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Abstract
An automorphism φ of a monoid S is called inner if there exists g in US , the group of
units of S, such that φ(s) = gsg−1 for all s in S; we call S nearly complete if all of its
automorphisms are inner. In this paper, first we prove several results on inner automor-
phisms of a general monoid and subsequently apply them to Clifford monoids. For certain
subclasses of the class of Clifford monoids, we give necessary and sufficient conditions for
a Clifford monoid to be nearly complete. These subclasses arise from conditions on the
structure homomorphisms of the Clifford monoids: all being either bijective, surjective,
injective, or image trivial.
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1. Introduction
An automorphism of a group is termed inner if it can be expressed as conjugation

by an element of the group. This notion naturally extends to monoids by choosing the
conjugating element to be in the group of units of the monoid S; we let Inn(S) denote
the inner automorphisms of S. We then define a monoid to be nearly complete if every
automorphism is inner.

There are a number of key differences between the inner automorphisms of a group and
of a monoid which will be explored further in Section 3. If G is a group, then Inn(G) is
isomorphic to G

ZG
, where ZG is the center of G, and thus Inn(G) can be seen as a measure

for how ‘close’ G is to being abelian. On the other hand, for a monoid S we will show that
Inn(S) gives a measure for how close the group of units of S is to being central in S, that
is, commute with every element of S. In particular, while a group G is commutative if
and only if Inn(G) is trivial, the same does not hold good for monoids (see Theorem 3.2).
Thus the group Inn(S) gives more insight about the structure of a commutative monoid
S as compared to the case when S is a commutative group.

There are numerous papers concerning the inner automorphisms of monoids of (partial)
maps. For example, Schreier [17] and Mal’cev [10] proved that the automorphisms of T(X),
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the semigroup of all mappings of a set X to itself, are inner automorphisms induced by the
elements of S(X), the group of all permutations on X. Similar results have been obtained
by Sutov [20] and Magill [9] for P(X), the semigroup of all partial maps on X, and for
I(X), the symmetric inverse semigroup of all partial one-to-one transformations by Liber
[8]. More examples are provided among others, by Gluskin [3] and Symons [21]. Sullivan
[19] and Levi [5] later generalized the above results to the class of S(X)-normal semigroups,
the transformation semigroups closed under conjugations by permutations. Recently, Mir
et.al [11] generalized the results of Sullivan [19] for PM(X), the posemigroup of all partial
monotone transformations on a poset X. For a general monoid the study of its inner
automorphism group has not recieved much attention. Araújo et.al [1, 2] proved some
general theorems on inner automorphisms of transformation semigroups and provided an
algorithm for computing inner automorphisms of some classes of semigroups.

Note that our notion of inner automorphisms for a general monoid differs from the
one used in the above cited work on inner automorphisms of (partial) transformation
monoids. We carry the group theoretic notion simply by choosing the conjugating elements
in the group of units of the given monoid, whereas in case of transformation monoids the
conjugation is chosen in S(X), so that the conjugating elements may be outside of the
semigroup. However, for all of the explicit examples given above (such as T(X)), the
group of units is equal to S(X), and hence the two notions intersect. We refer the reader
to a further discussion on this in Section 3 and 4.

Much of the focus of this paper is investigating the inner automorphisms of Clifford
semigroups, focusing particularly on nearly complete Clifford semigroups. A Clifford
semigroup is an inverse semigroup S in which the idempotents are central. For a Clifford
semigroup S there exists a semilattice Ω, groups Sα (α ∈ Ω) and structure homomor-
phisms ψα,β : Sα → Sβ for each α ≥ β such that S =

⋃
α∈Ω Sα and with the structure

homomorphisms defining the multiplication in S. Clifford semigroups play an important
role in inverse semigroup theory since every element of a Clifford semigroup is contained
in some subgroup, that is, Clifford semigroups are precisely the inverse completely regular
semigroups. Importantly for our investigation, not only do Clifford semigroups have a
relatively simple structure theory, but their automorphisms can also be described in terms
of automorphisms of the semilattice Ω and isomorphisms between the groups Sα; similarly
for their endomorphisms. This has allowed for a good understanding of the endomorphism
monoid of a Clifford semigroup (see, e.g., Samman and Meldrum [14]) and certain model-
theoretic properties such as homogeneity and ω-categoricity by Quinn-Gregson [12,13].

In Section 2, we give an outline of the semigroup theory required in this paper. In Section
3, we prove some results on inner automorphisms of a general monoid and generalize a
number of well-known results on inner automorphisms of groups. Our chief result is that
Inn(S) is isomorphic to US

(ZS∩US) , where US is the group of units of S and ZS is the set of
central elements of S. The section ends with a comparison between our definition of inner
automorphisms and with the one in [8] for transformation semigroups. In Section 4, we
classify nearly complete Clifford monoids in the cases where the structure homomorphisms
are either all bijective, surjective, injective, or have a trivial image. The key to the first
three cases is that all automorphisms of S depend only on automorphisms of Ω and
automorphisms of a single group (the group of units in the first two cases, and some
quotient of S in the third).

2. Preliminaries
In this section, we fix some notations and gather various facts that we will need in

our investigation; we refer the reader to [4] for an extensive study on semigroup theory.
Throughout this section, S will denote a semigroup.
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Given a pair of semigroups S and T , a map θ : S → T is called a homomorphism if
θ(xy) = θ(x)θ(y) for each x, y ∈ S; an endomorphism of S is a homomorphism of S to itself.
A bijective homomorphism [endomorphism] is called an isomorphism [automorphism]. The
set of all automorphisms of S is denoted by Aut(S) and forms a group with respect to
composition. The identity automorphism of S is denoted by idS .

A semigroup with an identity element is called a monoid. If S is not a monoid, then we
may adjoin an identity element by taking 1 6∈ S and extending the multiplication of S to
12 = 1 and 1x = x1 = x for all x ∈ S; if S is a monoid, then let S1 = S. Note that every
automorphism of a monoid must fix the identity element.

