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Toward the theory of semi-linear Beltrami equations
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YAKUBOV

ABSTRACT. We study the semi-linear Beltrami equation ωz̄ − µ(z)ωz = σ(z)q(ω(z)) and show that it is closely
related to the corresponding semi-linear equation of the form divA(z)∇U(z) = G(z)Q(U(z)). Applying the theory
of completely continuous operators by Ahlfors-Bers and Leray–Schauder, we prove existence of regular solutions both
to the semi-linear Beltrami equation and to the given above semi-linear equation in the divergent form, see Theorems
1.1 and 5.2. We also derive their representation through solutions of the semi-linear Vekua type equations and gener-
alized analytic functions with sources. Finally, we apply Theorem 5.2 for several model equations describing physical
phenomena in anisotropic and inhomogeneous media.
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1. INTRODUCTION

Let D be a domain in the complex plane C. In this paper, we study semi-linear Beltrami
equations of the form

(1.1) ωz̄ − µ(z)ωz = σ(z)q(ω(z)), z ∈ D,

where the left hand side is presented by the linear Beltrami operator L(ω) := ωz̄ − µωz with
measurable coefficient µ : D → C, satisfying uniform ellipticity condition |µ(z)| ≤ k < 1 a.e.,
ωz̄ := (ωx + iωy)/2, ωz := (ωx − iωy)/2, z = x + iy, ωx and ωy are partial derivatives of the
function ω in x and y, respectively. The non-linear part of the equation is chosen in such a way
that σ : D → C belongs to class Lp(D), p > 2, and q : C → C is a continuous function, satisfying
the asymptotic condition

(1.2) lim
w→∞

q(w)

w
= 0.

One of the main goals of this paper is to establish close links between semi-linear Beltrami
equation (1.1) and semi-linear Poisson type equation of the form

(1.3) div [A(z) gradU(z)] = G(z)Q(U(z)),

the diffusion term of which is the divergence form elliptic operator L(u), whereas its reaction
term G(z)Q(U(z)) is such that G : D → R is a function of class Lp′(D), p′ > 1, and Q : R → R
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stands for a continuous function such that

(1.4) lim
t→∞

Q(t)

t
= 0 .

From now on, A(z) = {aij(z)} is symmetric matrix function with measurable entries and
detA(z) = 1, satisfying the uniform ellipticity condition

(1.5)
1

K
|ξ|2 ≤ ⟨A(z)ξ, ξ⟩ ≤ K|ξ|2 a.e. in D, 1 ≤ K <∞, ∀ ξ ∈ R2 .

The semi-linear Poisson equation, when A ≡ 1 in (1.3), was studied in [15], [28] and [29].
A rather comprehensive treatment of the present state of the general theory concerning semi-
linear Poisson equations can be found in the excellent books of M. Marcus and L. Véron [23]
and L. Véron [34]. For the classic case A ≡ 1 and Q ≡ 1 of the Poisson equation, see e.g. the
recent article [32]. The model case G ≡ 1 with general Q and A was first investigated in [12],
see also the papers [13]–[14] and [16]-[17].

Links established by us open up new possibilities for the study both of equations (1.1) and
(1.3), because one can apply a wide range of effective methods of the potential theory as well
as comprehensively developed theory of quasiconformal mappings in the plane, see e.g. [1],
[3], [6] and [21]. In particular, it allows us to study in detail both the regularity properties for
solutions to the equations (1.1) and (1.3) and the proper representation of such solutions.

Before to formulate the main theorem on semi-linear Beltrami equation (1.1), we need to in-
troduce some definitions. Similarly to [2], see also monograph [1], we assume that the function
σ : C → C in equation (1.1) belongs to class Lp(C) for some p > 2 with the condition

(1.6) k Cp < 1 , k := ∥µ∥∞ < 1 ,

guaranteing the existence of suitable solutions of the equations (1.1), where Cp is the norm of
the known operator T : Lp(C) → Lp(C) defined through the Cauchy principal limit of the
singular integral

(1.7) (Tg)(ζ) := lim
ε→0

− 1

π

∫
|z−ζ|>ε

g(z)

(z − ζ)2
dxdy

 , z = x+ iy .

As known, ∥Tg∥2 = ∥g∥2, i.e., C2 = 1, and by the Riesz convexity theorem Cp → 1 as p → 2,
see e.g. Lemma 2 in [1] and Lemma 4 in [2]. Thus, there are such p, whatever the value of k in
(1.6).

Let us denote by Bp the Banach space of functions ω : C → C, which satisfy a Hölder
condition of order 1 − 2/p, which vanish at the origin, and whose generalized derivatives ωz

and ωz̄ exist and belong to Lp(C). The norm in Bp is defined by

(1.8) ∥ω∥Bp := sup
z1,z2∈C,

z1 ̸=z2

|ω(z1)− ω(z2)|
|z1 − z2|1−2/p

+ ∥ωz∥p + ∥ωz̄∥p .

