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ABSTRACT 

An asymptotic expansion of layered Green’s function is examination in a spatial domain and parametric approach is proposed 

by determining a small parameter to derive the shortened form of Green’s function for 3- and 4-layered structures. For 

qualitative testing and comparison of the exact Green’s function and asymptotic shortened Green’s functions associated with 

the measurement and source point in the same layer, we performed numerical calculations.  

Keywords: Green’s function, Layered media, Parametric analysis, Asymptotic approach 
 

 

1. INTRODUCTION 
 

In acoustic imaging, the measured waves are converted to image using certain algorithms commonly 

involving the Green’s functions [1,3]. Considering the layered acoustic environment, which includes 

different acoustical and physical parameters, the layered Green’s functions involving infinite integrals 

with highly oscillatory and slowly attenuating integrands must be calculated. [4,5]. In [6], an out-of-

plane analysis of a layered elastic plate using asymptotic expansions are investigated whereas low-

frequency analysis of multi-component rods are considered employing an asymptotic procedure together 

with a multiparametric analysis of the problem parameters in [7]. In both works, approximate analytical 

solutions were obtained and dispersion equations, which are difficult or impossible to calculate 

analytically due to the complicated functions they contain, are expressed through simplified polynomials 

resulting in much simpler analysis of the considered problems. In [8] a parametric analysis was 

performed to evaluate the effect of layer densities on the Green's function. 

 

It is therefore possible to formulate the mathematical model of the problem considered in this paper 

through the physical and acoustic parameters in an understandable way whereby a multiparametric 

approach may be utilized after a successful application of an asymptotic expansion to the layered 

Green’s function in a spatial domain [9].  

 

In this study, asymptotic expansions of each term in the coefficients of acoustic layer Green's functions 

used in the solution of the photoacoustic wave equation are obtained for 3 and 4 layers in spatial domain, 

and a parametric analysis is carried out according to medium velocities for a 3 layered media. Numerical 

comparisons of exact Green’s functions and Green’s functions obtained through the asymptotic 

expansions of coefficients are given. Using these expansions in photoacoustic imaging can both provide 

a physical interpretation of the problem and speed up the calculation time. 
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2. STATEMENT OF THE PROBLEM 

 

The medium is modeled as a layered planar medium consisting of 3 and 4 layers, respectively, each of 

which is homogeneous with different acoustic properties from others, extending infinitely in the 

transverse direction, subject to continuity conditions on the boundary of layers and the wave propagation 

is represented by layered Green's functions. 

 

Assuming that the source and measurement locations are in the same layer, 𝑟 = (𝑥, 𝑧) and  𝑟′ = (𝑥′, 𝑧′), 

respectively, acoustic layered Green’s functions are expressed as follows [8]:  

𝐺(𝑟, 𝑟′) = ∫
cos(𝑘𝑥(𝑥 − 𝑥′))

𝑘𝑧1
(𝑒(−𝑘𝑧1|𝑧−𝑧′|) + 𝑅𝑁𝑒(−𝑘𝑧1|𝑧+𝑧′|))𝑑𝑘𝑥

∞

0

 
𝑁 = 3,4 (1) 

where 𝑅𝑁 denotes transmission and reflection coefficients. Equations 𝑘𝑥
2 =  𝑘𝑧𝑖

2 + 𝑘𝑖
2 are valid and the 

variables of this equations are wave numbers (𝑖 = 1, 2, 3, 4.). 

The initial condition at 𝑡 = 0, and continuity conditions on the boundary are expressed as 

𝑝0 = 𝑝(𝑟, 𝑡 = 0),    
   

𝜕𝑝(𝑟, 𝑡 = 0)

𝜕𝑡
= 0                                        

(2) 

lim
r→Sm

−
p(r, t) = lim

r→Sm
+

p(r, t)                          (3) 

 
and 

lim
r→Sm

−
 

1

𝜌𝑚
 
𝜕𝑝(𝑟, 𝑡)

𝜕𝐧  = lim
r→Sm

+

1

𝜌𝑚+1

𝜕𝑝(𝑟, 𝑡)

𝜕𝐧
. 

𝑚 =  1,2,3,4 (4) 

Here, 𝑝(𝑟, 𝑡) is the acoustic wave function at position 𝑟 and time 𝑡. 𝑆𝑚 denotes the surface of the 

𝑚𝑡ℎ boundary. 𝜌𝑚 and 𝜌𝑚+1 are densities of the layers 𝑚 and 𝑚 + 1, respectively. Also, since the 

geometry of the problem is taken as unbounded from above and below, thus, radiation conditions are 

valid at infinity. 