For a ∈ S, we say that a′ ∈ S is an inverse of a if a = aa′a and a′ = a′aa′. We
call S regular if every element has an inverse in S, and call S inverse if every element
has a unique inverse in S. Every group is an inverse semigroup, but the class of inverse
semigroups is far broader than the class of groups. The set of all idempotents of S will
be denoted by ES . If S is inverse, then ES forms a semilattice, that is, a commutative
idempotent semigroup. Each semilattice comes equipped with a partial order ≤ given by
e ≤ f if and only if ef = e.

Given a semilattice Ω, we may construct an inverse semigroup S with ES ∼= Ω as follows.
For each α ∈ Ω let Sα be a group and assume that Sα ∩ Sβ = ∅ for α 6= β. For each pair
α ≥ β in Ω, let ψα,β : Sα → Sβ be a homomorphism such that:

(i) ψα,α = idSα for any α ∈ Ω.
(ii) The homomorphisms are transitive: For any α, β, γ ∈ Ω with α ≥ β ≥ γ,

ψβ,γ ψα,β = ψα,γ .

On S =
⋃
α∈Ω

Sα define a multiplication ∗ where for s ∈ Sα and t ∈ Sβ,

s ∗ t = ψα,αβ(s)ψβ,αβ(t). (1)

Then S forms an inverse semigroup, denoted S = [Ω;Sα, ψα,β], known as a strong semi-
lattice of groups. The homomorphisms ψα,β are called structure homomorphisms, Ω is
called the structure semilattice of S, and the groups Sα are called the components of S.
Unless stated otherwise the identity element of a component Sα will be denoted eα, so
that ES = {eα : α ∈ Ω}.

An inverse semigroup S is Clifford if ES is central, that is, if idempotents commute
with every element of S. We let J denote the Green’s J-relation on a semigroup S, where
a J b if a = xby and b = uav for some x, y, u, v ∈ S1. The property of being Clifford has
a number of alternative statements, to which we give only a few; we refer the reader to
[4, Theorem 4.2.1] for a wider study.

Theorem 2.1. Let S be a semigroup. Then the following statements are equivalent:

(i) S is a Clifford semigroup.
(ii) S is a strong semilattice of groups.
(iii) S is regular and each J-class is a group. �

In this paper, motivated by Theorem 2.1, we shall take the definition of a Clifford
semigroup as a strong semilattice of groups. The next result describes all homomorphisms
(respectively isomorphisms) of Clifford semigroups.

Theorem 2.2. [16, Theorem 2.1]. Let S = [Ω;Sα, ψα,β] and T = [Λ;Tα, φα,β] be two
Clifford semigroups, π : Ω → Λ be a semilattice homomorphism, for each α ∈ Ω let
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χα : Sα → Tπ(α) be a group homomorphism, and assume that for any α ≥ β, the dia-
gram

Sα Tπ(α)

Sβ Tπ(β)

χα

ψα,β φπ(α),π(β)

χβ

(2)

commutes. Then the map χ from S to T given by χ(s) = χα(s) if s ∈ Sα is a homo-
morphism, denoted [π, χα]. Moreover χ is an isomorphism if and only if π and all χα are
isomorphisms. Conversely, every homomorphism (respectively isomomorphism) of S into
T can be constructed in this way. �

Given an isomorphism Θ: S → T of Clifford semigroups, we shall let ΘΩ denote the
underlying semilattice isomorphism and, for each α ∈ Ω, denote Θα for the group isomor-
phism Θ|Sα : Sα → TΘΩ(α). Hence Θ = [ΘΩ,Θα].

In the next result we find the relationship between the images and kernels of the struc-
ture isomorphisms, respectively. The result is a simple application of Theorem 2.2 or,
alternatively, the direct inclusion follows from [14, Corollary 1.5], where the reverse inclu-
sion holds by applying the same result to the isomorphism Θ−1.

Corollary 2.3. Let S = [Ω;Sα, ψα,β] and T = [Λ;Tα, φα,β] be two Clifford semigroups
and let Θ: S → T be an isomorphism. If α, β ∈ Ω with α ≥ β, then:

(1) Θβ(im ψα,β) = im φΘΩ(α),ΘΩ(β);
(2) Θα(ker ψα,β) = ker φΘΩ(α),ΘΩ(β). �

3. Inner automorphism of semigroups.
Given a monoid S with identity 1 then the group of units of S, denoted US , is the set

of g ∈ S such that there exists h ∈ S with gh = hg = 1.
Following [22], an endomorphism φ of S is called inner if there exists a, b ∈ S with

φ(x) = axb for all x ∈ S. By [22, Theorem 1], the map φ forms an automorphism of S
if and only if S is a monoid with identity 1 and ab = ba = 1; in particular a ∈ US with
b = a−1. We denote such an automorphism by φSa . The set of all inner automorphisms of
S is denoted by Inn(S) and forms a subgroup of Aut(S). Hence for a monoid S we have

Inn(S) = {φSg : g ∈ US},
and if S is a group then we recover the usual definition of inner group automorphisms.
A non-inner automorphism of S is called outer, and Out(S) denotes the set of all outer
automorphisms of S (and may be empty).

Note also that if x ∈ S and g ∈ US then x J gxg−1 since x = g−1(gxg−1)g, and it follows
that inner automorphisms must setwise fix the J-classes:

Lemma 3.1. Let S be a monoid and g ∈ US. Then φSg setwise fixes the J-classes of S,
that is, x JφSg (x) for each x ∈ S. �

The center of a semigroup S, denoted ZS , is the set of elements of S that commute
with every element of S. That is, ZS = {z ∈ S : zs = sz ∀s ∈ S}. For a group G, it
is well known that Inn(G) is isomorphic to G

ZG
. Our first result is an extension of this to

monoids.

Theorem 3.2. Let S be a monoid and US be the group of units of S. Then Inn(S) is
isomorphic to US

(ZS∩US) .