Theorem 1.1. Let µ : C → C and σ : C → C have compact supports, µ ∈ L∞(C) with k := ∥µ∥∞ <
1, σ ∈ Lp(C) for some p > 2 satisfying (1.6). Suppose that q : C → C is a continuous function
satisfying condition (1.2). Then the semi-linear Beltrami equation (1.1) has a solution ω of the class
Bp(C).

Moreover, we show that the given solution ω has the representation as a composition H ◦ f ,
where f stands for a suitable quasiconformal mapping andH is a generalized analytic function,
see Section 2 and Remark 4.3.
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Theorem 1.1 together with the standard complexification approach allows us to prove the
corresponding existence, representation and regularity result for semi-linear Poisson type equa-
tions (1.3), see Theorem 5.2.

The paper is organized as follows. Section 2 contains some definitions and preliminary
results. The factoring of solutions for the semi-linear Beltrami equations (1.1) can be found in
Section 3. The proof of Theorem 1.1 is given in Section 4. Section 5 includes the statement
and the proof of Theorem 5.2. Finally, in Section 6 we apply Theorem 5.2 for several model
equations describing some physical phenomena in anisotropic and inhomogeneous media.

2. DEFINITIONS AND PRELIMINARY RESULTS

Recall that monograph [33] was devoted to generalized analytic functions, i.e., continuous
complex valued functions H(z) of one complex variable z = x + iy of class W 1,1

loc in a domain
D satisfying the equations

(2.9) ∂z̄H + aH + bH = S , ∂z̄ := (∂x + i∂y)/2 ,

with complex valued coefficients a, b, S ∈ Lp(D), p > 2. If a ≡ 0 ≡ b, then H will be called
generalized analytic functions with sources S. Later on, we also need some results on the
semi-linear Vekua type equation

(2.10) ∂z̄H(z) = g(z) · q(H(z))

that have been obtained in our preceding papers [17], [18] and [28].
According to the works [15] and [28], a continuous function h : D → R of class W 2,p

loc is
also called a generalized harmonic function with a source s:D → R in Lp(D), p > 2, if h a.e.
satisfies the Poisson equation

(2.11) △h(z) = s(z) ,

where, as usual, △ := ∂2/∂x2 + ∂2/∂y2, z = x+ iy, is the Laplacian. Note that by the Sobolev
embedding theorem, see Theorem I.10.2 in [31], such functions h belong to the class C1.

Let H be a generalized analytic function with a complex valued source S. Then we say that
a function h : D → R is a weak generalized harmonic function with the source S, if h = ReH.

It is well known that the homogeneous Beltrami equation

(2.12) fz̄ = µ(z)fz

is the basic equation in analytic theory of quasiconformal and quasiregular mappings in the
plane with numerous applications in nonlinear elasticity, gas flow, hydrodynamics and other
sections of natural sciences. For the corresponding quasilinear homogeneous Beltrami equa-
tions, when the complex coefficient µ depends not only on z but also on f , see the recent papers
[10] and [30].

Recall that the equation (2.12) is said to be nondegenerate or uniformly elliptic if ||µ||∞ < 1,
i.e., if Kµ ∈ L∞,

(2.13) Kµ(z) :=
1 + |µ(z)|
1 − |µ(z)|

.

Homeomorphic solutions f of nondegenerate equation (2.12) of the classW 1,2
loc are called quasi-

conformal mappings or sometimes µ−conformal mappings. Its continuous solutions in W 1,2
loc

are called µ−conformal functions. On the corresponding existence theorems for nondegener-
ate Beltrami equation (2.12), see e.g. [1], [6] and [21].
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The inhomogeneous Beltrami equations

(2.14) ωz̄ = µ(z) · ωz + σ(z)

have been introduced and investigated by L. Ahlfors and L. Bers in paper [2], see also the
Ahlfors monograph [1].

One of the principal results in [2], Theorem 1, is the following statement:
Theorem A. Let σ ∈ Lp(C) for p > 2, satisfying condition (1.6). Then the equation (2.14) has a unique
solution ωµ,σ ∈ Bp. This is its only solution with ω(0) = 0 and ωz ∈ Lp(C).

As a consequence one deduces, see Theorem 4 and Lemma 8 in [2],
Theorem B. Let µ : C → C be in L∞(C) with compact support and ∥µ∥∞ < 1. Then there exists a
unique µ−conformal mapping fµ in C which vanishes at the origin and satisfies condition fµz − 1 ∈
Lp(C) for any p > 2, satisfying (1.6). Moreover, fµ(z) = z + ωµ,µ(z).

