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Abstract: In this paper, we introduce a new type of non-lightlike general helix that we name non-lightlike

associated helix which is associated with a non-lightlike special surface curve. By using the Darboux frame

of a surface curve, we generate the position vector of a non-lightlike associated helix in parametric form.

We investigate special cases when the non-lightlike surface curve is a helical curve, a relatively normal-slant

helix or an isophote curve. In every case, we obtain the position vector of the non-lightlike associated helix

by solving differential equations and examples are given for the achieved results.

Keywords: Non-lightlike associated helix, non-lightlike isophote curve, non-lightlike relatively normal-

slant helix.

1. Introduction
Geometrical structures of special type such as special surfaces or curves have always been a focus

of interest for different disciplines. Without a doubt, the helix curve is the most fascinating of

such special geometric structures. A general helix is defined by the property that the tangent

makes a constant angle with a fixed straight line (the axis of the general helix) and a necessary and

sufficient condition that a curve to be a general helix is that the ratio of curvature κ to torsion

τ be constant [3]. Helices arise in carbon nano-tubes, nano-springs, DNA double and collagen

triple helix, α -helices, bacterial flagella in salmonella and escherichia coli, lipid bilayers, bacterial

shape in spirochetes, aerial hyphae in actinomycetes, tendrils, horns, screws, springs, vines, helical

staircases and sea shells [4, 14, 17]. Helical structures such as hyper-helices are used in fractal

geometry [22]. In the realm of computer-aided design and computer graphics, helix shapes can be

utilized for describing tool paths, simulating movement, and creating designs for roads, etc. [25].

Instead of tangent, by considering principal normal vector, a new type of special curve

called slant helix has been defined by Izumiya and Takeuchi [10]. Later, further studies have been
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done. For instance, Ali investigated the position vector of spacelike slant helices, Ali and Turgut

investigated the position vector of timelike slant helices in Minkowski 3-space [1, 2].

A surface curve is a curve that lies on a surface. While properties of any arbitrary curve are

examined by Frenet frame, properties of surface curves can also be examined by Darboux frame�T, g, n� (see Section 2 for details). On a surface, helical curves, relatively normal-slant helices and

isophote curves have been defined considering the vectors of Darboux frame, by the property that

the vector T , g and n makes a constant angle with a fixed straight line, respectively. Puig-Pey,

Gálvez and Iglesias have studied helical surface curves and for the parametric and the implicit

forms of a surface, they introduced a new method of generating helical tool paths [20]. In 2017,

Macit and Düldül introduced relatively normal-slant helices and studied their axis in Euclidean

3-space [15]. El Haimi and Chahdi investigated the parametric equations of relatively normal-slant

helices also in Euclidean 3-space [8]. Further studies have been done by Yadav and Pal, Yadav

and Yadav in Minkowski 3-space [23, 24]. On the other hand, isophote curves have been studied

in both Euclidean and Lorentzian spaces [5–7]. An isophote curve on a surface is also a result of

Lambert’s cosine law in optics. Lambert’s cosine law indicates that the intensity of illumination

on a diffuse surface is proportional to the cosine of the angle between the surface normal and the

light vector. According to this law, the intensity is irrespective of the actual viewpoint; hence

the illumination is the same when viewed from any direction [12]. By considering Lambert’s law

Doğan and Yaylı introduced the geometric description of isophote curves in [7]. Isophote curves

have many applications in different areas such as car body construction, local shading of a surface

or geometry of surfaces of rotation and canal surfaces [11, 19, 21]. Öztürk, Nes̆ović and Koç Öztürk

have presented a method for numerical computing of general helices, relatively normal-slant helices,

and isophote curves lying on a non-degenerate surface in Minkowski space E3
1 [18].

In [16], Önder defined new types of associated helices that are associated with special surface

curves such as helical curves, relatively normal-slant helices and isophote curves in Euclidean 3-

space. He introduced parametric forms of some special associated helices with respect to Darboux

frame of special surface curves.

In this paper, we define new types of non-lightlike associated helices in Minkowski 3-space.

We name these new helices as non-lightlike (spacelike or timelike) surface curve-connected (SCC)

associated helices and we obtain parametrizations for such helices by considering helical curves,

relatively normal-slant helices and isophote curves on a non-lightlike surface in Minkowski 3-space.
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2. Preliminaries

Minkowski 3-space which is denoted by E3
1 is a real vector space endowed with the metric `, e �

�dx2
� dy2 � dz2 , where �x, y, z� is a rectangular coordinate system. This metric is also called

Lorentzian metric. In E3
1 , a vector u is called spacelike (resp. timelike or lightlike) if `u,ue A 0

or u � 0 (resp. `u,ue @ 0 or `u,ue � 0). Similarly, a curve is called spacelike (resp. timelike or

lightlike) if its velocity vector is spacelike (resp. timelike or lightlike). In the case of surfaces, a

surface is called spacelike (timelike or lightlike) if the induced metric on the surface is Riemannian

(Lorentzian or degenerate), i.e., the normal vector on the surface is timelike (spacelike or lightlike,

respectively) [13]. Throughout this paper, we only consider non-lightlike curves and surfaces.

Therefore, whenever we talk about a surface or a curve, we assume that they are either spacelike

or timelike.

