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Abstract: We deal with an optimal boundary control problem in a 1-d heat equation with Neumann

boundary conditions. We search for a boundary function which is the minimum element of a quadratic cost

functional involving the H1 -norm of boundary controls. We prove that the cost functional has a unique

minimum element and is Fréchet differentiable. We give a necessary condition for the optimal solution and

construct a minimizing sequence using the gradient of the cost functional.
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1. Introduction
Control problems are used to improve efficiency in many fields such as economics, biology, agri-

culture, robotics industry, chemical reactions, and gas dynamics. Mathematical modeling of many

physical phenomena is known to lead to differential equations [1, 6–8, 21, 22, 24–26]. Therefore,

it is important to study the control problems related to PDEs. Optimal control problems for

parabolic equations arise in various areas of science including chemical reactions, heat transfer,

and population dynamics and they have been widely studied due to their importance in the natu-

ral sciences and their applications. The boundary control problem for heat transfer systems is one

of the most addressed control problems for PDEs. Some detailed works of problems in these areas

can be found in [2, 3, 5, 9, 10, 14, 15, 17, 19, 20].

Lions [17] studied the optimal control problem in the parabolic system with the aim of find-

ing a boundary condition that ensures the approach of the solution of the parabolic problem at the

terminal time to the given desired function. He chose the Lebesque space L2 as the space of bound-
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ary controls. Hasanoğlu [12] considered the problem of finding unknown pair {h(t, x), f(t)} in the

equation yt − (a(x)yx)x = h(t, x) with conditions yx(t,0) = 0,−a(L)yx(t,L) = v[y(t,L) − f(t)]

from the final overdetermination. Sadek and Bokhari [23] examined the controlling of Neumann

boundary conditions for the heat conduction equation by minimizing the energy-based performance

measure involving boundary controls.

Şener and Subaşi [27] analyzed the optimal control problem of the boundary function s(t)

in the system
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

yt = ayxx + b(t, x), (t, x) ∈ (0, T ) × (0, L),

y(0, x) = υ(x), 0 < x < L,

yx(t,0) = 0, yx(t,L) = s(t), 0 < t < T.

They obtained the optimal solution as a minimum element of the cost functional

Jα(s) = ∫
L

0
[y(T,x; s) − f(x)]2dx + α∣∣s∣∣2H1(0,T )

for the given target function f(x) ∈ L2(0, L) and α > 0 .

In this study, we consider the following mathematical model

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

wt = awxx + b(t, x), (t, x) ∈ Ω ∶= (0, T ) × (0, L),

w(0, x) = w0(x), 0 < x < L,

wx(t,0) = µ(t), wx(t,L) = 0, 0 < t < T,

(1)

where T is a given final time, a is a positive constant, b(t, x) , w0(x) are given functions and µ(t)

is an unknown function. Physically speaking, a is the heat conductivity, b(t, x) is the heat source,

w0(x) is the initial temperature, and µ(t) is the heat flux.

The aim of this study is to find a boundary function µ ∈H1(0, T ) such that the correspond-

ing solution to the system (1) approaches to the given desired ν(t, x) ∈ L2(Ω) . More precisely, we

want to minimize the cost functional

Jα(µ) = ∫
T

0
∫

L

0
[w(t, x;µ) − ν(t, x)]2dxdt + α∣∣µ − µ+∣∣2H1(0,T ) (2)

in the admissible controls set Mad ⊂ H1(0, T ) . Here the function µ+(t) ∈ H1(0, T ) is an initial

guess for the optimal solution and α > 0 is a regularization parameter. w(t, x;µ) stands for the

dependence of the solution w(t, x) of the system (1) on the boundary control µ(t) .
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This paper differs from existing works in the literature in view of the functional space of

the controls and the choice of the cost functional. Previous studies propose the usage of the space

L2 as the control set [5, 12, 17, 23]. Moreover, this study investigates a different target than the

study in [27]. With the choice of the functional in (2), we use w(t, x;µ) for the boundary control

µ(t) .

This paper is organized as follows: Firstly, we show that the conditions of the Goebel

Theorem are valid for the optimal control problem considered. So, we prove that the optimal

solution exists and is unique by this theorem. Then, we introduce an adjoint problem by the

Lagrange multiplier method and calculate the Fréchet derivate of the cost functional via the adjoint

approach. Finally, we state a necessary optimality condition and establish a minimizing sequence.