To simplify the analysis, we introduce a dimensionless spatial wave number 𝐾𝑥, and the spectral 

frequency Ω given by 

Ω =
ω ℎ2 

𝑐1
,    

𝐾𝑥 = 𝑘𝑥 ℎ2 , (5) 

where  ℎ2 is the thickness between the first and second layers. We introduce the dimensionless acoustic 

velocity and density ratios as 

χ1m  =  
c1

cm
, 

 

ρnm =
ρn

ρm
, 

 
m = 2,3,4;  n = m − 1.  (6) 

Using non-dimensional parameters, the wave numbers appearing in eqn.(1) are rewritten as 

𝐾𝑧1
=   {

−𝑖 √Ω2  −  𝐾𝑥
2,  |Ω|  >  | 𝐾𝑥|

√𝐾𝑥
2  − Ω2,    | 𝐾𝑥|  > |Ω|

 ,                (7) 

 

 𝐾𝑧𝑚
=    {

−𝑖 √Ω2𝜒1𝑚
2  −  𝐾𝑥

2,  |Ω𝜒1𝑚|  >  | 𝐾𝑥|

√𝐾𝑥
2  − 𝜒1𝑚

2 Ω2, |𝐾𝑥|  > |𝜒1𝑚Ω|
,      m = 2, 3, 4.               (8) 
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2.1.  3- LAYERED MEDIA 

For a 3 layer media, the geometry of problem is given in following figure. 

 
 Figure 1. Geometry of 3-layer media. 

Here, 𝜌𝑖 and 𝑐𝑖 are the density and velocity of medium, respectively (𝑖 =  1, 2, 3). ℎ1 is the distance 

between the source and first layer, ℎ2 is the thickness between layers and the source is located the first 

layer at  𝑧′. The Green’s function, in this case, takes the form 

𝐺1 =
1

2𝜋
∫ (𝑒−𝑘𝑧1|𝑧−𝑧′| + 𝑅3𝑒−𝑘𝑧1|𝑧+𝑧′|)

𝑐𝑜𝑠(𝑘𝑥(𝑥 − 𝑥′))

𝑘𝑧1

∞

0

𝑑𝑘𝑥 , 𝑧𝜖 Medium 1. (9) 

The coefficients 𝑅3 can be written as a piecewise function for the first, second and third regions of 

integration, as 𝐾𝑥 < 𝛺,  Ω − ε < 𝐾𝑥 < Ω + ε and 𝐾𝑥 > Ω , respectively. For these regions, the 

coefficient of layered Green’s function is represented as 

𝑅3 =   {

𝑅3
(𝐼)

,                         𝐾𝑥 < Ω

𝑅3
(𝐼𝐼)

,    𝐾𝑥  𝜖(Ω − ε, Ω + ε)

𝑅3
(𝐼𝐼𝐼)

,                       𝛺 < 𝐾𝑥

, 

 
(10) 

𝑅3 =
𝐸3

∆3
,    (11) 

where 𝐸3 and ∆3  are calculated using boundary conditions on the interfaces of layers which includes 

the physical and acoustic parameters of the medium. The coefficient of Green’s function given in 

equation (10) may be expanded in the small variables, 
𝐾𝑥

Ω
≪ 1 and 

Ω

𝐾𝑥
≪ 1, in the 1st and 3rd regions, 

respectively. At the branch points, the coefficient of 𝑅3
(𝐼𝐼)

 is calculated numerically since an asymptotic 

expansion around these points is not visible.  

When the source and measurement points are located in the first layer as depicted in Figure 1, the 

coefficient (𝑅3) of the Green’s function is given by 

𝐸3

∆3
=

− 𝑐𝑜𝑠ℎ(𝐾𝑧2) 𝐾𝑧2
(𝜌13𝐾𝑧3 + 𝐾𝑧1) + 𝑠𝑖𝑛ℎ(𝐾𝑧2) (𝜌23𝐾𝑧1𝐾𝑧3 + 𝜌12𝐾𝑧2

2)

𝑐𝑜𝑠ℎ(𝐾𝑧2) 𝐾𝑧2
(𝜌13𝐾𝑧3 − 𝐾𝑧1) + 𝑠𝑖𝑛ℎ(𝐾𝑧2) (𝜌23𝐾𝑧1𝐾𝑧3 − 𝜌12𝐾𝑧2

2)
.  

(12) 

On expanding each term of the ratio 
𝐸3

∆3
 in an asymptotic series, equation (12) maybe reduced to a 

polynomial. As an example, the series expansions of the following two terms are given in the first region: 

𝑐𝑜𝑠ℎ(𝐾𝑧2) = 1 +
𝐾𝑧2

2

2!
+ ⋯ = 1 +

Kx
2−Ω2

2
+ ⋯ = Ω2 (

1

Ω2 +
Kx

2

2Ω2 −
1

2
) + 𝑂 (

Kx
4

Ω4),    
(13) 

𝐾𝑧3 = √𝐾𝑥
2 − 𝜒13

2 Ω2 = 𝑖𝜒13Ω√1 −
𝐾𝑥

2

𝜒13
2 Ω2 = 𝑖𝜒13Ω (1 −

𝐾𝑥
2

2𝜒13
2 Ω2 + 𝑂 (

Kx
4

Ω4)).       
(14) 



Yücel and Uçar / Eskişehir Technical Univ. J. of Sci. and Tech.  A – Appl. Sci. and Eng. 24 (1) – 2023 
 

60 

Assuming Ω ≫ 1, asymptotic order of each term in (12) can be decided on expanding the expression 
𝑎Ω+𝑏

𝑐Ω+𝑑
 where the constants 𝑎, 𝑏, 𝑐 and 𝑑 can be easily determined from (12).  