The Lorentzian cross product for any vectors u, v > E3
1 is defined by

u � v � �u2v3 � u3v2, u1v3 � u3v1, u2v1 � u1v2�,
where u � �u1, u2, u3� and v � �v1, v2, v3� [13]. The Frenet formulae �T,N,B� for a unit speed

non-lightlike curve α with arc-length parameter s is given by

T �
� κN, N �

� εBκT � τB, B�
� εT τN, (1)

where T,N,B are the tangent (velocity) vector, principal normal vector, binormal vector, respec-

tively, εT � `T,T e , εB � `B,Be , � denotes derivative with respect to s , κ is curvature and τ is

torsion of the curve α . Here, εT and εB determines the Lorentzian character of the vectors T

and B , respectively. If εT � εB � 1 , then α is a spacelike curve with timelike principal normal

vector. If εT � 1 and εB � �1 , then α is a spacelike curve with spacelike principal normal vector.

If εT � �1 , then α is a timelike curve [13].

Let φ be a regular surface in E3
1 and α � I ` R � φ be a non-lightlike smooth curve on φ .

Then, the Darboux frame �T, g, n� along the surface curve α is well defined and its formulae is

given by

T �
� κgg � εgknn, g� � εnκgT � εT τgn, n� � knT � τgg, (2)

where T , g � εgT � n , n are tangent vector of α , intrinsic normal, surface normal along α ,

respectively, kn is normal curvature, κg is geodesic curvature, τg is geodesic torsion, εT � `T,T e ,
εg � `g, ge and εn � `n,ne . If εT � εg � 1 , then both φ and α are spacelike. If εT � 1 and εg � �1 ,

then φ is timelike and α is spacelike. Finally, if εT � �1 and εn � 1 , then both φ and α are

timelike [5, 6].

Considering Darboux vector fields defined in [9], we define following vector fields for non-

lightlike surface curves on non-lightlike surfaces.
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Definition 2.1 Let α be a unit speed non-lightlike curve on a regular non-lightlike surface φ with

Darboux frame �T, g, n� . Then, the vector fields Dn,Dr and Do along α defined by

Dn � �kng � εnκgn, Dr � �τgT � κgn, Do � εT τgT � εgkng

are called normal Darboux vector field, rectifying Darboux vector field and osculating Darboux

vector field, respectively.

Lemma 2.2 [16] Let φ be a regular non-lightlike surface and α be a smooth non-lightlike curve on

φ with Darboux frame �T, g, n� , normal curvature kn , geodesic curvature κg and geodesic torsion

τg . We have the followings:

(i) α is a geodesic curve � κg � 0 .

(ii) α is an asymptotic curve � kn � 0 .

(iii) α is a line of curvature � τg � 0 .

Definition 2.3 [24] Let α be a unit speed non-lightlike curve on a regular non-lightlike surface

φ with Darboux frame �T, g, n� . Then, α is called a relatively normal-slant helix if the vector g

makes a constant angle with a fixed unit direction.

Definition 2.4 [5, 6] Let α be a unit speed non-lightlike curve on a regular non-lightlike surface

φ with Darboux frame �T, g, n� . Then, α is called an isophote curve if the vector n makes a

constant angle with a fixed unit direction.

Similar to the definition given by Önder in [16], we give the following definition for non-

lightlike surface curves in Minkowski 3-space.

Definition 2.5 Let α be a unit speed non-lightlike curve on a regular non-lightlike surface φ with

Darboux vector fields Dn,Dr and Do . Then, α is called a Di -Darboux slant helix if the Darboux

vector field Di makes a constant angle with a fixed unit direction, where i > �n, r, o� .

By using the above definitions, we introduce helices associated with special surface curves

in the following section.

3. Helices Associated with Surface Curves in E3
1

Let φ be a regular non-lightlike surface and α � I ` R � φ be a smooth, unit speed non-lightlike

curve with arc-length parameter s , Frenet frame �T,N,B� and Darboux frame �T, g, n� . We

consider another non-lightlike curve β � J ` R� E3
1 which is given by the parametrization

β�s� � α�s� � x�s�T �s� � y�s�g�s� � z�s�n�s�, (3)
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where x � x�s� , y � y�s� and z � z�s� are smooth functions of s . The non-lightlike curve β is

called non-lightlike associated curve of surface curve α” or SCC-associated curve”, where SCC

stands for surface curve connected. As well as the associated curve β might be on φ , it might be

totally apart from φ . The position that β is on φ or not relies on the values which the functions

x, y, z take. We investigate special cases for the functions x, y, z in the following subsections.

Moreover to the definition of the curve β , considering that β is a general helix it would be

called SCC-associated helix. Now, let us differentiate the equation (3) with respect to s by using

(1) and (2). As the result of this differentiation, we get

β��s� � R1�s�T �s� �R2�s�g�s� �R3�s�n�s�, (4)

where R1 � R1�s� , R2 � R2�s� and R3 � R3�s� are smooth functions of s which are defined by

R1 � x� � εnκgy � knz � 1, R2 � κgx � y� � τgz, R3 � εgknx � εT τgy � z�. (5)

In the following subsections, we investigate special cases when β is a helix and it is associated

with a special surface curve.

3.1. Non-lightlike Helices Associated with Helical Curves on a Surface in E3
1

In this first subsection, we assume that the tangent vector β� of the non-lightlike associated curve

β of any arbitrary non-lightlike surface curve α is linearly dependent with the tangent vector of

α . For this special case, from (4), we get R1 x 0 , R2 � 0 , R3 � 0 and thus β��s� � R1�s�T �s� .