Proof. Define the map θ : US
(ZS∩US) → Inn(S) by

θ[g(ZS ∩ US)] = φSg for all g ∈ US .
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Then for any g1, g2 ∈ US ,
g1(ZS ∩ US) = g2(ZS ∩ US) ⇔ g−1

2 g1 ∈ ZS ∩ US

⇔ g−1
2 g1s = sg−1

2 g1 for all s ∈ S

⇔ g1sg
−1
1 = g2sg

−1
2 for all s ∈ S

⇔ φSg1 = φSg2

⇔ θ[g1(ZS ∩ US)] = θ[g1(ZS ∩ US)].
Hence θ is well-defined and injective, and is clearly surjective. Finally we have

θ[g1(ZS ∩ US)g2(ZS ∩ US)] = θ[g1g2(ZS ∩ US)]
= φSg1g2

= φSg1φ
S
g2

= θ[g1(ZS ∩ US)] θ[g2(ZS ∩ US)],
and thus θ is an isomorphism. �

Note that unlike groups, Theorem 3.2 does not imply that S is commutative if and only
if Inn(S) is a trivial group. Thus it is worth investigating Inn(S) even if S is commutative.
Theorem 3.3. If S is a monoid then the map Inn(S) → Inn(US) defined by φSg 7→ φUS

g

for each g ∈ US is an isomorphism if and only if ZUS
= ZS ∩ US.

Proof. Let Υ: Inn(S) → Inn(US) be the map defined by φSg 7→ φUS
g . Suppose first that

Υ is an isomorphism. Clearly ZS ∩ US ⊆ ZUS
, so suppose conversely that g ∈ ZUS

. Then
g ∈ US and

xg = gx (∀x ∈ US) ⇒ g−1xg = x (∀x ∈ US)

⇒ φUS
g = φUS

1

⇒ φSg = φS1 (as Υ is injective)
⇒ g−1xg = x (∀x ∈ S)
⇒ xg = gx (∀x ∈ S)
⇒ g ∈ ZS .

Hence g ∈ ZS ∩ US , and thus ZUS
= ZS ∩ US .

Conversely, suppose ZUS
= ZS ∩ US . Then for any g, h ∈ US , we have

Υ(φSg ) = Υ(φSh) ⇔ φUS
g = φUS

h

⇔ h−1g ∈ ZUS

⇔ h−1gs = sh−1g for all s ∈ S (as ZUS
= ZS ∩ US)

⇔ gsg−1 = hsh−1 for all s ∈ S

⇔ φSg = φSh .

Hence Υ is well-defined and injective, and is clearly surjective. Now for any φSg , φ
S
h ∈

Inn(S), we have Υ(φSg φSh) = Υ(φSgh) = φUS
gh = φUS

g φUS
h = Υ(φSg )Υ(φSh). That is, Υ is

homomorphism, and thus an isomorphism. �

A group G is called complete if every automorphism of G is inner and ZG is trivial.
This is equivalent to the map G → Aut(G) defined by g 7→ φGg being an isomorphism. We
naturally extend this by calling a monoid S nearly complete if every automorphism of S
is inner, and complete if further ZS ∩US is trivial. The equivalent definition of a complete
group extends to monoids as follows:
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Proposition 3.4. A monoid S is complete if and only if the map US → Aut(S) defined
by g 7→ φSg is an isomorphism.

Proof. Suppose first that S is complete. Then as ZS ∩ US = {1} the proof of Theorem
3.2 shows that the map US → Inn(S) defined by g 7→ φSg (g ∈ US) is an isomorphism.
Since Inn(S)=Aut(S) we are done.

Conversely, as the map is surjective every automorphism of S is inner. Moreover, as
the map is injective we have φSg 6= idS for any g 6= 1, so that g 6∈ ZS ∩ US . �

Example 3.5. The following are nearly complete:
(1) Any monoid with trivial automorphism group.
(2) The symmetric group S(X) for |X| 6= 6 [18].
(3) The transformation monoid T(X) [17].
(4) The partial transformation monoid P(X) [3] (the monoid of all partial maps X →

X).
(5) The symmetric inverse semigroup I(X) [8] (the inverse submonoid of P(X) of all

injective partial maps).

The examples (2)-(5) above are well-known examples of (partial) transformation semi-
groups, that is, subsemigroups of T(X) (P(X)).

A transformation semigroup S is called S(X)-normal if gSg−1 ⊆ S for every g ∈ S(X).
For such semigroups an alternative definition of inner automorphisms has been widely
studied (see, for example, [2, 5, 6, 8]), where inner automorphisms arise by conjugating by
any permutation g ∈ S(X) (not necessarily in US). We call automorphisms of this form
inner automorphisms of S with respect to T(X)†, and if all automorphisms of S are inner
with respect to T(X) then we say that S is nearly complete with respect to T(X). This
concept easily generalizes to subsemigroups of any monoid.

The properties of being nearly complete and nearly complete with respect to T(X) are
not, in general, equivalent. For example, let S = {1, cx : x ∈ X} be the submonoid of
T(X) where cx(s) = x for all s ∈ X is the constant map to x. Then US = {1}, so S
has only one inner automorphism, namely the identity map. Any permutation π of the
constant maps gives rise to an automorphism π′ of S by also fixing 1, so S is not nearly
complete if |X| > 1. However, such an automorphism is an inner automorphism with
respect to T(X) by taking g ∈ S(X) such that g(x) = y if and only if π(cx) = cy, so that

gcxg
−1 = gcx = cg(x) = π(cx) = π′(cx).

On the other hand, if S is a (partial) transformation monoid which contains S(X) (such
as T(X),P(X) and I(X)) then our two definitions are clearly equal. Further examples of
nearly complete submonoids of P(X) for X infinite can be found in [7] (where we note that
submonoids which contain S(X) are trivially S(X)-normal). In particular, the following is
immediate from [7, Theorem 3.18]:

Corollary 3.6. Let X be an infinite set and let S be a submonoid of P(X) in which
S(X) ⊆ S. Then S is nearly complete. �

To find further examples of nearly complete monoids, and without being limited to
transformation semigroups, we return our attention to Clifford monoids for the remainder
of the article. We note first that Corollary 3.6 is of no use here, since in P(X) no idempotent
outside of S(X) commutes with every element of S(X), so that a submonoid of P(X) (X
infinite) which properly contains S(X) is not Clifford.