Case 1: 

In this case, asymptotic expansion of all terms of the coefficient of the Green’s function is carried out 

by assuming that   
𝐾𝑥

Ω
≪ 1. 

If the asymptotic expressions of all terms contained in the coefficient of Green’s function given by 

equation (12) are written, similar to the equations (13) and (14), the first two terms of the numerator 

𝐸3 and denominator Δ3 are obtained for the first region (Ω ≫ 𝐾𝑥), respectively as follows: 

𝐸3(1𝑠𝑡𝑟𝑒𝑔𝑖𝑜𝑛) ∼ −𝑖𝜌13𝜒13Ω5
𝜒12

4

2
− 𝑖Ω5

𝜒12
4

2
+ 𝜒12

2 𝜒13𝜌23Ω4 + 𝜒12
4 𝜌12Ω4

+
𝐾𝑥

2

Ω2 (𝑖𝜌13𝜒13Ω5 (𝜒12
2 +

𝜒12
4

4𝜒13
2 −

1

Ω2
− 

𝜒12
2

2Ω2)

+ 𝑖Ω5 (
χ12

2

4
+

χ12
4

4
−

1

Ω2
−

χ12
2

2Ω2) − χ13ρ23Ω4 (1 +
χ12

2

2 χ13
2 +

𝜒12
2

2
)

− 2ρ12Ω4χ12
2 ), 

(15) 

 

Δ3(1𝑠𝑡𝑟𝑒𝑔𝑖𝑜𝑛) ∼ 𝑖𝜌13𝜒13Ω5
𝜒12

4

2
− 𝑖Ω5

𝜒12
4

2
+ 𝜒12

2 𝜒13𝜌23Ω4 − 𝜒12
4 𝜌12Ω4

−
𝐾𝑥

2

Ω2 (𝑖𝜌13𝜒13Ω5 (𝜒12
2 +

𝜒12
4

4𝜒13
2 −

1

Ω2
−  

𝜒12
2

2Ω2)

+ 𝑖Ω5 (
χ12

2

4
+

χ12
4

4
−

1

Ω2
−

χ12
2

2Ω2) − χ13ρ23Ω4 (1 +
χ12

2

2 χ13
2 +

𝜒12
2

2
)

+ 2ρ12Ω4χ12
2 ). 

 

(16) 

Substituting equations (15) and (16) in (12), we obtain the coefficient 𝑅3 for the fist region as follows  

𝑅3
(𝐼)

 =
Ω5(1+𝑂(

Kx
2

Ω2))−Ω4(1+𝑂(
Kx

2

Ω2))

Ω5(1+𝑂(
Kx

2

Ω2))−Ω4(1+𝑂(
Kx

2

Ω2))

.     

             
(17) 

Since the term Ω5 is the dominant term in the first region, the coefficient 𝑅3(1𝑠𝑡 𝑟𝑒𝑔𝑖𝑜𝑛) may be written 

in the shortened form as  

𝑅3
(𝐼)

 =
−𝑖𝜌13𝜒13Ω5𝜒12

4

2
−𝑖Ω5𝜒12

4

2
+

𝐾𝑥
2

Ω2(𝑖𝜌13𝜒13Ω5(𝜒12
2 +

𝜒12
4

4𝜒13
2 −

1

Ω2− 
𝜒12

2

2Ω2)+𝑖Ω5(
χ12

2

4
+

χ12
4

4
−

1

Ω2−
χ12

2

2Ω2))

𝑖𝜌13𝜒13Ω5𝜒12
4

2
−𝑖Ω5𝜒12

4

2
+

𝐾𝑥
2

Ω2(𝑖𝜌13𝜒13Ω5(𝜒12
2 +

𝜒12
4

4𝜒13
2 −

1

Ω2− 
𝜒12

2

2Ω2)+𝑖Ω5(
χ12

2

4
+

χ12
4

4
−

1

Ω2−
χ12

2

2Ω2))

. 