Let sβ be the arc-length parameter of the associated curve β . Then, from β��s� � R1�s�T �s� , we

obtain dsβ � �R1ds and the Frenet vectors of β are computed as

¢̈̈̈̈̈̈̈
¦̈̈̈̈̈̈
¤̈
Tβ � �T, Nβ � �

1¼Tεgκ2
g � εnk2nT �κgg � εgknn� ,

Bβ �

εBβ¼Tεgκ2
g � εnk2nT �εnκgn � kng� � εBβ

DnYDnY , (6)

where εBβ
� `Bβ ,Bβe and Tβ , Nβ , Bβ are tangent vector, principal normal vector, binormal

vector of β , respectively. By using Definition 2.1 and (6), we obtain the following Theorem 3.1:

Theorem 3.1 Let β be a non-lightlike associated curve of an arbitrary non-lightlike surface curve

α with �kn, κg� x �0,0� which lies on a regular surface φ with the condition that β� and α�
� T

are linearly dependent. Then, followings are equivalent:

(i) β is a helix.

(ii) α is a helical curve on φ .

(iii) α is a Dn -Darboux slant helix on φ .
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Remark 3.2 The non-lightlike helix curve β which is associated with a non-lightlike helical surface

curve α can be referred to as: Non-lightlike helical curve-connected associated helix or non-lightlike

HCC-associated helix.

Let us now, investigate special cases when x, y or z vanishes, respectively. Such special

cases allow us to determine the position vector of β in parametric form. From (5), we have the

following system

x� � εnκgy � knz � 1 x 0, κgx � y� � τgz � 0, εgknx � εT τgy � z� � 0. (7)

Case 1: x � 0 . Then, from (7) we have the system

εnκgy � knz � 1 x 0, y� � τgz � 0, εT τgy � z� � 0. (8)

If τg x 0 , then the solution of system (8) depends on the sign of εT . Let εT � 1 . By using a

variable change t � R τg�s�ds , for constants c1, c2 > R the solution of the system (8) is calculated
as

y � �c1 sinh�S τg�s�ds� � c2 cosh�S τg�s�ds� ,
z � c1 cosh�S τg�s�ds� � c2 sinh�S τg�s�ds� ,

which we substitute in (3) and obtain the parametric form of the position vector of β as follows

β�s� � α�s� � �c1 sinh�S τg�s�ds� � c2 cosh�S τg�s�ds�� g�s�
� �c1 cosh�S τg�s�ds� � c2 sinh�S τg�s�ds��n�s�. (9)

In this case, α , β are spacelike curves and φ is a non-lightlike, i.e., spacelike or timelike, surface.

Let εT � �1 . Then, for constants c3, c4 > R the solution of system (8) is given by

y � c3 cos�S τg�s�ds� , z � c4 sin�S τg�s�ds� ,
which similarly leads to the parametric form of the position vector of β as follows

β�s� � α�s� � c3 cos�S τg�s�ds� g�s� � c4 sin�S τg�s�ds�n�s�. (10)

In this case, α , β are timelike curves and φ is a timelike surface.

If τg � 0 , then, from second and third equations of system (8), we get y � c5 and z � c6 ,

respectively, where c5, c6 > R are constants. Therefore, position vector of β curve is given by

β�s� � α�s� � c5g�s� � c6n�s� .

We can give the following theorem and corollary as results of the above investigation.
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Theorem 3.3 The spacelike (resp. timelike) associated curve β given in (9) (resp. (10)) is a

general helix if and only if α is a spacelike (resp. timelike) helical curve on a non-lightlike (resp.

timelike) surface φ .

Remark 3.4 The spacelike (resp. timelike) associated curve (9) (resp. (10)) can be referred to

as: Spacelike (resp. timelike) helical curve-connected associated helix of type 1 or spacelike (resp.

timelike) HCC-associated helix of type 1.

Corollary 3.5 The helical curve α is a line of curvature if and only if non-lightlike HCC-associated

helix has the parametrization β�s� � α�s� � c5g�s� � c6n�s� , where c5, c6 > R are constants.

Case 2: y � 0 . From (7), it follows

x� � knz � 1 x 0, κgx � τgz � 0, εgknx � z� � 0, (11)

with the condition �κg, τg� x �0,0� . If kg x 0 , then we get x � �

τg

κg
z from second equation of

system (11). We substitute this equality in the third equation of system (11) and get the differential

equation

z� �
εgknτg

κg
z � 0

whose solution is z � c7 exp�S εgknτg

κg
ds� , where c7 > R is constant. Hence, the position vector

of β is given by

β�s� � α � c7 exp�S εgknτg

κg
ds��� τg

κg
T � n� . (12)

If κg � 0 and kn x 0 , then we obtain x � z � 0 and therefore β�s� � α�s� .

By the investigation above, the followings can be given.

Theorem 3.6 The non-lightlike associated curve β given by (12) is a general helix if and only if

α is a non-lightlike helical curve on φ .

Remark 3.7 The associated curve (12) can be referred to as: spacelike (timelike) helical curve-

connected associated helix of type 2 or spacelike (timelike) HCC-associated helix of type 2.

Corollary 3.8 (i) The non-lightlike helical curve α is an asymptotic curve with κg x 0 if

and only if non-lightlike HCC-associated helix of type 2 has the parametrization β�s� �

α�s� � c5τg

κg
T � c7n , where c7 > R is constant.
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(ii) The non-lightlike helical curve α is a line of curvature if and only if non-lightlike HCC-

associated helix of type 2 has the parametrization β�s� � c7n , where c7 > R is constant.