2. Existence and Uniqueness of a Minimizer for the Cost Functional

This section is dedicated to proving the conditions for the existence of the unique optimal solution

to the optimal control problem (1)-(2). We denote the set of admissible boundary control functions

with Mad . Let Mad be a non-empty subset of the space H1(0, T ) . Furthermore, we assume that

Mad is closed, convex, and bounded.

We know that for every w0(x) ∈ H1(0, L) , b(t, x) ∈ L2(Ω) and µ(t) ∈ H1(0, T ) , the

parabolic system (1) has a unique solution w ∈H2,1(Ω) satisfies the following estimate:

∣∣w∣∣2H2,1(Ω) ≤ c1(∣∣b∣∣
2
L2(Ω) + ∣∣w0∣∣2H1(0,L) + ∣∣µ∣∣

2
H1(0,T )), (3)

where c1 is a constant independent from b , w0 and µ [18]. We refer to [16] for definitions of the

spaces H2,1(Ω) , H1(0, L) and L2(Ω) .

Let δµ ∈ Mad be an increment of the control at µ ∈ Mad such that µ + δµ ∈ Mad . Let

us denote by wδ = w(t, x;µ + δµ) the solution of the system (1) corresponding to the boundary

condition µ + δµ ∈Mad . Then, the function δw(t, x;µ) = w(t, x;µ + δµ) −w(t, x;µ) = wδ −w is the

solution to the following difference problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

δwt = aδwxx, (t, x) ∈ Ω,

δw(0, x) = 0, 0 < x < L,

δwx(t,0) = δµ(t), δwx(t,L) = 0, 0 < t < T.

(4)

Furthermore, the difference problem is of the same type as the problem (1). So, it can be
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proven that the solution δw(t, x;µ) of the problem (4) satisfies the following inequality:

∣∣δw(t, x;µ)∣∣2L2(Ω) ≤ c2∣∣δµ∣∣
2
H1(0,T ), t ∈ [0, T ]. (5)

Here c2 is independent from δµ .

We can use the Goebel Theorem [11] widely referred to for the existence of a minimum

element in optimal control problems. The following theorem states the existence and uniqueness

of the solution to the optimal control problem under consideration.

Theorem 2.1 Let µ+ ∈ H1(0, T ) be a given element. There is a dense subset G ∈ H1(0, T ) such

that the cost functional Jα(µ) has a unique minimum in the set Mad for all µ+ ∈ G and α > 0 .

Proof We know that H1(0, T ) is a uniformly convex Banach space [4] and the admissible set

Mad is a bounded, closed and convex subset of H1(0, T ) . Let’s rewrite the cost functional as

Jα(µ) = J(µ) + α∣∣µ∣∣2H1(0,T ),

where

J(µ) = ∫
T

0
∫

L

0
[w(t, x;µ) − ν(t, x)]2dxdt.

The functional J(µ) is bounded from below in the set Mad since J(µ) ≥ 0 for any µ ∈ Mad . It

is sufficient to show that the functional J(µ) is lower semi-continuous in the set Mad . Let us

evaluate the increment δJ(µ) = J(µ + δµ) − J(µ) for any µ ∈Mad . We obtain

δJ(µ) = ∫
T

0
∫

L

0
[w(t, x;µ + δµ) − ν(t, x)]2dxdt −∫

T

0
∫

L

0
[w(t, x;µ) − ν(t, x)]2dxdt

= 2∫
T

0
∫

L

0
[w(t, x;µ) − ν(t, x)]δw(t, x;µ)dxdt

+∫
T

0
∫

L

0
[δw(t, x;µ)]2dxdt.

(6)

Taking into account the inequalities (3) and (5), we can write that

∣δJ(µ)∣ ≤ c3(∣∣δµ∣∣H1(0,T ) + ∣∣δµ∣∣2H1(0,T )). (7)

Here c3 is independent from δµ .

(7) implies that the functional J(µ) is lower semi-continuous in the set Mad . According to Goebel

Theorem, there is a dense subset G of H1(0, T ) such that the functional Jα(µ) takes its minimum

value at a unique point for every µ+ ∈ G . ◻
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3. Fréchet Differentiability of the Cost Functional

In this section, we first apply the Lagrange multipliers method to obtain the adjoint problem and

then find the Fréchet derivative of the functional Jα(µ) . In order to construct a minimizing se-

quence, it is important to prove that the cost functional is continuously differentiable.