 

 

(18) 

Comparisons of exact Green's function and asymptotic Green's function and the relative error are given 

in the following numerical implementations. In all our computations, we have considered the temporal 

frequency as 1 MHz and the wavelength as 𝜆 = 16𝑥10−4𝑚. Densities of medium are 𝜌1 =

500 𝑔𝑟/𝑐𝑚3, 𝜌2 = 700 𝑔𝑟/𝑐𝑚3 , 𝜌3 = 600 𝑔𝑟/𝑐𝑚3 respectively, and veocities of medium are 𝑐1 =

1600  𝑚/𝑠𝑒𝑐 , 𝑐2 = 1000  𝑚/𝑠𝑒𝑐 , 𝑐3 = 500  𝑚/𝑠𝑒𝑐 , respectively. Layer thickness is taken as |ℎ2| =
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3𝜆. The source is located at (𝑥′, 𝑧′) = (2𝜆, 2𝜆) and the measurement point is fixed at 2𝜆 in the 𝑥- 

coordinate but in the 𝑧-axis the measurement point is varied from 2.001𝜆 to 11𝜆. 

 
 

Figure 2. Comparison of exact and asymptotic Green’s function for a three layered media for the first region 

 

It can be seen from Figure 2, that there is a notable overlap between the absolute value of exact and 

asymptotic Green’s function for all points both in the near and far fields in the first region. 

 

 

 
 

Figure 3. Relative error of exact and asymptotic Green’s function for a three-layered media for the first region 

 

The relative error, presented in Figure 3, between exact and asymptotic Green’s function is limited to 

about 3% for all distances. 

Case 2: 

By taking 
Ω

𝐾𝑥
 as the small parameter, similar calculations for 𝑅3 can be repeated for the third region 

giving the numerator 𝐸3 and the denominator Δ3 of coefficients 𝑅3 by 

𝐸3(3𝑟𝑑𝑟𝑒𝑔𝑖𝑜𝑛) = (1 −
Ω2

2 𝐾𝑥
2 +

1

24

Ω4

𝐾𝑥
4) − 𝜌13 (1 −

𝜒13
2

2

Ω2

2 𝐾𝑥
2 +  

𝜒13
4

24

Ω4

𝐾𝑥
4) − 𝜌12 + 𝜌23

+
Ω2

𝐾𝑥
2 (𝜌12𝜒12

2 +
𝜌23

2
+ 𝜒13

2
𝜌23

2
) +

Ω4

𝐾𝑥
4 (

𝜌23

24
+ 𝜒13

2
𝜌23

4
 + 𝜒13

4
𝜌23

24
), 

(19) 

 

Δ3(3𝑟𝑑𝑟𝑒𝑔𝑖𝑜𝑛) = (1 −
Ω2

2 𝐾𝑥
2 +

1

24

Ω4

𝐾𝑥
4) + 𝜌13 (1 −

𝜒13
2

2

Ω2

2 𝐾𝑥
2 + 

𝜒13
4

24

Ω4

𝐾𝑥
4) + 𝜌12 + 𝜌23

+
Ω2

𝐾𝑥
2 (−𝜌12𝜒12

2 +
𝜌23

2
+ 𝜒13

2
𝜌23

2
) +

Ω4

𝐾𝑥
4 (

𝜌23

24
+ 𝜒13

2
𝜌23

4
 + 𝜒13

4
𝜌23

24
). 

 
 
 
(20) 

The coefficient of Green’s function, therefore, takes the form 
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𝑅3
(𝐼𝐼𝐼)

=

Kx
5 (1 + 𝑂 (

Ω2

Kx
2)) + Kx

5 (1 + 𝑂 (
Ω2

Kx
2)) − Kx

4 (1 + 𝑂 (
Ω2

Kx
2)) − 𝐾𝑥

4 (1 + 𝑂 (
Ω2

Kx
2))

Kx
5 (1 + 𝑂 (

Ω2

Kx
2)) − Kx

5 (1 + 𝑂 (
Ω2

Kx
2)) + Kx

4 (1 + 𝑂 (
Ω2

Kx
2)) − Kx

4 (1 + (
Ω2

Kx
2))

 

 

 

(21) 

Since the variable 𝐾𝑥 is much larger than the frequency Ω in this region, the coefficient 𝑅3
(𝐼𝐼𝐼)

 can be 

approximately written as 

𝑅3
(𝐼𝐼𝐼)

=

(1 −
Ω2

2 𝐾𝑥
2 +

1
24

Ω4

𝐾𝑥
4) − 𝜌13 (1 −

𝜒13
2

2
Ω2

2 𝐾𝑥
2 + 

𝜒13
4

24
Ω4

𝐾𝑥
4)

(1 −
Ω2

2 𝐾𝑥
2 +

1
24

Ω4

𝐾𝑥
4) + 𝜌13 (1 −

𝜒13
2

2
Ω2

2 𝐾𝑥
2 + 

𝜒13
4

24
Ω4

𝐾𝑥
4)

. 

 

 

(22) 

The exact and asymptotic Green’s functions are compared in the third region in Fig.4. 

 
Figure 4. Comparison of exact and asymptotic Green’s functions for a three layered media for the third region 

 

 
Figure 5. Relative error of exact and asymptotic Green’s function for a three-layered media for the third region 

 

As seen in Figure 5, the error stays the same for all distances between the source and the measuring 

point. 