Given that every inverse semigroup S embeds into the symmetric inverse semigroup
I(S) (Cayley’s Theorem for inverse semigroups), it is more natural to study the inner
automorphisms with respect to I(S). However, the required restriction to S(X)-normal
†These are also known as quasi-inner automorphisms
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Clifford subsemigroups of I(S) is too great as the following result dictates. For this, we
let PX denote the power set of X and use a number of basic facts about I(X) which can
be found in [4, Chapter 5].
Proposition 3.7. Let X be a set and let S be an inverse S(X)-normal subsemigroup of
I(X) not contained in S(X). Then the following are equivalent:

(1) S is Clifford;
(2) S is a semilattice;
(3) S = {idA : A ∈ Y } for some Y ⊆ PX which is closed under both intersection and

by S(X), that is, if A ∈ Y and g ∈ S(X) then g(A) ∈ Y .
Moreover, if |X| = n is finite, then these are equivalent to:

(4) there exists r < n such that S = {1} ∪ {idA : |A| ≤ r}.
Proof. Note that EI(X) = {idA : A ∈ PX}. Moreover, as S is S(X)-normal if g ∈ S(X)
then g ◦ idA ◦ g−1 =idg(A) ∈ S for any A ∈ PX . It follows that ES = {idA : A ∈ Y }
for some Y ⊆ PX which is closed under S(X). Since idA ◦ idB=idA∩B and ES forms a
subsemigroup of S it is clear that Y is closed under intersection.

Hence to prove the equivalence of (1)-(3), it suffices to show (1) ⇒ (2).
(1) ⇒ (2) Let S be Clifford. Then for any h ∈ S and A ⊆ Y we have h ◦ idA=idA ◦ h

and so
A ∩ dom(h) = h−1(A). (3.1)

Since S is not contained in S(X), there exists a proper subset A of X with e =idA ∈ ES .
Let h ∈ S be contained in the maximal subgroup of S with identity e. Then h ∈ S(A) and
we suppose, seeking a contradiction, that h 6= e so h(a) 6= a for some a ∈ A. Let x ∈ X \A
and let g ∈ S(X) fix a and map x to h(a). Then a 6∈ h−1(g(A)) but a ∈ g(A) ∩ dom(h),
which contradicts (3.1) (substituting g(A) for A). Hence any non-identity idempotent has
trivial maximal subgroup, so that S = H ∪ E for some H ⊆ S(X) and E ⊆ ES . Now
for any k ∈ H we have from (3.1) that k preserves A, that is k(A) = A. Let h ∈ H and
suppose, seeking a contradiction, that h(a) 6= a for some a ∈ X. Let h ∈ S(X) fix a and
map x ∈ X \ A to h(a). Then g−1hg ∈ S but g−1hg(a) = g−1h(a) = x does not preserve
A, a contradiction.

The final equivalence is clear by taking r to be the maximal size of the domains of the
non-identity idempotents of S, so that by closing under S(X) and then intersections, we
obtain all domains of equal or smaller size. �

4. Inner automorphism of Clifford semigroups
Given the limited scope of inner automorphisms of Clifford semigroups with respect

to I(X) that arose in the last section, we shall only consider in this section our original
concept of inner automorphisms. The second benefit of keeping with our definition for
Clifford semigroups is that it allows us to use the structure theorem and isomorphism
theorem (Theorem 2.2); such luxuries have added caveats inside I(X). Our first result,
which is well-known and immediate from definitions, describes the structure of Clifford
monoids:
Lemma 4.1. Let S = [Ω;Sα, ψα,β] be a Clifford semigroup. Then S is a monoid if and
only if Ω has maximal element say, η. Moreover, in this case 1 = eη and US = Sη. �

The following simple lemma allows many of the results of the last section to be translated
into the Clifford semigroup setting.
Lemma 4.2. Let S = [Ω;Sα, ψα,β] be a Clifford monoid where η is the maximum element
of Ω. Then ZS ∩ US consists of precisely the elements of ZUS

in which the structure
homomorphisms preserve centrality, that is,

ZS ∩ US = {g ∈ ZSη : ψη,α(g) ∈ ZSα for each α ∈ Ω}.
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Proof. By Lemma 4.1 US = Sη and so ZUS
= ZSη . If g ∈ Sη and x ∈ Sα then gx = xg if

and only if ψη,α(g) · x = x · ψη,α(g), from which the result follows. �

Due to the unwieldy nature of the structure homomorphisms of a Clifford semigroup,
it seems unlikely that a meaningful description of all nearly complete Clifford monoids is
possible. We study a number of restrictions on the Clifford monoids which allows for such
a description; the first being the semilattice case.

Lemma 4.3. The following are equivalent for a semilattice monoid Ω:
(1) Ω is nearly complete;
(2) Ω is complete;
(3) Aut(Ω) is trivial.

Proof. Since Ω is commutative it is nearly complete if and only if it is complete. Moreover,
as UΩ is trivial this is equivalent to Aut(Ω) being trivial. �

For example, every finite chain is nearly complete. However, the property of being
nearly complete does not necessarily pass from the Clifford semigroup to its structure
semilattice, as the following example illustrates; a nearly complete Clifford monoid can
have underlying semilattice with non-trivial automorphisms.

Example 4.4. Let Ω = {0, 1, α, β} be the diamond semilattice, with maximum element
1, minimum element 0, and α ∧ β = 0. Then Ω has a single non-trivial automorphism
which swaps α and β. Now let S1 ∼= Sα ∼= Z2 and Sβ ∼= S0 be trivial groups. Form a
Clifford monoid S = S0 ∪ S1 ∪ Sα ∪ Sβ by taking ψ1,α as an isomorphism, and all other
structure homomorphism having trivial image. Since Sα 6∼= Sβ, every automorphism of S
has trivial underlying semilattice automorphism. Moreover, each component has a trivial
automorphism group and it follows that Aut(S) is also trivial, and in particular S is nearly
complete.