3. FACTORING OF SOLUTIONS TO SEMI-LINEAR BELTRAMI EQUATIONS

Let us start with the following factorization lemma for the linear inhomogeneous Beltrami
equations (2.14).

Lemma 3.1. Let D be a bounded domain in C, µ : D → C be in class L∞(D) with k := ∥µ∥∞ < 1,
σ : D → C be in class Lp(D), p > 2, with condition (1.6). Suppose that fµ : C → C is the
µ−conformal mapping from Theorem B with an arbitrary extension of µ onto C keeping compact support
and condition (1.6).

Then each continuous solution ω of equation (2.14) in D of class W 1,p(D) has the representation as
a composition H ◦ fµ|D, where H is a generalized analytic function in D∗ := fµ(D) with the source
g ∈ Lp∗(D∗), p∗ := p2/2(p− 1) ∈ (2, p),

(3.15) g :=

(
fµz
Jµ

· σ
)
◦ (fµ)−1

,

where Jµ is the Jacobian of fµ.
Vice versa, if H is a generalized analytic function with the source g ∈ Lp∗(D∗), p∗ > 2, in (3.15),

then ω := H ◦ fµ is a solution of (2.14) of class Cα
loc ∩W 1,p∗

loc (D), where α = 1 − 2/p∗ and p∗ :=
p2∗/2(p∗ − 1) ∈ (2, p∗).

Proof. To be short, let us apply here the notation f instead of fµ. Let us consider the function
H := ω ◦ f−1. First of all, note that by point (iii) of Theorem 5 in [2] f∗ := f−1|D∗ , D∗ := f(D),
is of class W 1,p(D∗). Then, arguing in a perfectly similar way as under the proof of Lemma 10
in [2], we obtain that H ∈W 1,p∗(D∗), where p∗ := p2/2(p− 1) ∈ (2, p). Hence it has no sense to
repeat these arguments here. Since ω = H ◦ f , we get also, see e.g. formulas (28) in [2], see also
formulas I.C(1) in [1], that

ωz = (Hζ ◦ f) · fz + (Hζ ◦ f) · fz̄ ,

ωz̄ = (Hζ ◦ f) · fz̄ + (Hζ ◦ f) · fz ,
and, thus,

σ(z) = ωz̄ − µ(z)ωz = (Hζ ◦ f) fz (1− |µ(z)|2) = (Hζ ◦ f) J(z)/fz ,

where J(z) = |fz|2 − |fz̄|2 = |fz|2(1− |µ(z)|2) is the Jacobian of f , i.e.,

Hζ = g(ζ) :=

(
fz
J

· σ
)
◦ f−1(ζ) .

Similarly, applying Lemma 10 in [2] and the Sobolev embedding theorem, see Theorem I.10.2
in [31], we come to the inverse conclusion. □
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Remark 3.1. Note that if H is a generalized analytic function with the source g in the domain D∗, then
h = H + A is so for any analytic function A in D∗, but |A′|p∗ can be integrable only locally in D∗.
By Lemma 3.1, the source in (3.15) is always in class Lp∗(D∗), p∗ := p2/2(p − 1) ∈ (2, p), in view
of Theorem A with σ extended onto C by zero outside of D. Here we may assume that µ is extended
onto C by zero outside of D. However, any other extension of µ keeping condition (1.6) is suitable here,
too. Moreover, we may apply here as fµ any µ−conformal mappings with different normalizations, in
particular, with the hydrodynamic normalization fµ(z) = z + o(1) as z → ∞.

Next statement makes it is possible to reduce the study of the semi-linear Beltrami equations
(1.1) to the study of the corresponding semi-linear Vekua type equations (2.10).

Lemma 3.2. Let D be a bounded domain in C, µ : D → C be measurable with ∥µ∥∞ < 1, σ : D → C
be in class Lp(D), p > 2. Suppose that q : C → C is continuous and fµ : C → C is a µ−conformal
mapping from Theorem B with an arbitrary extension of µ onto C keeping compact support and condition
(1.6).

Then each continuous solution ω of equation (1.1) in D of class W 1,p(D) has the representation
as a composition H ◦ fµ|D, where H is a continuous solution of (2.10) in class W 1,p∗

loc (D∗), where
D∗ := fµ(D), p∗ := p2/2(p − 1) ∈ (2, p), with the multiplier g in (2.10) of class Lp∗(D∗) defined by
formula (3.15).