Lagrange functional is defined by

L(w,µ,φ) = Jα(µ) + ⟨φ,wt − awxx − b⟩L2(Ω)

, where the functional Jα(µ) is the cost functional given in (2) and φ is called the Lagrange

function.
It can be easily seen that the first variation for the Lagrange functional is:

δL = ∫
T

0
∫

L

0
2[w(t, x;µ) − ν(t, x)]δw(t, x;µ)dxdt

−∫
T

0
∫

L

0
[φt + aφxx]δw(t, x;µ)dxdt +∫

L

0
φ(T,x)δw(T,x;µ)dx

+∫
T

0
φx(t,L)δw(t,L)dt −∫

T

0
φx(t,0)δw(t,0)dt,

(8)

where δw(t, x;µ) is the solution to the problem (4).

Using the δL = 0 stationarity condition, we get the following adjoint problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

φt + aφxx = 2[w(t, x;µ) − ν(t, x)], (t, x) ∈ Ω,

φ(T,x) = 0, 0 < x < L,

φx(t,0) = 0, φx(t,L) = 0, 0 < t < T.

(9)

If we replace t in (9) by new variable τ = T − t , then we obtain a boundary value problem

in the same type as the problem (1). The adjoint problem has a weak solution φ in H2,1(Ω) since

w − ν ∈ L2(Ω) [18].

Lemma 3.1 Let µ,µ+δµ ∈Mad be given elements. If w = w(t, x;µ) is the solution to the problem

(1) and φ(t, x;µ) is the solution to the adjoint problem (9), then the following identity holds:

∫
T

0
∫

L

0
2[w(t, x;µ) − ν(t, x)]δw(t, x;µ)dxdt = a∫

T

0
δµ(t)φ(t,0)dt (10)

for all µ ∈Mad .
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Proof Using the equation (9) and applying integration by parts, we write the left side of (10) as

follows:

2∫
T

0
∫

L

0
[w(t, x;µ) − ν(t, x)]δw(t, x;µ)dxdt

= ∫
T

0
∫

L

0
[φt(t, x) + aφxx(t, x)]δw(t, x;µ)dxdt

= ∫
L

0
{[aφ(t, x)δw(t, x;µ)]t=Tt=0 −∫

T

0
φ(t, x)δwt(t, x;µ)dt}dx

+∫
T

0
{[aφx(t, x)δw(t, x;µ)]x=Lx=0 −∫

L

0
aφx(t, x)δwx(t, x;µ)dx}dt.

From (4) and (9), we get

2∫
T

0
∫

L

0
[w(t, x;µ) − ν(t, x)]δw(t, x;µ)dxdt

= −∫
T

0
∫

L

0
φ(t, x)δwt(t, x;µ)dxdt

−∫
T

0
{[aφ(t, x)δwx(t, x;µ)]x=Lx=0 −∫

L

0
aφ(t, x)δwxx(t, x;µ)dx}dt

= −∫
T

0
∫

L

0
[δwt(t, x;µ) − aδwxx(t, x;µ)]φ(t, x)dxdt

+∫
T

0
aφ(t,0)δµ(t)dt.

Considering the equation (4), the integral identity (10) is obtained.

◻

Let’s evaluate the first variation of Jα(µ) . We write

δJα(µ) = Jα(µ + δµ) − Jα(µ)

= 2∫
T

0
∫

L

0
[w(t, x;µ) − ν(t, x)]δw(t, x;µ)dxdt

+∫
T

0
∫

L

0
[δw(t, x;µ)]2dxdt

+ 2α⟨µ − µ+, δµ⟩H1(0,T ) + ∣∣δµ∣∣2H1(0,T ),

(11)

where µ + δµ ∈Mad and δw(t, x;µ) is the solution to the problem (4).

Using the integral identity (10) on the formula (11) we can write the first variation of the
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cost functional Jα(µ) as follows:

δJα(µ) = ∫
T

0
aφ(t,0)δµ(t)dt +∫

T

0
∫

L

0
[δw(t, x;µ)]2dxdt

+ 2α⟨µ − µ+, δµ⟩H1(0,T ) + ∣∣δµ∣∣2H1(0,T ).