Motivated by this example, we generalize the property of Ω having a trivial automor-
phism group as follows. For a Clifford semigroup S = [Ω;Sα, ψα,β] we let Aut(Ω)S denote
the set of all automorphisms π of Ω in which π = ΘΩ for some ΘΩ ∈ Aut(S). If Aut(Ω)S
is trivial, then we say that Ω has trivial automorphism group with respect to S.

Since the J-classes of a Clifford semigroup are the components by Theorem 2.1 and as
inner automorphisms preserve J-classes by Lemma 3.1 we obtain:

Corollary 4.5. If S = [Ω;Sα, ψα,β] is a Clifford monoid then (φSg )Ω = idΩ for any g ∈ US.
In particular, if S is nearly complete then Ω has trivial automorphism group with respect
to S. �

Finally, inner automorphisms of Clifford monoids restrict to inner automorphisms of
their components, with restrictions on conjugating element:

Lemma 4.6. Let S = [Ω;Sα, ψα,β] be a Clifford monoid with Ω having maximum element
η, and let g ∈ Sη. Then for each α ∈ Ω, the inner automorphism φSg restricts to the inner
automorphism φSα

x of Sα for any x ∈ Sα such that ψη,γ(g) · x−1 ∈ ZSα. In particular,
φSg = [idΩ, φ

Sα

ψη,α(g)].

Proof. For a ∈ Sα we have

φSg (a) = gag−1 = ψη,α(g) · a · ψη,α(g−1) = ψη,α(g) · a · ψη,α(g)−1,

and so φSg restricts to the inner automorphism φSα

ψη,α(g) of Sα, to which the first result
follows. The final result is then immediate by Corollary 4.5. �
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4.1. The bijective case
In this section, we give a characterization of the inner automorphisms of Clifford

monoids in which all the structure homomorphisms are bijective. Our results will be
simple consequences of the following pair of results from [15] and [12, Subsection 4.2].

Lemma 4.7. Let S be a Clifford monoid with all the structure homomorphisms bijective.
Then, for any α ∈ Ω, we have S ∼= Ω × Sα. �

Theorem 4.8. Let Ω be a semilattice and G be a group. Then Aut(Ω × G) = Aut(Ω) ×
Aut(G). �

Corollary 4.9. Let S = Ω × G for some semilattice monoid Ω and group G. Then
φ ∈ Aut(S) is inner if and only if it is of the form φ(α, s) = (α, φGg (s)) for g ∈ G.

Proof. Let η be the maximum element of Ω, so that US = {(η, x) : x ∈ G}. Then for any
g = (η, g) ∈ US and (α, s) ∈ S we have

φSg (α, s) = (η, g)(α, s)(η, g)−1 = (η, g)(α, s)(η, g−1) = (α, gsg−1).

Hence φSg = (idΩ, φ
G
g ).

The converse is immediate by Theorem 4.8. �

The following result is then immediate from Theorem 4.8 and the previous corollary:

Corollary 4.10. Let S = Ω ×G for some semilattice monoid Ω and group G. Then S is
nearly complete if and only if Ω and G are nearly complete. �

4.2. The surjective case
In the following two subsections, we relax our condition of all the structure homomor-

phisms being bijective in two ways. First, we consider the case where all the structure
morphisms are taken to be surjective; we call such semigroups surjective Clifford semi-
groups. One motivation for studying such a generalization is that central units behave
well:

Lemma 4.11. If S is a surjective Clifford monoid, then ZS ∩ US = ZUS
. In particular,

the map Inn(S) → Inn(US) defined by φSg 7→ φUS
g for each g ∈ US is an isomorphism.

Proof. Let S = [Ω;Sα, ψα,β] and let η be the maximum element of Ω. Let x ∈ ZUS
= ZSη

and y ∈ Sα for some α ∈ Ω. Then as ψη,α is surjective there exists z ∈ Sη with ψη,α(z) = y.
Hence,

xy = ψη,α(x) · y = ψη,α(x) · ψη,α(z) = ψη,α(xz) = ψη,α(zx) = ψη,α(z) · ψη,α(x) = yx,

where the fourth equality is from x being central in Sη. Hence ZUS
⊆ ZS ∩ US , and the

reverse inclusion is immediate.
The final result follows from Theorem 3.3. �

We are now interested in classifying the nearly complete surjective Clifford monoids.
Our task is significantly simplified by the following result, which states that automorphisms
of such semigroups arise uniquely from automorphisms of the structure semilattice and
the group of units:

Theorem 4.12. Let S = [Ω;Sα, ψα,β] be a surjective Clifford monoid with US = Sη and
let Θη ∈ Aut(Sη) and π ∈ Aut(Ω). Then the following are equivalent:

(i) Θη extends to an automorphism Θ of S with ΘΩ = π;
(ii) for each α ∈ Ω we have Θη(ker ψη,α) = ker ψη,π(α);
(iii) for each α ∈ Ω the map ψη,π(α)Θηψ

−1
η,α is an isomorphism from Sα to Sπ(α).
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Moreover, in this case the automorphism Θ extending Θη is such that Θα = ψη,π(α)Θηψ
−1
η,α

for each α ∈ Ω.

Proof. (i) ⇒ (ii) Immediate from Corollary 2.3.
(ii) ⇒ (iii) We first show that the map Θα =: ψη,π(α)Θηψ

−1
η,α is well-defined and injective,

so suppose g1, g2 ∈ Sα, say ψη,α(hi) = gi (i = 1, 2). Then
Θα(g1) = Θα(g2) ⇔ ψη,π(α)Θη(h1) = ψη,π(α)Θη(h2)

⇔ Θη(h1h
−1
2 ) ∈ ker ψη,π(α)

⇔ h1h
−1
2 ∈ ker ψη,α

⇔ g1 = g2,

where the third equality is from property (ii). Hence Θα is well-defined and injective, and
it is a surjective homomorphism since Θη and each structure homomorphism are.

(iii)⇒ (i) and the final statement are immediate from Theorem 2.2, in particular diagram
(2). �

It follows that for each (π, φ) ∈ Aut(Ω) × Aut(US), there exists at most one automor-
phism of S extending φ and with structure semilattice automorphism π.