Vice versa, if H is a continuous solution in class W 1,p∗
loc (D∗) of (2.10) with multiplier g ∈ Lp∗(D∗),

p∗ > 2, given by (3.15), then ω := H ◦fµ is a solution of (1.1) in class Cα
loc∩W

1,p∗

loc (D), α = 1−2/p∗,
where p∗ := p2∗/2(p∗ − 1) ∈ (2, p∗).

Proof. Indeed, if ω is a continuous solution of (1.1) in D of class W 1,p(D), then ω is a solution of
(2.14) in D with the source Σ := σ · q ◦ ω in the same class. Then by Lemma 3.1 and Remark 3.1
ω = H ◦ fµ, where H is a generalized analytic function with the source G of class Lp∗(D∗) after
replacement of σ by Σ in (3.15). Note that H ∈ W 1,p∗

loc (D∗), see e.g. Theorems 1.16 and 1.37 in
[33]. The proof of the vice versa conclusion of Lemma 3.2 is similar and it is again based on its
reduction to Lemma 3.1. □

4. ON SOLUTIONS OF SEMI-LINEAR BELTRAMI EQUATIONS

First of all, recall that a completely continuous mapping from a metric space M1 into a
metric space M2 is defined as a continuous mapping on M1 which takes bounded subsets of
M1 into relatively compact subsets of M2, i.e., with compact closures in space M2. When a
continuous mapping takes M1 into a relatively compact subset of M1, it is nowadays said to
be compact on M1. Note that the notion of completely continuous (compact) operators is due
essentially to Hilbert in a special space that, in reflexive spaces, is equivalent to Definition
VI.5.1 for the Banach spaces in [11], which is due to F. Riesz, see also further comments of
Section VI.12 in [11].

Recall some further definitions and one fundamental result of the celebrated paper [22].
Leray and Schauder extend as follows the Brouwer degree, see e.g. [7] and [9], to compact per-
turbations of the identity I in a Banach space B, i.e., a complete normed linear space. Namely,
given an open bounded set Ω ⊂ B, a compact mapping F : B → B and z /∈ Φ(∂Ω), Φ := I −F ,
the (Leray-Schauder) topological degree deg [Φ,Ω, z] of Φ in Ω over z is constructed from the
Brouwer degree by approximating the mapping F over Ω by mappings Fε with range in a
finite-dimensional subspace Bε (containing z) of B. It is showing that the Brouwer degrees
deg [Φε,Ωε, z] of Φε := Iε − Fε, Iε := I|Bε

, in Ωε := Ω ∩Bε over z stabilize for sufficiently small
positive ε to a common value defining deg [Φ,Ω, z] of Φ in Ω over z.



156 Vladimir Gutlyanskiı̆, Olga Nesmelova, Vladimir Ryazanov, Eduard Yakubov

This topological degree algebraically counts the number of fixed points of F (·)− z in Ω and
conserves the basic properties of the Brouwer degree as additivity and homotopy invariance.
Now, let a be an isolated fixed point of F . Then the local (Leray-Schauder) index of a is defined
by ind [Φ, a] := deg[Φ, B(a, r), 0] for small enough r > 0. ind [Φ, 0] is called by index of F . In
particular, if F ≡ 0, correspondingly, Φ ≡ I , then the index of F is equal to 1. For our goals, we
need only the latter fact from the index theory.

Now, let us formulate one of the main results in the Leray-Schauder article [22], Theorem 1,
see also the survey [25].

Proposition 4.1. Let B be a Banach space, and let F (·, τ) : B → B be a family of operators with
τ ∈ [0, 1]. Suppose that the following hypotheses hold:

(H1) F (·, τ) is completely continuous onB for each τ ∈ [0, 1] and uniformly continuous with respect
to the parameter τ ∈ [0, 1] on each bounded set in B;

(H2) the operator F := F (·, 0) has finite collection of fixed points whose total index is not equal to
zero;

(H3) the collection of all fixed points of the operators F (·, τ), τ ∈ [0, 1], is bounded in B.
Then the collection of all fixed points of the family of operators F (·, τ) contains a continuum along which
τ takes all values in [0, 1].

For introduction in the modern fixed point theory, see e.g. survey [20] and monograph [26].

Remark 4.2. By Lemma 5 in [2] the mapping σ → ωµ,σ from Theorem A is a bounded linear operator
from Lp(C) toBp(C) with a bound that depends only on k and p in (1.6). In particular, this is a bounded
linear operator from Lp(C) to C(C). Namely, by (15) in [2] we have that ωµ,σ is Hölder continuous:

(4.16) |ωµ,σ(z1) − ωµ,σ(z2)| ≤ c · ∥σ∥p · |z1 − z2|1−2/p ∀ z1 z2 ∈ C ,

where the constant c may depend only on k and p in (1.6). Moreover, ωµ,σ(z) is locally bounded because
ωµ,σ(0) = 0. Thus, the linear operator σ → ωµ,σ|S is completely continuous for each compact set S in
C by Arzela-Ascoli theorem, see e.g. Theorem IV.6.7 in [11].