Case 3: z � 0 . In this case, from (7), we have the following system

x� � εnκgy x 0, κgx � y� � 0, εgknx � εT τgy � 0, (13)

with �kn, τg� x �0,0� . If kn x 0 , then from third equation of system (13), we have x � �

εT τg

εgkn
y .

By substituting x in second equation of system (13), we get the following differential equation

y� �
εT τgκg

εgkn
y � 0,

whose solution is y � c8 exp�S εT τgκg

εgkn
ds� , where c8 > R is constant. Hence, the position vector

of β is given by

β�s� � α�s� � c8 exp�S εT τgκg

εgkn
ds���εT τg

εgkn
T � g� . (14)

If kn � 0 , then it follows x � y � 0 and β�s� � α�s� .

By the investigation above, we can give the followings.

Theorem 3.9 The non-lightlike associated curve β given by (14) is a general helix if and only if

α is a non-lightlike helical curve on φ .

Remark 3.10 The non-lightlike associated curve (14) can be referred to as: Non-lightlike helical

curve-connected associated helix of type 3 or non-lightlike HCC-associated helix of type 3.

Corollary 3.11 (i) The non-lightlike helical curve α is a geodesic curve if and only if non-

lightlike HCC-associated helix of type 3 has the parametrization β�s� � α�s�� c8εT τg

εgkn
T � c6g ,

where c8 > R is constant.

(ii) The non-lightlike helical curve α is a line of curvature if and only if non-lightlike HCC-

associated helix of type 3 has the parametrization β�s� � α�s��c8g , where c8 > R is constant.

3.2. Non-lightlike Helices Associated with Relatively Normal-slant Helices in E3
1

This subsection is to investigate non-lightlike associated helices of relatively normal-slant helices.

In order to do the mentioned investigation, we assume that tangent vector β� of the associated

curve β is linearly dependent with intrinsic normal vector field g of a surface curve α . Then, from
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(4), it follows β��s� � R2�s�g�s� and thus the Frenet vectors Tβ , Nβ , Bβ of β are calculated as

¢̈̈̈̈̈̈̈
¦̈̈̈̈̈̈
¤̈
Tβ � �g, Nβ � �

1¼TεTκ2
g � εnτ2g T �εnκgT � εT τgn� ,

Bβ � �

εBβ¼TεTκ2
g � εnτ2g T �κgn � τgT � � εBβ

DrYDrY , (15)

where εBβ
� `Bβ ,Bβe . We can give the following theorem by using (15) and Definition 2.1.

Theorem 3.12 Let β be a non-lightlike associated curve of an arbitrary non-lightlike surface curve

α with �κg, τg� x �0,0� who lies on a regular surface φ with the condition that β� and intrinsic

normal g are linearly dependent. Then, followings are equivalent:
(i) β is a helix.

(ii) α is a relatively normal-slant helix on φ .
(iii) α is a Dr -Darboux slant helix on φ .

Remark 3.13 The non-lightlike helix β which is associated with relatively normal-slant helix

α can be referred to as: Non-lightlike relatively normal-slant helix-connected associated helix or

non-lightlike RNS-HC-associated helix.

Investigating when x, y, z functions have special values leads us to the following cases. From

(5), we have

x� � εnκgy � knz � 1 � 0, κgx � y� � τgz x 0, εgknx � εT τgy � z� � 0. (16)

Case 1: x � 0 . Then, the system (16) is reduced to

εnκgy � knz � 1 � 0, y� � τgz x 0, εT τgy � z� � 0 (17)

with �kn, κg� x �0,0� . If κg x 0 , then first and third equations of system (16) yields the following

linear differential equation

z� �
εT knτg

εnκg
z �

εT τg

εnκg
,

whose solution can be calculated as

z � exp�S εT knτg

εnκg
ds��S exp��S εT knτg

εnκg
ds� εT τg

εnκg
ds � c9	 ,

where c9 > R is constant. Then, position vector of associated curve beta is given by

β�s� � α�s� � 1 � kn exp�S εT knτg

εnκg
ds��S exp��S εT knτg

εnκg
ds� εT τg

εnκg
ds � c9	

εnκg
g

� exp�S εT knτg

εnκg
ds��S exp��S εT knτg

εnκg
ds� εT τg

εnκg
ds � c9	n.

(18)
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If κg � 0 and τg x 0 , then from the first equation of system (16), we get z � �

1

kn
. Since z� �

k�n
k2n

,

from the third equation of system (16), it follows y � �

k�n
εT k2nτg

. Thus, associated curve beta is

given with the position vector

β�s� � α�s� � k�n
εT k2nτg

g �
1

kn
n. (19)

Theorem 3.14 The non-lightlike associated curve β given in (18) (resp. (19)) is a general helix

if and only if α is a relatively normal-slant helix on φ .

Remark 3.15 The non-lightlike associated curve (18) (resp. (19)) can be referred to as: Non-

lightlike relatively normal-slant helix-connected associated helix of type 1 or non-lightlike RNS-HC-

associated helix of type 1.

Corollary 3.16 (i) The non-lightlike relatively normal-slant helix α is an asymptotic curve

on φ with �kn, κg� x �0,0� if and only if RNS-HC-associated helix has the parametrization

β�s� � α �

1

εnκg
g � �S εT τg

εnκg
ds � c7�n .

(ii) The non-lightlike relatively normal-slant helix α is a geodesic curve on φ with �kn, κg� x �0,0�
if and only if RNS-HC-associated helix has the parametrization in (19).