Recall from Corollary 4.5 that a nearly complete Clifford semigroup has underlying
semilattice with trivial automorphism group with respect to S. For surjective Clifford
semigroups, by using Theorem 4.12 we may easily determine when this occurs from study-
ing how automorphisms of US interplay with the kernels of the structure homomorphisms:

Corollary 4.13. Let S = [Ω;Sα, ψα,β] be a surjective Clifford monoid. Then Ω has a
trivial automorphism group with respect to S if and only if for every non-identity π ∈
Aut(Ω) and every automorphism φ of US = Sη, there exists α ∈ Ω with φ(ker ψη,α) 6=
ker ψη,π(α). �

Theorem 4.14. Let S be surjective Clifford monoid. Then S is nearly complete if and
only if Ω has trivial automorphism group with respect to S and every outer-automorphism
of US does not preserve the kernel of some structure homomorphism.

Proof. Let the semilattice Ω have maximum element η, so that US = Sη.
Suppose S is nearly complete, so that Aut(Ω)S is trivial by Corollary 4.5. Let Θη be

an outer-automorphism of Sη. Then Θη cannot be extended to an automorphism of S by
Lemma 4.6, to which the result follows by Theorem 4.12 (with π taken to be idΩ).

Conversely, let Φ =
⋃
α∈Ω Φα be an automorphism of S. If Φη is outer, then it does not

preserve the kernels of all of the structure homomorphisms which contradicts Theorem
4.12. Hence Φη is inner, say φSη

g . Then for any x ∈ Sα we have
Φ(x) = Φα(x) = ψη,αΦηψ

−1
η,α(x) = ψη,α(g · ψ−1

η,α(x) · g−1) = ψη,α(g) · x · ψη,α(g−1) = gxg−1

and so Φ = φSg is inner. �

Corollary 4.15. Let S be surjective Clifford monoid. If the semilattice Ω and US are
nearly complete, then so is S. �

If the structure homomorphisms are also injective, then the kernels of the structure
homomorphisms are trivial and each component is isomorphic, so Corollary 4.10 follows
from Theorem 4.14.

Note also that both Theorem 4.14 and its corollary do not hold if we drop surjectivity,
as is illustrated below.

Example 4.16. Let Ω = {η, α} be the chain η > α, let Sη = {1} be trivial and let Sα
be any non-trivial group. Then S = Sη ∪ Sα forms a Clifford semigroup with structure
homomorphism ψη,α having trivial image. Moreover, both US = {1} and the chain Ω are
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nearly complete, while Inn(S) is trivial. However, any automorphism of Sα extends to an
automorphism of S by Theorem 2.2, so S is not nearly complete if Aut(Sα) is non-trivial.
We will expand upon this example in Subsection 4.4.

The converse of Corollary 4.15 is also not true since clearly the semigroup in Example
4.4 is a nearly complete surjective Clifford monoid with Ω being not nearly complete.

4.3. The injective case
In this section, we consider the second generalization of Subsection 4.1: where all the

structure homomorphisms are injective. A Clifford semigroup S has injective structure
homomorphisms if and only it is E-unitary [4, Exercise 5.20], that is, for all e ∈ ES and
s ∈ S, if es ∈ ES then s ∈ ES .

We first restrict our attention to the case where the structure semilattice has a least
element. The component of S corresponding to the minimum element is of particular
importance for E-unitary Clifford semigroups, much in the way that the maximum com-
ponent (the group of units) was in the surjective case:

Lemma 4.17. Let S = [Ω;Sα, ψα,β] be an E-unitary Clifford monoid in which Ω has
minimum element γ. Then ZS ∩ US = ψ−1

η,γ(ZSγ ) where η is the maximum element of Ω.
Consequently, Inn(S) is isomorphic to Sη/ψ−1

η,γ(ZSγ ).

Proof. Recall that US = Sη. If g ∈ ZS ∩ Sη then for every x ∈ Sγ we have

xg = gx ⇒ x · ψη,γ(g) = ψη,γ(g) · x

and so g ∈ ψ−1
η,γ(ZSγ ). Hence ZS ∩ Sη ⊆ ψ−1

η,γ(ZSγ ). Conversely, let h ∈ Sη be such that
ψη,γ(h) = y ∈ ZSγ . For any α ∈ Ω and a ∈ Sα we have ha ∈ Sα and, as the structure
homomorphisms are transitive,

ψα,γ(ha) = ψα,γ(ψη,α(h) · a) = ψη,γ(h) · ψα,γ(a) = y · ψα,γ(a)
= ψα,γ(a) · y = ψα,γ(a) · ψη,γ(h) = ψα,γ(a · ψη,α(h)) = ψα,γ(ah)

where the fourth equality is because y is central in Sγ . Hence ah = ha since ψα,γ is
injective, so that h ∈ ZS ∩ Sη.

The final result is immediate from Theorem 3.2. �

Theorem 4.18. Let S be an E-unitary Clifford monoid in which Ω has minimum element
γ. Let Θγ ∈ Aut(Sγ) and π ∈ Aut(Ω). Then the following are equivalent:

(i) Θγ extends to an automorphism of S with underlying semilattice automorphism π;
(ii) for each α ∈ Ω we have Θγ(im ψα,γ) = im ψπ(α),γ;
(iii) for each α ∈ Ω the map ψ−1

π(α),γΘγψα,γ is an isomorphism from Sα to Sπ(α);

Moreover, in this case the automorphism Θ extending Θγ is such that Θα = ψ−1
π(α),γΘγψα,γ

for each α ∈ Ω.