 

2.2. Parametric Analysis For a 3-Layered Media 

 

The order of magnitude of the ratios of the layer velocities allows us to use parametric analysis in 

asymptotic expansions of the coefficient of Green's function given by Eqn. (18) and (22) in the first and 

third regions, respectively. By applying parametric analysis, the smallness of nondimensional quantities 
𝜒𝑚𝑛 (𝑚, 𝑛 =  1,2,3) permit certain terms to be eliminated in the asymptotic expansion of coefficient 

and it enables the speed of calculations within acceptable accuracy. 
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For the first region, let us take the configuration where the velocities are in increasing order of 

magnitude, that is, 𝑐3 ≪ 𝑐2 ≪ 𝑐1 . In this case, the term 1
𝜒13

⁄  (1 𝜒13 =⁄ ≪ 1), is the smallest term 

among the terms given in Eqn. (15) and (16). If we neglect the smallest terms in the coefficient 𝑅3 which 

is given by Eqn. (15) and (16), we write the shortened asymptotic coefficient as 

𝑅𝑠ℎ𝑜𝑟𝑡𝑒𝑛𝑒𝑑
(𝐼)

=

−𝑖𝜌13𝜒13Ω5 𝜒12
4

2
− 𝑖Ω5 𝜒12

4

2
+

𝐾𝑥
2

Ω2 (𝑖𝜌13𝜒13Ω5 (𝜒12
2 −

1
Ω2 −  

𝜒12
2

2Ω2) + 𝑖Ω5 (
χ12

2

4
+

χ12
4

4
−

1
Ω2 −

χ12
2

2Ω2))

𝑖𝜌13𝜒13Ω5 𝜒12
4

2
− 𝑖Ω5 𝜒12

4

2
+

𝐾𝑥
2

Ω2 (𝑖𝜌13𝜒13Ω5 (𝜒12
2 −

1
Ω2 −  

𝜒12
2

2Ω2) + 𝑖Ω5 (
χ12

2

4
+

χ12
4

4
−

1
Ω2 −

χ12
2

2Ω2))

. 

(23) 

 

 
Figure 6. Comparison of exact and asymptotic shortened Green’s functions for a three layered media for the first region. 

 

In Figure 6, the absolute values of exact Green’s function and the asymptotic shortened form of Green’s 

function is compared in terms of distance |𝑧 − 𝑧′|. In this calculation, acoustical and physical parameters 

are taken as the same numerical values above, except for the sound velocities.  Sound velocities are 

taken as 𝑐1 = 1600 𝑚/𝑠𝑒𝑐 , 𝑐2 = 1000 𝑚/𝑠𝑒𝑐 , 𝑐3 = 500 𝑚/𝑠𝑒𝑐. Thus the ratio of velocities 1 𝜒13 ⁄ =

 0.3 and there is a significant coincidence between the functions as is depicted in Figure 6. 

 
Figure 7. Relative error of exact and asymptotic shortened Green’s function for the first region. 

 

The graph of the relative error between exact and asymptotic shortened Green’s functions is shown in 

Figure7 which is bounded by 3.5 % for all distance ranges. For the third region, the order of velocities 

is considered as 𝑐1 ≪ 𝑐2 ≪ 𝑐3  where 𝑐1 = 500 𝑚/𝑠𝑒𝑐 , 𝑐2 = 700 𝑚/𝑠𝑒𝑐 , 𝑐3 = 1400 𝑚/𝑠𝑒𝑐. In this 

case, the term 𝜒13 = 𝑐1/𝑐3 ≪ 1 is the smallest term. Then, the terms  𝜒13 are neglected in the coefficient 

𝑅3
(𝐼𝐼𝐼)

  expressed by eqn (22), and asymptotic shortened Green’s function’s coefficient is obtain as 
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𝑅𝑠ℎ𝑜𝑟𝑡𝑒𝑛𝑒𝑑
(𝐼𝐼𝐼)

=

(1 −
Ω2

2 𝐾𝑥
2 +

1
24

Ω4

𝐾𝑥
4) − 𝜌13

(1 −
Ω2

2 𝐾𝑥
2 +

1
24

Ω4

𝐾𝑥
4) + 𝜌13

 

                               

  (24) 

 
Figure 8. Comparison of exact and asymptotic shortened Green’s functions for a three-layered media for the 

third region. 

 

 
Figure 9. Relative error of exact and asymptotic shortened Green’s function for a three-layered media for the 

third region. 

 
It can be seen from Figures 8 and 9 that the compatibility between exact and asymptotic shortened 

Green’s functions is quite favorable in the third region.  

Table 1. CPU time in seconds per point for distance |𝑧 − 𝑧′| = 3λ for exact Green’s, asymptotic Green’s and 

asymptotic shortened Green’s function in the first region for 3-layered media.  