Finally, we are ready to give a proof of Theorem 1.1.
Proof for Theorem 1.1. If ∥σ∥p = 0 or ∥q∥C = 0, then Theorem A above gives the desired

solution ω := ωµ,0 of equation (1.1). Thus, we may assume that ∥σ∥p ̸= 0 and ∥q∥C ̸= 0. Set
q∗(t) = max

|w|≤t
|q(w)|, t ∈ R+ := [0,∞). Then the function q∗ : R+ → R+ is continuous and

nondecreasing and, moreover, by (1.2)

(4.17) lim
t→∞

q∗(t)

t
= 0 .

Let us show that the family of operators F (g; τ) : Lσ
p (C) → Lσ

p (C),
(4.18) F (g; τ) := τσ · q(ωµ,g) ∀ τ ∈ [0, 1] ,

where Lσ
p (C) consists of functions g ∈ Lp(C) with supports in the support S of σ, satisfies

hypotheses H1-H3 of Theorem 1 in [22], see Proposition 4.1 above. Indeed:
H1). First of all, the function F (g; τ) ∈ Lσ

p (C) for all τ ∈ [0, 1] and g ∈ Lσ
p (C) because the

function q(ωµ,g) is continuous and, furthermore, the operators F (·; τ) are completely continu-
ous for each τ ∈ [0, 1] and even uniformly continuous with respect to parameter τ ∈ [0, 1] by
Theorem A and Remark 4.2.

H2). The index of the operator F (g; 0) is obviously equal to 1.
H3). Let us assume that the collection of all solutions of the equations g = F (g; τ), τ ∈ [0, 1],

is not bounded in Lσ
p (C), i.e., there is a sequence of functions gn ∈ Lσ

p (C) with ∥gn∥p → ∞ as
n→ ∞ such that gn = F (gn; τn) for some τn ∈ [0, 1], n = 1, 2, . . . .
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However, then by Remark 4.2, we have that

∥gn∥p ≤ ∥σ∥p q∗ (∥ωµ,gn |S∥C) ≤ ∥σ∥p q∗ (M ∥gn∥p)

for some constant M > 0 and, consequently,

(4.19)
q∗(M ∥gn∥p)
M ∥gn∥p

≥ 1

M ∥σ∥p
> 0 .

The latter is impossible by condition (4.17). The obtained contradiction disproves the above
assumption.

Thus, by Theorem 1 in [22], see Proposition 4.1 above, there is a function g ∈ Lσ
p (C) with

F (g; 1) = g, and then by Theorem A the function ω := ωµ,g gives the desired solution of (1.1).
□

Remark 4.3. By Lemma 3.2, ω has the representation as a composition H ◦ fµ, where fµ : C → C is
a µ−conformal mapping from Theorem B and H is a continuous solution of (2.10) in class W 1,p∗

loc (C),
p∗ := p2/2(p − 1) ∈ (2, p), with the multiplier g in (2.10) of class Lp∗(C) defined by formula (3.15).
Note also that H is a generalized analytic function with a source of the same class.

Let us also give the following lemma on semi-linear Beltrami equations that may be of inde-
pendent interest and will be first applied in the next section.

Lemma 4.3. Let D be a bounded domain in C, µ : D → C in class L∞(D), k := ∥µ∥∞ < 1,
G : D → C be in class Lp′(D) for some p′ > 1 and L : Lp′(D) → Lp(D) be a linear bounded operator
for some p > 2 satisfying (1.6).

Suppose that q : C → C is a continuous function satisfying condition (1.2). Then the semi-linear
Beltrami equation of the form

(4.20) ωz̄ = µ(z) · ωz + L[Gq(ω)](z) , z ∈ D,

has a solution ω of class Cα(D) ∩W 1,p(D) with α = 1− 2/p.

Proof. Indeed, arguing perfectly similar to the proof of Theorem 1.1 for

(4.21) F (g; τ) := L [τGq(ωµ,g)] : Lp(D) → Lp(D) , τ ∈ [0, 1]

with µ, G and g extended by zero outside of D, we see that the family of the operators F (g; τ),
τ ∈ [0, 1], satisfies all the hypotheses of Theorem 1 in [22], see Proposition 4.1 above. Thus,
there is g ∈ Lp(C) with F (g; 1) = g, and then by Theorem A the function ω := ωµ,g|D gives the
desired solution of (4.20). □