Proof. (i) ⇒ (ii) Immediate from Corollary 2.3.
(ii) ⇒ (iii) Note that the composition is possible as Θγ(im ψα,γ) =im ψπ(α),γ by condition

(ii). The map is a (well-defined) injective homomorphism since Θγ as the structure homo-
morphisms are. Finally, let x ∈ Sπ(α), and let y = Θ−1

γ (ψπ(α),γ(x)). Then by condition (ii)
we have that y ∈ im ψα,γ , say ψα,γ(x′) = y. Hence ψ−1

π(α),γΘγψα,γ(x′) = ψ−1
π(α),γΘγ(y) = x,

and the map is surjective.
(iii)⇒ (i) and the final statement are immediate from Theorem 2.2, in particular diagram

(2). �
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Corollary 4.19. Let S be an E-unitary Clifford monoid in which Ω has minimum element
γ. Then Ω has trivial automorphism group with respect to S if and only if for every non-
identity π ∈ Aut(Ω) and every automorphism θ of Sγ, there exists α ∈ Ω with θ(im ψα,γ) 6=
im ψπ(α),γ. �

Theorem 4.20. Let S be an E-unitary Clifford monoid in which Ω has minimum element
γ. Then S is nearly complete if and only if Ω has trivial automorphism group with respect
to S and every automorphism

θ ∈ Out(Sγ) ∪ {φSγ
g : there exists α ∈ Ω such that gx−1 6∈ ZSγ for all x ∈ im ψα,γ}

does not preserve the image of some structure homomorphism, that is, there exists α ∈ Ω
with θ(im ψα,γ) 6= im ψα,γ.

Proof. Let the semilattice Ω have maximum element η, so that US = Sη.
The forward direction to the proof follows from Lemma 4.6 similarly to the proof of

Theorem 4.14, noting that
{φSγ

g : there exists α ∈ Ω such that gx−1 6∈ ZSγ for all x ∈ im ψα,γ}
is precisely the set of inner automorphisms of Sγ which are not restrictions of inner auto-
morphisms of S.

Conversely, let Φ =
⋃
α∈Ω Φα be an automorphism of S. Then Φγ = φ

Sγ
x for some

x ∈ imψη,γ , since otherwise by our hypothesis it would not preserve the images of all of
the structure homomorphisms which contradicts Theorem 4.18. Let x = ψη,γ(g). Then
for any α ∈ Ω and any y ∈ Sα we have by Theorem 4.18

Φα(y) = ψ−1
α,γΦγψα,γ(y) = ψ−1

α,γφ
Sγ
x ψα,γ(y) = ψ−1

α,γ(x · ψα,γ(y) · x−1)
= ψ−1

α,γ(ψη,γ(g) · ψα,γ(y) · ψη,γ(g−1)).
However since ψα,γψη,α = ψη,γ and the structure homomorphisms are injective it follows
that ψ−1

α,γψη,γ = ψη,α, and so

Φα(y) = ψη,α(g) · ψ−1
α,γψα,γ(y) · ψη,α(g−1) = ψη,α(g) · y · ψη,α(g−1) = gyg−1.

Thus Φ = φSg is inner, and S is nearly complete. �

Our next aim is to show that if the structure semilattice of our E-unitary Clifford
monoid does not contain a minimal element, then we may pass to one which does whilst
preserving the property of being nearly complete. Our construction will require a number
of key ideas from inverse semigroup theory, which can be found in [4].

Given an inverse semigroup S, we call an equivalence relation γ a congruence if whenever
(x, y), (x′, y′) ∈ γ then (xx′, yy′) ∈ γ. The equivalence class of γ containing an element
x ∈ S is denoted [x]γ , or simply [x] when no confusion may arise. Each congruence γ gives
rise to an inverse semigroup, known as the quotient of S by γ and denoted S/γ, by taking
S/γ = {[x]γ : x ∈ S} and product [x]γ · [y]γ = [xy]γ .

We let σS , or simply σ if no confusion may arise, denote the smallest congruence on S
such that the quotient is a group. It can be easily verified that the congruence is given by

σS = {(x, y) : ∃e ∈ ES , ex = ey}.
For an E-unitary Clifford semigroup S = [Ω;Sα, ψα,β] and x ∈ Sα, y ∈ Sβ we have

(x, y) ∈ σS ⇔ ψα,αβ(x) = ψβ,αβ(y).
In particular if x ∈ Sα and α > β then (x, ψα,β(x)) ∈ σS , and if (a, b) ∈ σS ∩ J then
a = b. Hence if Ω has a minimal element γ then S/σS ∼= Sγ . On the other hand, if Ω
does not have a minimum element, then we may adjoin a minimum element 0 by taking
α ∧ 0 = 0 ∧ α = 0 for all α ∈ Ω; let Ω0 be the resulting semilattice, and put Ω0 = Ω if Ω
has a minimum element.
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Construction: Given an E-unitary Clifford semigroup S = [Ω;Sα, ψα,β] with Ω 6= Ω0,
we extend S to a Clifford semigroup over Ω0 as follows. Let S0 = S/σ and, for each α ∈ Ω,
define the structure homomorphism ψα,0 by ψα,0(g) = [g]σ. For any α > β > 0 in Ω0 we
have ψβ,0ψα,β(g) = [ψα,β(g)]σ = [g]σ = ψα,0(g). Hence S ∪ S0 = [Ω0;Sα, ψα,β] forms a
Clifford semigroup, denoted S∗, and is E-unitary as ψα,0(g) = ψα,0(h) implies g Jh and
[g]σ = [h]σ, so that g = h. If Ω has a minimum element, then we take S∗ = S.

Note that automorphisms of Ω0 must fix the minimum element 0. It follows that every
automorphism of Ω0 is obtained by extending some automorphism of Ω by fixing 0.

Proposition 4.21. Let S be an E-unitary Clifford semigroup. Then every automorphism
Θ of S extends to an automorphism Θ∗ of S∗ by defining Θ∗([g]σ) = [Θ(g)]σ. Moreover,
every automorphism of S∗ is obtained in this way.

Proof. The result is trivial if S = S∗, so assume instead that S = [Ω;Sα, ψα,β] 6= S∗ and
let S0 = S/σ. Suppose first that Θ = [π,Θα] ∈ Aut(S). We first show that the map
Θ∗

0 : S0 → S0 defined by Θ∗
0([g]σ) = [Θ(g)]σ is an automorphism of S0. Let x ∈ Sα, y ∈ Sβ

and δ = αβ, then using the fact that Θ ∈ Aut(S) we have
[x]σ = [y]σ

⇔ ψα,δ(x) = ψβ,δ(y)
⇔ Θδψα,δ(x) = Θδψβ,δ(y)
⇔ ψπ(α),π(δ)Θα(x) = ψπ(β),π(δ)Θβ(y)
⇔ [Θα(x)]σ = [Θβ(y)]σ
⇔ [Θ(x)]σ = [Θ(y)]σ
⇔ Θ∗

0([x]) = Θ∗
0([y]).