 

Ratio of velocities Exact Green’s Function Asymptotic Green’s 

Function 

Asymptotic 

Shortened Green’s 

Function 
1

𝜒13 ⁄ =  0.3  0,000501383 0,000457215 0,000456886 

 

Therefore, we can say that the computation times are very close in this region. Hence, the analysis of 

the computational times is done only in the first region by Table 1. It is clearly observed that the CPU 

times decrease in case of asymptotic and asymptotic shortened form of Green’s functions which proves 

to be an important advantage in imaging algorithms where the Green’s function is required to be 

computed recursively. 

 

3. 4-LAYERED MEDIA 

For a 4-layered media, the geometry of problem is given in the following figure. 
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Figure 11. Geometry of 4-layered media. 

 

𝑟  =  (𝑥′, 𝑧′) and 𝑟  =  (𝑥, 𝑧) represent source and measurement locations, 𝑐1 , 𝑐2, 𝑐3 and  𝑐4 are acoustic 

wave speeds, and  𝜌1, 𝜌2, 𝜌3 and 𝜌4  are densites of layers 1, 2, 3 and 4, respectively. The coefficient 

appearing in equation (1), in this setting, is given by  

𝑅4 =
𝐸4

∆4
 

      
(25) 

where  

𝐸4 =  𝐾𝑧1
𝑐𝑜𝑠ℎ𝐾𝑧2

{𝐾𝑧3
𝑐𝑜𝑠ℎ (𝐾𝑧3

(1 − ℎ32)) (𝐾𝑧1
− 𝜌14𝐾𝑧4

)

+  𝑠𝑖𝑛ℎ (𝐾𝑧3
(1 − ℎ32)) (𝜌34𝐾𝑧1

𝐾𝑧4
− 𝜌13𝐾𝑧3

2 )}

+ 𝑠𝑖𝑛ℎ𝐾𝑧2
{𝐾𝑧3

𝑐𝑜𝑠ℎ ((1 − ℎ32)𝐾𝑧3
) (𝜌12𝐾𝑧2

2 − 𝜌24𝐾𝑧1
𝐾𝑧4

)

+ 𝑠𝑖𝑛ℎ ((1 − ℎ32)𝐾𝑧3
) (𝐾𝑧2

2 𝐾𝑧4
𝜌12𝜌34 − 𝜌23𝐾𝑧1

𝐾𝑧3
2 ) } 

 

(26) 

and 

∆4= 𝐾𝑧2
𝑐𝑜𝑠ℎ𝐾𝑧2

{𝐾𝑧3
𝑐𝑜𝑠ℎ (𝐾𝑧3

(1 − ℎ32)) (𝐾𝑧1
+ 𝜌14𝐾𝑧4

)

+ 𝑠𝑖𝑛ℎ (𝐾𝑧3
(1 − ℎ32)) (𝜌34𝐾𝑧1

𝐾𝑧4
+ 𝜌13𝐾𝑧3

2 )}  

+  𝑠𝑖𝑛ℎ𝐾𝑧2
{𝐾𝑧3

𝑐𝑜𝑠ℎ ((1 − ℎ32)𝐾𝑧3
) (𝜌12𝐾𝑧2

2 + 𝜌24𝐾𝑧1
𝐾𝑧4

)

+ 𝑠𝑖𝑛ℎ ((1 − ℎ32)𝐾𝑧3
) (𝐾𝑧2

2 𝐾𝑧4
𝜌12𝜌34 + 𝜌23𝐾𝑧1

𝐾𝑧3
2 ) }. 

(27) 

Similar to 𝑅3, the coefficient 𝑅4 can also be written as a piecewise function for the first, second and 

third regions of integration, as 𝐾𝑥 < 𝛺,  Ω − ε < 𝐾𝑥 < Ω + ε and 𝐾𝑥 > Ω , respectively and the 

coefficient of layered Green’s function is written as 

𝑅4 =   {

𝑅4
(𝐼)

  ,        𝐾𝑥 < Ω

𝑅4
(𝐼𝐼)

,     𝐾𝑥  𝜖(Ω − ε, Ω + ε)

𝑅4
(𝐼𝐼𝐼)

,     𝛺 < 𝐾𝑥 .

 (28) 

In the 4-layered media, we take into account the leading terms of series expansion of sinh and cosh 

functions appearing in the numerator and denominator in Eqn. (26)-(27) as follows: 

𝑐𝑜𝑠ℎ𝐾𝑧𝑖
~1   and   𝑠𝑖𝑛ℎ𝐾𝑧𝑖

 ~𝐾𝑧𝑖
 (29) 

Unlike layer 3, performing the asymptotic expansion of the coefficient in layer 4, we take the first terms 

of the expansions of the hyperbolic functions in (26)-(27) and the first 3 terms of the expansions of the 

wave numbers defined in terms of square root functions in the first and third integration regions, 

respectively. We analyze it in two cases. 
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Case 1 

According to the order of the variable of frequency, the coefficient of Green’s function can be written 

in the first region briefly as  

𝑅4
(𝐼)

 =
𝑐1Ω + 𝑐2Ω2 + (1 − ℎ32)𝑐3Ω2 + (1 − ℎ32)𝑐4Ω3 

𝑑1Ω +  𝑑2Ω2 + (1 − ℎ32)𝑑3Ω2 +  (1 − ℎ32)𝑑3Ω3
 

 

(30) 

where the constants 𝑐1, 𝑐2, 𝑐3, 𝑐4 and  𝑑1, 𝑑2, 𝑑3, 𝑑4 can be easily determined from equations (26) and 

(27) which are given by eqns. (A1) and (A2) in appendix A.  