(12)

In order to get the Fréchet derivative of the cost functional, the first term on the right-hand

side of (12) must be written as the inner product in the space H1(0, T ) . To do this we define the

following problem

⎧⎪⎪⎪⎨⎪⎪⎪⎩

θ′′(t) − θ(t) = −aφ(t,0), t ∈ (0, T ),

θ′(0) = 0, θ′(T ) = 0.
(13)

Using (13), the formula (12) can be written as

δJα(µ) = ∫
T

0
(θ(t)δµ(t) + θ′(t)δµ′(t))dt +∫

T

0
∫

L

0
[δw(t, x;µ)]2dxdt

+ 2α⟨µ − µ+, δµ⟩H1(0,T ) + ∣∣δµ∣∣2H1(0,T ).

(14)

The estimate (5) yields that the second term on the right-hand side of (14) is of the order

o(∣∣δµ∣∣2H1(0,T )) . The formula (14) becomes

δJα(µ) = ⟨θ + 2α(µ − µ+), δµ⟩H1(0,T ) + o(∣∣δµ∣∣2H1(0,T )).

So, the cost functional is Fréchet differentiable, that is Jα(µ) ∈ C1(Mad) . The operator

J ′α(µ) = θ + 2α(µ − µ+) (15)

is the Fréchet derivative of the cost functional. Here θ(t) is the solution of (13).

4. Necessary Condition for the Optimal Solution and a Minimizing Sequence

We construct a minimizing sequence based on the gradient methods. According to the gradient

method, a minimizer for the cost functional is chosen by the formula

µ(j+1) = µ(j) − βjJ
′
α(µ(j)), j = 0,1,2, ..., (16)

where µ(0) ∈ Mad is a given initial element and J ′α(µ(j)) is the Fréchet derivative corresponding

to µ(j) . The βj is called the relaxation parameter. From the definition of Fréchet differentiability,
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we can obtain that

Jα(µ(j+1)) − Jα(µ(j)) = βj[ − ∣∣J ′α(µ(j))∣∣2 +
o(βj)
βj
] < 0

for sufficiently small βj > 0 [13]. The choice of the relaxation parameter defines various gradient

methods and this choice is very important.

To stop the iteration process, one of the following stopping criterion can be selected:

∣∣µ(j+1) − µ(j)∣∣ < ϵ1, ∣∣Jα(µ(j+1)) − Jα(µ(j))∣∣ < ϵ2, ∣∣J ′α(µ(j))∣∣ < ϵ3. (17)

Now, we can state the optimality condition in view of [28]. Let µ∗ ∈ Mad be the optimal

solution to the problem (1)-(2) and let us denote the solution of the adjoint problem corresponding

to the optimal solution µ∗ with φ∗(t, x) . We know that the cost functional Jα(µ) is a continuously

differentiable in the control set Mad . In this case, the following inequality is provided for all µ ∈Mad

[28]:

⟨J ′α(µ∗), µ − µ∗⟩H1(0,T ) ≥ 0. (18)

The following variational inequality states the necessary condition for the optimal solution:

⟨θ∗ + 2α(µ∗ − µ+), µ − µ∗⟩H1(0,T ) ≥ 0 (19)

for all µ ∈Mad , where θ∗(t) is the solution of the problem (13) corresponding to φ∗(t,0) .

5. Conclusions
In this study, we focus on investigating the optimality conditions in the optimal control problem

governed by the parabolic system and obtaining a minimizer for the chosen cost functional. We

prove that the boundary condition wx(t,0) = µ(t) in the parabolic problem can be controlled

from target w(x, t) = ν(x, t) using H1 -norm. The admissible control set is chosen as a bounded,

convex, and closed subset of the space H1(0, T ) . Using Goebel Theorem, we prove that the optimal

boundary control problem considered has a unique solution. Obtaining the explicit formula for the

gradient of the cost functional allows the usage of the gradient method to construct a minimization

sequence. Fréchet differentiable of the cost functional in the admissible controls set is proved and

the explicit formula of this derivative is obtained by adjoint approach. The obtained results permit

one to acquire the necessary optimality condition. This study provides some results for numerical

research on obtaining the optimal solution.
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