(iii) The non-lightlike relatively normal-slant helix α is a line of curvature on φ with �kn, κg� x
�0,0� if and only if RNS-HC-associated helix has the parametrization β�s� � α�s�� c7kn � 1

εnκg
g�

c7n .

Case 2: y � 0 . The system (16) becomes

x� � knz � 0, κgx � τgz x 0, εgknx � z� � 0. (20)

If kn x 0 , then, from system (20), the following differential equation is derived

z�� �
k�n
kn

z� � εgk
2
nz � εgkn, (21)

whose homogeneous part can be obtained with the aid of a variable change t � S knds as follows

d2z

dt2
� εgz � 0. (22)

The differential equation (22) has two different types of solutions with respect to the value of εg .
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Let εg � 1 . In this case, β is a spacelike curve. Then, the general solution of (21) is obtained

as follows

z � c10 cosh�S knds� � c11 sinh�S knds�
� cosh�S knds�S sinh�S knds�ds � sinh�S knds�S cosh�S knds�ds, (23)

where c10, c11 > R are constants. This leads us to

x � � c10 sinh�S knds� � c11 cosh�S knds�
� sinh�S knds�S sinh�S knds�ds � cosh�S knds�S cosh�S knds�ds (24)

since x � �

z�

kn
from the third equation of system (20). In this case, β is a spacelike curve and α is

a spacelike (resp. timelike) curve on a spacelike (resp. timelike) surface. Thus, by using (23) and

(24), the position vector of spacelike associated curve β is given as follows

β�s� � α�s� � ��c10 sinh�S knds� � c11 cosh�S knds�
� sinh�S knds�S sinh�S knds�ds � cosh�S knds�S cosh�S knds�ds�T
� �c10 cosh�S knds� � c11 sinh�S knds�
� sinh�S knds�S sinh�S knds�ds � cosh�S knds�S cosh�S knds�ds�n.

(25)

Let εg � �1 . In this case, T and n become spacelike vectors. Then, we get φ is a timelike

surface, α is a spacelike curve and β is a timelike curve. Similar to the previous case, the general

solution of (21) is obtained as follows

z � c12 cos�S knds� � c13 sin�S knds�
� cos�S knds�S sin�S knds�ds � sin�S knds�S cos�S knds�ds,

where c12, c13 > R are constants and thus

x � � c12 sin�S knds� � c13 cos�S knds�
� sin�S knds�S sin�S knds�ds � cos�S knds�S cos�S knds�ds.

117



Onur Kaya / FCMS

Hence, the position vector of timelike associated curve β is stated as

β�s� � α�s� � ��c12 sin�S knds� � c13 cos�S knds�
� sin�S knds�S sin�S knds�ds � cos�S knds�S cos�S knds�ds�T
� �c12 cos�S knds� � c13 sin�S knds�
� cos�S knds�S sin�S knds�ds � sin�S knds�S cos�S knds�ds�n.

(26)

If kn � 0 , then from first and third equations of system (20), we get x � �s � c19 , z � c20 ,

respectively, and therefore the position vector of β is given by

β�s� � α�s� � ��s � c14�T � c15n, (27)

where c14, c15 > R are constants. Now, we can give the followings:

Theorem 3.17 The spacelike (resp. timelike and non-lightlike) associated curve β given by (25)

(resp. (26) and (27)) is a general helix if and only if α is a relatively normal-slant helix on φ .

Remark 3.18 The associated curves (25) and (26) can be referred to as: Spacelike and timelike

relatively normal-slant helix-connected associated helix of type 2 or spacelike and timelike RNS-

HC-associated helix of type 2, respectively.

Corollary 3.19 The non-lightlike relatively normal-slant helix α is an asymptotic curve on φ if

and only if non-lightlike RNS-HC-associated helix has the parametrization in (27).

Case 3: z � 0 . In this case, from system (16), we obtain

x� � εnκgy � 1 � 0, κgx � y� x 0, εgknx � εT τgy � 0. (28)

with �kn, τg� x �0,0� . If τg x 0 , then from the third equation of system (28), we have y � �

εgkn

εT τg
.

Substituting y in first equation of (28), it follows x� �
εgεnknκg

εT τg
x�1 � 0 , where εgεn

εT
� �1 . Then,

following differential equation is obtained

x� �
knκg

τg
x � �1,

whose general solution is

x � exp��S knκg

τg
ds���S exp�S knκg

τg
ds�ds � c16	 ,
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where c16 > R is constant. Hence, we obtain y as follows

y � �

εgkn

εT τg
exp��S knκg

τg
ds���S exp�S knκg

τg
ds�ds � c16	 ,

and the position vector of associated curve β is given by

β�s� � α�s� � exp��S knκg

τg
ds���S exp�S knκg

τg
ds�ds � c16	�T �

εgkn

εT τg
g� . (29)

If κg x 0 and τg � 0 , then from the system (28), we get x � 0 and y � �

1

εnκg
. Thus, the position

vector of associated curve β is given by

β�s� � α�s� � 1

εnκg
g. (30)

Theorem 3.20 The non-lightlike associated curve β given by (29) (resp. (30)) is a general helix

if and only if α is a relatively normal-slant helix on φ .

Remark 3.21 The non-lightlike associated curve (29) (resp. (30)) can be referred to as: Non-

lightlike relatively normal-slant helix-connected associated helix of type 3 or non-lightlike RNS-HC-

associated helix of type 3.