For  Ω ≫ 1,  equation (30) takes the form 

𝑅4
(𝐼)

 ~
𝑐4 +  (𝑐2 + 𝑐3)

1
Ω

𝑑4 +  (𝑑2 + 𝑑3)
1
Ω

 (31) 

We then can express equation (31) asymptotically as 

𝑅4
(𝐼)

~
1

𝑑4
(𝑐4 + (

(𝑐2 + 𝑐3)1

Ω
)) (1 − (

𝑑2 + 𝑑3

𝑑4
)

1

Ω
) +  

𝑐4

𝑑4
(

𝑑2 + 𝑑3

𝑑4
)

2

(
1

Ω
)

2

     
 

(32) 

Here, the coefficients 𝑐𝑖 and 𝑑𝑖 include the square root functions. When expanding the asymptotic series 

of root functions, terms of order up to six (
Kx

6

Ω6) should be kept to reduce the relative error between the 

exact coefficient of the Green's function and its asymptotic expression. The asymptotic expansion of 

coefficient is given by eqn. (A3) presented in appendix A.  

 
Figure 12. Comparison of exact and asymptotic shortened Green’s functions for a four layered media for the 

first region. 

 

 
Figure 13. Relative error of exact and asymptotic shortened Green’s function for a three-layered media for the 

first region. 
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Figures 12 and 13 illustrate that the exact and asymptotic Green's functions match quite well in the first 

region demonstrating the validity of the considered approach.  

Case 2: 

 

The calculation performed above for 𝑅4 in the first region can be similarly repeated for the third region. 

It is clear that the term 
Ω

𝐾𝑥
 should be taken as the small parameter in this region. Since this region is semi-

infinite, it will be sufficient to expand the square root function up to 4th-order. For Ω ≪ 𝐾𝑥 , we have  

𝑅4
(𝐼𝐼𝐼)

~ 
1

𝑑4
(𝑐4 + 

𝑐2 + 𝑐3 

𝐾𝑥
) (1 −

𝑑2 +  𝑑3

𝑑4
)

1

𝐾𝑥
+ 

𝑐4

𝑑4
(

𝑑2 + 𝑑3

𝑑4
)

2 1

𝐾𝑥
2 

 

(33) 

which is given explicitly in appendix A by eqn. (A4). 

 
 

Figure 14. Comparison of exact and asymptotic shortened Green’s functions for a four layered media for the 

third region. 

 
 

Figure 15. Relative error of exact and asymptotic shortened Green’s function for a four-layeredmedia for the 

third region. 
 

Figure 14 demonstrates the numerical comparison with the exact and asymptotic shortened Green’s 

functions while Figure 15 shows the relative error between the exact and asymptotic shortened Green’s 

functions for four layered media for the third region. 

 

 
Table 2.CPU time in seconds per point for distance |𝑧 − 𝑧′| = 3λ for exact Green’s and asymptotic Green’s 

function in the first region for 4 layered media.  

 
Exact Green’s Function Asymptotic Green’s Function 

0,00007509 0,00003565 

 

It is seen that from Table 2 the computation time of the asymptotic Green's function is quite short. 
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5. CONCLUSION 

 

Asymptotic series expansions for the reflection coefficient (𝑅𝑛) of the component of the acoustic Green's 

function obtained for the 3- and 4-layer geometry, see eqns. (18), (22), (32) and (33), with the source 

and the observation points in the first region, are performed by dividing the integration region according 

to the temporal frequency (Ω) and spatial frequency (𝐾𝑥). Since the terms of the coefficients are written 

as polynomials on expanding the asymptotic series with respect to the regions containing the acoustic 

velocities of the layers, a parametric analysis is performed according to the ratios of the acoustic 

velocities. Green's functions written in polynomial form over the regions are analyzed and the leading 

terms are retained, and the next order terms (the lowest order term) are neglected. The relative errors 

between the exact Green's function and the Green's functions analyzed parametrically according to the 

velocities are calculated. It is observed that, the parametrically and asymptotically analyzed Green's 

functions in the layered structure agree quite well with the exact ones and their relative errors are in 

acceptable range. Calculation time comparisons are also carried out between Green's function given in 

the shortened form and the full Green's function for layered structures by asymptotic and parametric 

analysis. From Table 1 and Table 2, it can be seen that the reduced computation time of asymptotic and 

shortened asymptotic Green's functions will save time in photoacoustic imaging algorithms particularly 

due to recursive calculations required by the Green's functions. 
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APPENDIX A 