Remark 4.4. Moreover, arguing similarly to the proofs of Lemmas 3.1 and 3.2 one can show that
ω = H ◦ fµ|D, where fµ : C → C is a µ−conformal mapping from Theorem B with µ extended onto C
by zero outside of D and H : D∗ → C is a generalized analytic function in the domain D∗ := fµ(D)
with the source

(4.22) S :=

{
fµz
Jµ

· L [Gq(ω)]

}
◦ (fµ)−1 ∈ Lp∗(D∗) ,

where Jµ is the Jacobian of fµ and p∗ := p2/2(p− 1) ∈ (2, p).
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5. TOWARD SEMI-LINEAR POISSON TYPE EQUATIONS

For convenience of presentation, let us denote by S2×2 the collection of all 2 × 2 matrices
with real valued elements

(5.23) A =

[
a11 a12
a21 a22

]
which are symmetric, i.e., a12 = a21, with detA = 1 and ellipticity condition det (I + A) > 0,
where I is the unit 2 × 2 matrix. The latter condition means in terms of elements of A that
(1 + a11)(1 + a22) > a12a21.

Now, let us first consider in a domain D of the complex plane C the linear Poisson type
equation

(5.24) div [A(z)∇u(z)] = g(z) ,

where A : D → S2×2 is a measurable matrix valued function whose elements aij(z), i, j = 1, 2
are bounded, g : D → R is a scalar function in L1,loc, and here and further ∇ denotes the
gradient of the corresponding functions.

Note that (5.24) is one of the main equations of hydromechanics (fluid mechanics) in aniso-
tropic and inhomogeneous media.

We say that a function u : D → R is a generalized A−harmonic function with the source g,
cf. [19], if u is a weak solution of (5.24), i.e., if u ∈W 1,1

loc (D) and

(5.25)
∫
D

⟨A(z)∇u(z),∇ψ(z)⟩ dm(z) +

∫
D

g(z)ψ(z) dm(z) = 0

for all ψ ∈ C∞
0 (D), where C∞

0 (D) denotes the collection of all infinitely differentiable functions
ψ : D → R with compact support in D, ⟨a, b⟩ means the scalar product of vectors a and b in R2,
and dm(z) corresponds to the Lebesgue measure in the plane C.

Later on, we use the logarithmic (Newtonian) potential of sources g ∈ L1(C) with compact
supports given by the formula:

(5.26) N g(z) :=
1

2π

∫
C

ln |z − w| g(w) dm(w) .

By Lemmas 3 in [14] and in [15], we have its following basic properties.

Remark 5.5. Let g : C → R has compact support. If g ∈ L1(C), then N g ∈ Lr,loc(C) for all
r ∈ [1,∞), N g ∈ W 1,p

loc (C) for all p ∈ [1, 2), moreover, there exist generalized derivatives by Sobolev
∂2Ng

∂z∂z and ∂2Ng

∂z∂z satisfying the equalities, where △ := ∂2/∂x2 + ∂2/∂y2, z = x+ iy, is the Laplacian,

(5.27) 4 · ∂
2Ng

∂z∂z
= △Ng = 4 · ∂

2Ng

∂z∂z
= g a.e. .

Furthermore, if g ∈ Lp′(C) for some p′ > 1, then N g ∈ W 2,p′

loc (C), moreover, N g ∈ W 1,p
loc (C) for some

p > 2 and, consequently, N g ∈ Cα
loc(C) with α = 1− 2/p. Finally, if g ∈ Lp′(C) for some p′ > 2, then

N g ∈ C1,α
loc (C) with α = 1− 2/p′.

Next, we say that a function v : D → R is A−conjugate of a generalized A−harmonic
function u with a source g : D → R if v ∈W 1,1

loc (D) and

(5.28) ∇v(z) = H [A(z)∇u(z) − ∇N g(z) ] a.e. , H :=

[
0 −1
1 0

]
.
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Lemma 5.4. Let D be a bounded domain in C, g : D → R be in L1(D) and let u be a weak solution of
equation (5.24) with a matrix function A : D → S2×2 whose elements aij(z), i, j = 1, 2 are bounded
and measurable.

If v is A−conjugate of u, then ω := u + iv satisfies the nondegenerate inhomogeneous Beltrami
equation (2.14) with

(5.29) µ(z) := µA(z) =
1

det [ I +A(z) ]
[ a22(z)− a11(z) − 2ia21(z) ] ,

(5.30) σ(z) := N g
z̄ (z) + µ(z)N g

z̄ (z) .

Conversely, if ω ∈ W 1,1
loc (D) is a solution of the nondegenerate inhomogeneous Beltrami equation

(2.14) with σ given by (5.30), then u := Reω is a weak solution of equation (5.24) with the matrix
valued function A : D → S2×2,

(5.31) A(z) :=

[ |1−µ(z)|2
1−|µ(z)|2

−2Imµ(z)
1−|µ(z)|2

−2Imµ(z)
1−|µ(z)|2

|1+µ(z)|2
1−|µ(z)|2

]
,

whose elements are bounded and measurable.