Corollary 3.22 (i) The non-lightlike relatively normal-slant helix α is an asymptotic curve

on φ if and only if non-lightlike RNS-HC-associated helix has the parametrization β�s� �

α�s� � ��s � c16�T , where c16 > R is constant.

(ii) The non-lightlike relatively normal-slant helix α is a geodesic curve on φ if and only if

non-lightlike RNS-HC-associated helix has the parametrization β�s� � α�s� � ��s � c16�T �

��s�c16�εgkn

εT τg
g , where c16 > R is constant.

(iii) The non-lightlike relatively normal-slant helix α is a line of curvature on φ if and only if

non-lightlike RNS-HC-associated helix has the parametrization in (30).

3.3. Non-lightlike helices associated with isophote curves in E3
1

In this final subsection of Section 3, we investigate non-lightlike helices associated with isophote

curves. Let the tangent vector β� of associated curve β be linearly dependent with the unit surface

normal along an arbitrary non-lightlike curve α on an oriented surface φ . Then, from (4), we have

R1 � R2 � 0 and β��s� � R3�s�n�s� . Arc-length parameter and Frenet vectors Tβ , Nβ , Bβ of β
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are calculated as dsβ � �R3ds and

¢̈̈̈̈̈̈̈
¦̈̈̈̈̈̈
¤̈
Tβ � �n, Nβ � �

1¼TεT k2n � εgτ2g T �knT � τgg� ,
Bβ �

εBβ¼TεT k2n � εgτ2g T �εgkng � εT τgT � � εBβ

DoYDoY , (31)

respectively, where εBβ
� `Bβ ,Bβ .e . From (31) and Definition 2.1, we can give the following

theorem.

Theorem 3.23 Let β be a non-lightlike associated curve of an arbitrary non-lightlike surface curve

α with �kn, τg� x �0,0� who lies on a regular surface φ with the condition that β� and unit surface

normal n along α are linearly dependent. Then, followings are equivalent:

(i) β is a helix.

(ii) α is an isophote curve on φ .

(iii) α is a Do -Darboux slant helix on φ .

Remark 3.24 The non-lightlike helix β associated with isophote curve α can be referred to as:

Non-lightlike isophote curve-connected associated helix or non-lightlike ICC-associated helix.

We now investigate special cases when x, y, z functions have special values. From (5), we

get

x� � εnκgy � knz � 1 � 0, κgx � y� � τgz � 0, εgknx � εT τgy � z� x 0. (32)

Case 1: x � 0 . Then, from (32), we have

εnκgy � knz � 1 � 0, y� � τgz � 0, εT τgy � z� x 0, (33)

with �kn, κg� x �0,0� . If τg x 0 , then from second equation of system (33), we have z � �
y�

τg
and by

substituting this equality in the third equation of system (33), we obtain the following differential

equation

y� �
εnκgτg

kn
y �

τg

kn
,

whose general solution is

y � exp�S εnκgτg

kn
ds��S exp��S εnκgτg

kn
ds� τg

kn
ds � c17� , (34)

where c17 is a real constant. Since z � �
y�

τg
, it follows

z � �

1

kn
�

εnκg

kn
exp�S εnκgτg

kn
ds��S exp��S εnκgτg

kn
ds� τg

kn
ds � c17� . (35)
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Therefore, for the position vector of associated curve β , we obtain

β�s� � α�s� � exp�S εnκgτg

kn
ds��S exp��S εnκgτg

kn
ds� τg

kn
ds � c17� g

� � 1

kn
�

εnκg

kn
exp�S εnκgτg

kn
ds��S exp��S εnκgτg

kn
ds� τg

kn
ds � c17��n. (36)

If kn x 0 and τg � 0 , then from the second equation of system (33), we get y � c18 for a real

constant c18 . Substituting this result in first equation of system (33) yields z � �

c18εnκg � 1

kn
.

Therefore, the position vector of associated curve β is obtained as

β�s� � α�s� � c18g �
c18εnκg � 1

kn
n. (37)

We state our findings with the following theorem and corollaries.

Theorem 3.25 The non-lightlike associated curve β given by (36) (resp. (37)) is a general helix

if and only if α is an isophote curve on φ .

Remark 3.26 The non-lightlike associated curve (36) (resp. (37)) can be referred to as: Non-

lightlike isophote curve-connected associated helix of type 1 or non-lightlike ICC-associated helix of

type 1.

Corollary 3.27 (i) The non-lightlike isophote curve α with �kn, κg� x �0,0� is an asymptotic

curve if and only if non-lightlike ICC-associated helix has the parametrization β�s� � α�s� �
1

εnκg
g �

k�

g

εnκ2
gτg

n .

(ii) The non-lightlike isophote curve α with �kn, κg� x �0,0� is a geodesic curve if and only if

non-lightlike ICC-associated helix has the parametrization β�s� � α�s� � R τg
kn

dsg � 1
kn

n .

(iii) The non-lightlike isophote curve α with �kn, κg� x �0,0� is a line of curvature if and only if

non-lightlike ICC-associated helix has the parametrization (37).