Hence Θ∗
0 is well-defined and injective. Moreover, it is a surjective homomorphism since

Θ is, and thus Θ∗
0 is an automorphism as required. To show that Θ∗ is an automorphism

of S∗ we must show that diagram (2) holds, and for this it clearly suffices to show that
Θ∗

0ψα,0 = ψπ(α),0Θα for any α ∈ Ω. For any x ∈ Sα we have
Θ∗

0ψα,0(x) = Θ∗
0([x]σ) = [Θ(x)]σ = ψπ(α),0Θα(x).

Conversely, suppose Φ = [ρ,Φα] ∈ Aut(S∗). Since ρ(Ω) = Ω it follows that Φ(S) = S.
Hence Φ extends the automorphism Φ′ = Φ|S = [ρ|Ω,Φα] of S. Moreover, if [x]σ ∈ S0, say
x ∈ Sα, then

Φ([x]σ) = Φ0([x]σ) = ψρ(α),0Φαψ
−1
α,0([x]σ) = ψρ(α),0Φα(x) = [Φα(x)]σ = [Φ′(x)]σ.

Hence Φ0([x]σ) = [Φ′(x)]σ as required. �

Theorem 4.22. Let S be an E-unitary Clifford semigroup. Then S is nearly complete if
and only if S∗ is nearly complete.

Proof. The result is trivial if S = S∗, so assume instead that S = [Ω;Sα, ψα,β] 6= S∗ and
let S0 = S/σ.

Let S be nearly complete, and let Θ = [π,Θα] ∈ Aut(S∗). Then Θ restricts to an inner
automorphism φSg of S, so π restricts to the identity on Ω by Corollary 4.5. In particular,
π is the identity on Ω0. Moreover, by Proposition 4.21 we have for any [x] ∈ S0 (x ∈ Sα),

Θ0([x]σ) = [φSg (x)]σ = [gxg−1]σ = [g]σ · [x]σ · [g−1]σ = g · [x]σ · g−1

and so Θ = φS
∗

g .
Conversely, let S∗ be nearly complete. Then by Proposition 4.21 any automorphism of

S extends to one of S∗, which must be inner. Any inner automorphism of S∗ restricts to
an inner automorphism of S, and the result follows. �
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4.4. The image-trivial case
The aim of this section is to show that in general one cannot tell if a Clifford monoid

is nearly complete by only studying the automorphisms of its semilattice and how the
automorphisms of its group of units and (if it exists) group Sγ for minimum γ interacts
with the kernels and images of the structure homomorphisms, respectively.

For this, we will study the class of Clifford monoids where each structure homomorphism
has trivial image; we call such Clifford monoids image-trivial. The automorphisms are
easily constructed in this case, and the proof of the following result can be found in
[13, Proposition 4.4]:

Corollary 4.23. Let S = [Ω;Sα, ψα,β] be an image-trivial Clifford monoid and let π be
an automorphism of Ω such that Sα ∼= Sπ(α) for each α ∈ Ω. Then for any collection
of isomorphisms Θα : Sα → Sπ(α), the map Θ =

⋃
α∈Ω Θα is an automorphism of S.

Moreover, every automorphism of S can be constructed this way. �

Theorem 4.24. Let S = [Ω;Sα, ψα,β] be an image-trivial monoid with US = Sη and let
S′ = S \ Sη. Then ZSη = ZS ∩ Sη and

Inn(S) = {φSη
g ∪ idS′ : g ∈ Sη} ∼= Inn(Sη).

Moreover, S is nearly complete if and only if the following hold:
(1) for each non-identity automorphism π of Ω, there exists α ∈ Ω with Sα 6∼= Sπ(α);
(2) Sη is nearly complete;
(3) for α 6= η, the component Sα has trivial automorphism group.

Proof. Let g ∈ ZSη and x ∈ Sα. Then

gx = ψη,α(g) · x = eαx = x = xeα = x · ψη,α(g) = xg,

and so ZSη = ZS ∩Sη. Hence Inn(S) is isomorphic to Inn(Sη) by Theorem 3.3. Moreover,
if φSh is an inner automorphism of S, then for x ∈ Sα a similar calculation gives φSh(x) =
hxh−1 = x, and so φSh is the identity on S′.

Now let S be nearly complete. Then by Corollary 4.23 any automorphism of Ω which
preserves the isomorphism types of the components of S extends to an automorphism of
S, and (1) follows. Moreover, every automorphism of a connected component can extend
to an automorphism of S with underlying semilattice automorphism being the identity, to
which (2) and (3) follow.

Conversely, suppose (1)-(3) holds and let Θ = [π,Θα] ∈ Aut(S). Then π is the identity
by (1), Θη = φ

Sη
g for some g ∈ Sη by (2), and Θα = idSα for α < η by (3). Hence

Θ = φSg . �

Corollary 4.25. There exists a Clifford monoid S with Ω having maximum element η
and minimum element γ in which:

(1) S is not nearly complete;
(2) Ω has trivial automorphism group with respect to S;
(3) every outer automorphism of Sη does not preserve the kernel of some structure

morphism;
(4) every automorphism in

Out(Sγ) ∪ {φSγ
g : there exists α ∈ Ω such that gx−1 6∈ ZSγ for all x ∈ im ψα,γ}

does not preserve the image of some structure morphism.

Proof. Let Ω = {η, α, γ} with η > α > γ. Let Sη = {eη}, Sγ = {eγ} and let Sα be
any group with non-trivial automorphism group. Then the image-trivial Clifford monoid
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S = Sη ∪ Sα ∪ Sγ is not nearly complete by the previous theorem and Ω has a trivial au-
tomorphism group, so (1)-(2) holds. Moreover, as Sη and Sγ are trivial groups, properties
(3)-(4) are immediate. �
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