Remark 5.6. Hence, in the case A ≡ I and g ∈ Lp′(D), p′ > 2, we conclude that every generalized
harmonic function u with the source g is a weak generalized harmonic function with the same source,
see e.g. Theorem 1.16 in [33]. The inverse conclusion is, generally speaking, not true and has no sense
at all because in the weak case the source can be complex, not real.

Proof of Lemma 5.4. Indeed, let u be a weak solution of equation (5.24) with g : D → R in L1(D)
and a matrix function A : D → S2×2 whose elements are bounded and measurable. Then by
(5.27), because the Laplacian △ = div grad, we have that u is a weak solution of the equation

(5.32) div [A(z)∇u(z)] = div∇N g(z) .

If v is A−conjugate of u, then by Theorem 16.1.6 in [3] the function ω := u + iv satisfies the
nondegenerate inhomogeneous Beltrami equation (2.14) with µ and σ given by (5.29) and (5.30).

Conversely, if ω ∈ W 1,1
loc (D) is a solution of the nondegenerate inhomogeneous Beltrami

equation (2.14) with σ given by (5.30), then, again by Theorem 16.1.6 in [3], the functions u :=
Reω and v := Imω satisfy the relation (5.28) with the matrix function A : D → S2×2 given by
(5.31) whose elements aij(z) are measurable in z ∈ D and bounded because |aij | ≤ ∥Kµ∥∞.
Note that (5.28) is equivalent to the equation

(5.33) A(z)∇u(z) − ∇N g(z) = −H∇ v(z)

because H2 = −I . As known, the curl of any gradient field is zero in the sense of distributions
and, moreover, the Hodge operator H transforms curl-free fields into divergence-free fields,
and vice versa, see e.g. 16.1.3 in [3]. Hence u is a weak solution of equation (5.32) as well as of
(5.24) in view of (5.27). □

Further we say that a function u : D → R is a weak solution of (1.3), if u ∈W 1,1
loc (D) and

(5.34)
∫
D

⟨A(z)∇u(z),∇ψ(z)⟩ dm(z) +

∫
D

G(z)Q(u(z))ψ(z) dm(z) = 0

for all ψ ∈ C∞
0 (D), where C∞

0 (D) denotes the collection of all infinitely differentiable functions
ψ : D → R with compact support in D, ⟨a, b⟩ means the scalar product of vectors a and b in R2,
and dm(z) corresponds to the Lebesgue measure in the plane C.
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Theorem 5.2. Let D be a bounded domain in C, a scalar function G : D → R be in class Lp′(D) for
some p′ > 1, a continuous function Q : R → R satisfy condition (1.4) and let A : D → S2×2 be a
matrix function whose elements aij(z), i, j = 1, 2 are bounded and measurable.

Then the semi-linear Poisson type equation (1.3) has a weak solution u of class Cα(D) ∩W 1,p(D)
with α = 1− 2/p for some p > 2.

Moreover, u = h ◦ fµ|D, where fµ : C → C is a µ−conformal mapping from Theorem B and h is a
weak generalized harmonic function in the domain D∗ := fµ(D) with the source

(5.35) S :=

{
fµz
Jµ

· σ
}
◦ (fµ)−1 ∈ Lp∗(D∗) ,

where Jµ is the Jacobian of fµ, p∗ := p2/2(p − 1) ∈ (2, p), µ is defined by formula (5.29) and σ is
calculated by formula (5.30) with g = GQ(u).

As it is clear from the proof below the degree p > 2 and the exponent α ∈ (0, 1) of the Hölder
continuity, correspondingly, cannot be connected with p′ in an explicit form.

Proof. With no loss of generality, we may assume here that p′ ∈ (1, 2] and that g ≡ 0 outside
of D, and then N g ∈ W 1,p(D) for all p ∈ (1, p∗), where p∗ = 2p′/(2 − p′) > 2, see Lemma 3
in [14]. Hence later on, we may also assume that p > 2 satisfies condition (1.6) for µ in (5.29).
Moreover, again by Lemma 3 in [14], the correspondence g → N g

z̄ generates a completely
continuous linear operator L acting from real valued Lp′(D) to complex valued Lp(D). Thus,
the linear operator L := L + µL̄ with the multiplier µ ∈ L∞(D) is bounded. Then by Lemma
4.3, the semi-linear Beltrami equation (4.20) with q(ω) := Q(Reω) has a solution ω of class
Cα(D)∩W 1,p(D) with α = 1− 2/p. Moreover, by Lemma 5.4, the function u := Reω is a weak
solution of equation (5.24) of the given class. Finally, by Lemma 3.1, we conclude that u has the
representation as the composition h ◦ fµ|D, where fµ : C → C is a µ−conformal mapping from
Theorem B and h is a weak generalized harmonic function in the domain D∗ := fµ(D) with
the source (5.35). □

6. SOME EXAMPLES OF APPLICATIONS

We apply Theorem 5.2 for several model equations describing some physical phenomena in
anisotropic and inhomogeneous media.