Case 2: y � 0 . From system (32), we have

x� � knz � 1 � 0, κgx � τgz � 0, εgknx � z� x 0, (38)

with �κg, τg� x �0,0� . If τg x 0 , then, from the second equation of system (38), we get z � �

κg

τg
x

which we substitute in the first equation of system (38) and obtain the following differential

equation

x� �
knκg

τg
x � �1,
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whose general solution is

x � exp�S knκg

τg
ds���S exp��S knκg

τg
ds�ds � c19	 , (39)

where c19 is a real constant. Since z � �
κg

τg
x , the position vector of the associated curve β is

obtained as

β�s� � α�s� � exp�S knκg

τg
ds���S exp��S knκg

τg
ds�ds � c19	�T �

κg

τg
n� . (40)

If kn x 0 and τg � 0 , then, second and first equations of system (38) yield x � 0 and z � �
1
kn

,

respectively. Thus, the position vector of associated curve β is given by

β�s� � α �

1

kn
n. (41)

Now, we give the following theorem and corollaries.

Theorem 3.28 The non-lightlike associated curve β given by (40) (resp. (41)) is a general helix

if and only if α is an isophote curve on φ .

Remark 3.29 The non-lightlike associated curve (40) (resp. (41)) can be referred to as: Non-

lightlike isophote curve-connected associated helix of type 2 or non-lightlike ICC-associated helix of

type 2.

Corollary 3.30 (i) The non-lightlike isophote curve α with �κg, τg� x �0,0� is an asymptotic

curve if and only if non-lightlike ICC-associated helix has the parametrization β�s� � α�s� �
��s � c19�T �

κg�s�c19�

τg
n .

(ii) The non-lightlike isophote curve α with �κg, τg� x �0,0� is a geodesic curve if and only if

non-lightlike ICC-associated helix has the parametrization β�s� � α�s� � ��s � c19�T .
(iii) The non-lightlike isophote curve α with �κg, τg� x �0,0� is a line of curvature if and only if

non-lightlike ICC-associated helix has the parametrization in (41).

Case 3: z � 0 . In this case, from (32) we obtain

x� � εnκgy � 1 � 0, κgx � y� � 0, εgknx � εT τgy x 0. (42)

If κg � 0 , then, from system (42), we get x � �s � c29 and y � c30 , where c20, c21 are real

constants. Then, the position vector of the associated curve β is given by

β�s� � α�s� � ��s � c20�T � c21g. (43)
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If κg x 0 , then from second equation of system (42), we have x � �

y�

κg
. We take the

derivative of x and substitute it in the first equation of system (42) and obtain the following

differential equation

y�� �
k�g

κg
y� � εnκ

2
gy � κg,

whose homogeneous part can be achieved by a parameter change t � R κgds as

d2y

dt2
� εny � 0. (44)

The solution of (44) depends on the value of εn which could be either 1 or �1 . If εn � 1 , then we

get

y � c22 cosh�S κgds� � c23 sinh�S κgds�
� cosh�S κgds�S sinh�S κgds�ds � sinh�S κgds�S cosh�S κgds�ds,

x � � c22 sinh�S κgds� � c23 cosh�S κgds�
� sinh�S κgds�S sinh�S κgds�ds � cosh�S κgds�S cosh�S κgds�ds,

(45)

where c22, c23 are real constants.

If εn � �1 , then we get

y � c24 cos�S κgds� � c25 sin�S κgds�
� cos�S κgds�S sin�S κgds�ds � sin�S κgds�S cos�S κgds�ds,

x � c24 sin�S κgds� � c25 cos�S κgds�
� sin�S κgds�S sin�S κgds�ds � cos�S κgds�S cos�S κgds�ds,

(46)

where c24, c25 are real constants. In either cases,

β�s� � α�s� � xT � yg, (47)

where x, y are as defined in (45) or (46).

Theorem 3.31 The non-lightlike associated curve β given by (47) is a general helix if and only

if α is an isophote curve on φ .
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Remark 3.32 The non-lightlike associated curve (47) can be referred to as: Non-lightlike isophote

curve-connected associated helix of type 3 or non-lightlike ICC-associated helix of type 3.

Corollary 3.33 The non-lightlike isophote curve α is a geodesic curve if and only if non-lightlike

ICC-associated helix has the parametrization (43).

4. Examples

Example 4.1 Let the spacelike surface φ be given by the parametrization φ�u, v� � �coshu, sinhu, v�
and

α�u� � �cosh� uº
2
� , sinh� uº

2
� , uº

2
�

be a spacelike helix on φ . Then, elements of Darboux frame of α are calculated as

T �s� � � 1º
2
sinh� sº

2
� , 1º

2
cosh� sº

2
� , 1º

2
� ,

g�s� � �sinh� sº
2
� , cosh� sº

2
� ,� 1º

2
� , n�s� � �cosh� sº

2
� , sinh� sº

2
� ,0� ,

kn �
1
2

, κg � 0 and τg �
1
2

. Since κg � 0 , α is a geodesic curve on φ . On the other hand, since g

and n are Lorenztian circles or arc of a Lorenztian circle, then we have that α is also a relatively

normal-slant helix and an isophote curve on φ . Figure 1 shows some β curves associated with α

considering the obtained results in Section 3.

