, we can see that the 5th approximant of (3.30) is eventually a better approximation to
(4.35) than the corresponding 5th partial sum of (2.2).
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FIGURE 2. The plots where the 10th approximants of (3.30) guarantees certain
truncation error bounds for (4.35)

TABLE 2. Relative errors of 5th partial sum and 5th approximant for the Horn’s
confluent function H6(1, 2, z)

z (4.35) (2.2) (3.30)
(−0.01, 0.01) 0.9951138277 3.8606× 10−08 8.8026× 10−09

(−0.1, 0.1) 0.9593510752 6.2346× 10−05 9.4458× 10−06

(−0.1,−0.01) 0.9118965224 1.1498× 10−04 6.5181× 10−06

(0.09, 0.05) 1.1425549298 1.1470× 10−04 5.0158× 10−06

(−0.15,−0.2) 0.8094560924 2.3880× 10−03 2.0638× 10−04

(0.2, 0.2) 1.5918307333 2.6823× 10−02 2.7319× 10−03

(0.2,−5.0) 0.1998004145 2.0382× 10+00 2.5676× 10−03

(−5.0, 0.3) 0.3782185176 3.1579× 10+05 2.0912× 10−01

(−10.0,−10.0) 0.0932899388 7.0858× 10+07 3.8248× 10−02

(−25.0,−25.0) 0.0395665845 1.6635× 10+10 6.6127× 10−01
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5. CONCLUSIONS

The paper considers the problem of representing the ratios of the confluent hypergeometric
Horn’s function H6 by branched continued fractions. It is proved that the branched continued
fractions converge to the ratios of the confluent hypergeometric series of which they are expan-
sions, but the conditions of their convergence impose additional restrictions on the parameters
of the function. The expediency and effectiveness of using branched continued fractions as
an approximation tool are confirmed by numerical experiments. Nevertheless, the problems
of improving and developing new methods of researching the convergence of such and sim-
ilar branched continued fractions are open. Along the way, let us note the recent interesting
and promising ideas regarding the study of the convergence of branched continued fractions
proposed in papers [9, 10, 11].
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