The first group of such applications is relevant to reaction-diffusion problems. Problems of
this type are discussed in [8], p. 4, and, in details, in [4]. A nonlinear system is obtained for
the density U and the temperature T of the reactant. Upon eliminating T the system can be
reduced to equations of the form

(6.36) △U = σ ·Q(U)

with σ > 0 and, for isothermal reactions, Q(U) = Uλ, where λ > 0 that is called the order of
the reaction. It turns out that the density of the reactant U may be zero in a subdomain called
a dead core. A particularization of results in Chapter 1 of [8] shows that a dead core may exist
just if and only if β ∈ (0, 1), see also the corresponding examples in [13].

In the case of anisotropic and inhomogeneous media, we come to the semi-linear Poisson
type equations (1.3). In this connection, the following statement may be of independent inte-
rest.

Corollary 6.1. Let D be a bounded domain in C, a scalar function σ : D → R be in class Lp′(D) for
some p′ > 1 and let A : D → S2×2 be a matrix function whose elements aij(z), i, j = 1, 2 are bounded
and measurable.
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Then there is a weak solution u : D → R of class Cα
loc ∩W

1,p
loc with α = 1 − 2/p for some p > 2 to

the semi-linear Poisson type equation

(6.37) div [A(z)∇u(z)] = σ(z) · uλ(z) , 0 < λ < 1 , a.e. in D.

Note also that certain mathematical models of a thermal evolution of a heated plasma lead
to nonlinear equations of the type (6.36). Indeed, it is known that some of them have the form
△ψ(u) = f(u) with ψ′(0) = ∞ and ψ′(u) > 0 if u ̸= 0 as, for instance, ψ(u) = |u|q−1u under
0 < q < 1, see e.g. [8]. With the replacement of the function U = ψ(u) = |u|q · signu, we
have that u = |U |Q · signU , Q = 1/q, and, with the choice f(u) = |u|q2 · signu, we come to the
equation △U = |U |q · signU = ψ(U). For anisotropic and inhomogeneous media, we obtain
the corresponding equation (6.38) below:

Corollary 6.2. Let D be a bounded domain in C, a scalar function σ : D → R be in class Lp′(D) for
some p′ > 1 and let A : D → S2×2 be a matrix function whose elements aij(z), i, j = 1, 2 are bounded
and measurable.

Then there is a weak solution u : D → R of class Cα
loc ∩W

1,p
loc with α = 1 − 2/p for some p > 2 to

the semi-linear Poisson type equation

(6.38) div [A(z)∇u(z)] = σ(z) · |u(z)|λ−1u(z) , 0 < λ < 1 , a.e. in D.

Finally, we recall that in the combustion theory, see e.g. [5] and [27] and the references
therein, the following model equation

(6.39)
∂u(z, t)

∂t
=

1

δ
· △u + eu , δ > 0 , t ≥ 0, z ∈ D

takes a special part. Here u ≥ 0 is the temperature of the medium. We restrict ourselves
here by the stationary case, although our approach makes it possible to study the parabolic
equation (6.39), see [13]. The corresponding equation of the type (1.3), see (6.40) below, appears
in anisotropic and inhomogeneous media with the function Q(u) = e−|u| that is uniformly
bounded at all.

Corollary 6.3. Let D be a bounded domain in C, a scalar function σ : D → R be in class Lp′(D) for
some p′ > 1 and let A : D → S2×2 be a matrix function whose elements aij(z), i, j = 1, 2 are bounded
and measurable.

Then there is a weak solution u : D → R of class Cα
loc ∩W

1,p
loc with α = 1 − 2/p for some p > 2 to

the semi-linear Poisson type equation

(6.40) div [A(z)∇u(z)] = σ(z) · e−|u(z)| a.e. in D.

Remark 6.7. Such solutions u in Corollaries 6.1, 6.2, 6.3 have the representation as the composition
h ◦ fµ|D, where fµ : C → C is a µ−conformal mapping in Theorem B with µ extended onto C by
zero outside of D, and all h are weak generalized harmonic functions with sources of class Lp∗(D∗),
D∗ := fµ(D) and p∗ := p2/2(p− 1) ∈ (2, p).
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