Figure 1: Spacelike surface curve α (blue), spacelike HCC-associated helix of type 1 (red), spacelike
RNS-HC-associated helix of type 1 (black) and spacelike ICC-associated helix of type 2 (green),
respectively

Example 4.2 Let the timelike surface φ be given by the parametrization φ�u, v� � �º3u, v cos�u�, vsin�u�� ,
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Figure 2: Timelike surface curve α (blue), timelike HCC-associated helix of type 3 (red), timelike
RNS-HC-associated helix of type 3 (black), respectively

v > ��º3,
º
3� and

α�s� � ��
¾

3

2
s, cos� sº

2
� , sin� sº

2
���

be a timelike helix on φ . The elements of Darboux frame of α are calculated as

n(s) =

�������
º
2s

2

¾
3 �

s2

2

,

º
3 sin� sº

2
�¾

3 �
s2

2

,

º
3 cos� sº

2
�¾

3 �
s2

2

������ , kn �
1

2
cosh�π

2
� , kn �

1

2
sinh�π

2
� and

τg �

º
3

2
. Since g is a Lorenztian circle or an arc of a Lorenztian circle, then we have that α is

also a relatively normal-slant helix. Figure 2 shows some β curves associated with α considering

the obtained results in Section 3.

Declaration of Ethical Standards
The author declares that the materials and methods used in his study do not require ethical

committee and/or legal special permission.

Conflicts of Interest
The author declares no conflict of interest.

125



Onur Kaya / FCMS

References

[1] Ali A.T., Position vectors of spacelike general helices in Minkowski 3-space, Nonlinear Analysis:
Theory, Methods & Applications, 73(4), 1118-1126, 2010.

[2] Ali A.T., Turgut M., Position vectors of a timelike general helices in Minkowski 3-space, Global
Journal of Advanced Research on Classical and Modern Geometries, 2(1), 1-10, 2013.

[3] Barros M., General helices and a theorem of Lancret, Proceedings of the American Mathematical
Society, 125(5), 1503-1509, 1997.

[4] Chouaieb N., Goriely A., Maddocks J.H., Helices, Proceedings of the National Academy of Sciences,
103(25), 9398-9403, 2006.

[5] Doğan F., Isophote curves on timelike surfaces in Minkowski 3-space, Analele Stiintifice ale Univer-
sitatii Alexandru Ioan Cuza din Iasi - Matematica, 63, 133-143, 2017.

[6] Doğan F., Yaylı Y., Isophote curves on spacelike surfaces in Lorentz–Minkowski space, Asian-European
Journal of Mathematics, 14(10), 2150180, 2021.

[7] Doğan F., Yaylı Y., On isophote curves and their characterizations, Turkish Journal of Mathematics,
39(5), 650-664, 2015.

[8] El Haimi A., Chahdi A.O., Parametric equations of special curves lying on a regular surface in
Euclidean 3-space, Nonlinear Functional Analysis and Applications, 26(2), 225-236, 2021.

[9] Hananoi S., Ito N., Izumiya S., Spherical Darboux images of curves on surfaces, Beitrage zur Algebra
und Geometrie, 56, 575-585, 2015.

[10] Izumiya S., Takeuchi N., New special curves and developable surfaces, Turkish Journal of Mathematics,
28, 153-163, 2004.

[11] Kim K.J., Lee I.K., Computing isophotes of surface of revolution and canal surface, Computer Aided
Design, 35(3), 215-223, 2003.

[12] Lambert J.H., Photometria Sive de Mensura et Gradibus Luminis, Colorum et Umbrae, Klett, 1760.

[13] López R., Differential geometry of curves and surfaces in Lorentz-Minkowski space, International
Electronic Journal of Geometry, 7(1), 44-107, 2014.

[14] Lucas A.A., Lambin P., Diffraction by DNA, carbon nanotubes and other helical nanostructures,
Reports on Progress in Physics, 68(5), 1181, 2005.

[15] Macit N., Düldül M., Relatively normal-slant helices lying on a surface and their characterization,
Hacettepe Journal of Mathematics and Statistics, 46(3), 397-408, 2017.

[16] Önder M., Helices associated to helical curves, relatively normal-slant helices and isophote curves,
arXiv:2201.09684, 2022.

[17] Öztürk U., Hacısalihoğlu H.H., Helices on a surface in Euclidean 3‐space, Celal Bayar University
Journal of Science, 13(1), 113-123, 2017.

[18] Öztürk U., Nes̆ović E., Koç Öztürk E.B., Numerical computing of isophote curves, general helices, and
relatively normal‐slant helices in Minkowski 3‐space, Mathematical Methods in the Applied Sciences,
1-15, 2022.

[19] Poeschl T., Detecting surface irregularities using isophotes, Computer Aided Geometric Design, 1(2),
163-168, 1984.

126



Onur Kaya / FCMS

[20] Puig-Pey J., Gálvez A., Iglesias A., Helical Curves on Surfaces for Computer Aided Geometric
Design and Manufacturing, International Conference on Computational Science and Its Applications,
Springer, 2004.

[21] Sara R., Local Shading Analysis via Isophotes Properties, Ph.D., Johannes Kepler University, Austria,
1994.

[22] Toledo-Suárez C.D., On the arithmetic of fractal dimension using hyperhelices, Chaos, Solitons &
Fractals, 39(1), 342-349, 2009.

[23] Yadav A., Pal B., On relatively normal-slant helices and isophotic curves, arXiv:2104.13220, 2021.

[24] Yadav A., Yadav A.K., Relatively normal-slant helices in Minkowski 3 -space, arXiv:2201.03933, 2022.

[25] Yang X., High accuracy approximation of helices by quintic curves, Computer Aided Geometric Design,
20(6), 303-317, 2003.

127


	Introduction
	Preliminaries
	Helices Associated with Surface Curves in E31
	Non-lightlike Helices Associated with Helical Curves on a Surface in E31
	Non-lightlike Helices Associated with Relatively Normal-slant Helices in E31
	Non-lightlike helices associated with isophote curves in E31

	Examples