𝑐1 =  𝐾𝑧1
− 𝜌14𝐾𝑧4

, 

𝑐2 = 𝜌12𝐾𝑧2
2 − 𝜌24𝐾𝑧1

𝐾𝑧4
, 

                                               𝑐3 =  𝜌34𝐾𝑧1
𝐾𝑧4

− 𝜌13𝐾𝑧3
2 ,   

𝑐4 = 𝐾𝑧2
2 𝐾𝑧4

𝜌12𝜌34 − 𝜌23𝐾𝑧1
𝐾𝑧3

2 ,   

 

(A1) 

 

𝑑1 =  𝐾𝑧1
+ 𝜌14𝐾𝑧4

, 

𝑑2 = 𝜌12𝐾𝑧2
2 + 𝜌24𝐾𝑧1

𝐾𝑧4, 

𝑑3 =  𝜌34𝐾𝑧1
𝐾𝑧4

+ 𝜌13𝐾𝑧3,
2  

                                               𝑑4 = 𝐾𝑧2
2 𝐾𝑧4

𝜌12𝜌34 + 𝜌23𝐾𝑧1
𝐾𝑧3

2  .   

 

(A2) 

 

𝑅4
(𝐼)

~ (8𝜒4
3 (−𝜒4(−1 + ℎ32 + 𝜌23)𝜌34 − (−1 +  ℎ32)𝜒3

2(𝜌13 + 𝑖𝜌23Ω) +  𝜒2
2𝜌12(−1 −

𝑖(−1 + ℎ32)𝜒4𝜌34Ω)) + 4 ℧2𝜒4
2 (𝜒4

2𝜌34(−1 + ℎ32 + 𝜌23 − 2𝑖𝜌12Ω + 2iℎ32𝜌12Ω) +

 𝜌34(−1 + ℎ32 + 𝜌23 − 𝑖𝜒2
2𝜌12Ω + iℎ32𝜒2

2𝜌12Ω) +   𝜒4 (2𝜌12 + (−1 + ℎ32)(2𝜌23 +

𝑖(2 +  𝜒3
2)𝜌23Ω)) ) + ℧4 (𝑖(−1 + ℎ32)(−4 + 𝜒3

2 )𝜒4
3𝜌23Ω + 𝜌34 (−1 − 𝜌23 − 𝜒4

4(1 +

𝜌23 ) − 𝑖𝜒2
2𝜌12Ω + 2𝜒4

2(1 +  𝜌23 + 2𝑖𝜌12Ω) +  ℎ32 (1 +  𝜒4
4 + 𝑖𝜒2

2𝜌12Ω +  𝜒4
2(−2 −

4𝑖𝜌12Ω))) )) ((8𝜒4
3 (𝜒4(−1 + ℎ32 + 𝜌23)𝜌34 − (−1 + ℎ32)𝜒3

2(𝜌13 + 𝑖𝜌23Ω) +

 𝜒2
2𝜌12(𝑖 + (−1 + ℎ32)𝜒4𝜌34Ω)) + 4 ℧2𝜒4

2 (−𝜒4
2𝜌34(−1 + ℎ32 + 𝜌23 − 2𝑖𝜌12Ω +

2iℎ32𝜌12Ω) −  𝜌34(−1 +  ℎ32 +  𝜌23 − 𝑖𝜒2
2𝜌12Ω + iℎ32𝜒2

2𝜌12Ω) +  𝜒4 (2𝜌12 + (−1 +

ℎ32)(2𝜌23 + 𝑖(2 + 𝜒3
2)𝜌23Ω)) ) + ℧4 (𝑖(−1 + ℎ32)(−4 + 𝜒3

2 )𝜒4
3𝜌23Ω + 𝜌34 (1 − 𝜌23 −

𝜒4
4(1 + 𝜌23 ) − 𝑖𝜒2

2𝜌12Ω + 2𝜒4
2(−2 +  2𝜌23 + 2𝑖𝜒2

2𝜌12Ω) +  ℎ32 (−1 +  𝜒4
4 + 𝑖𝜒2

2𝜌12Ω +

 𝜒4
2(2 − 2𝑖𝜒2

2𝜌12Ω))) ))) / ((−1 + ℎ32)2 (−8𝜒4
3(𝜒3

2𝜌23 + 𝜒2
2𝜒4𝜌12𝜌34) +  ℧4 ((−4 +

(A3) 
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𝜒3
2 )𝜒4

3𝜌23 + 𝜒2
2𝜌12𝜌34 − 4𝜒4

2𝜌12𝜌34) + 4℧4𝜒4
2 (((2 + 𝜒3

2)𝜒4𝜌23 + 𝜒2
2𝜌12𝜌34 +

2𝜒4
2𝜌12𝜌34))

2

Ω2))   ,  ℧2 =
K2

Ω2. 

 

 

𝑅4
(𝐼𝐼𝐼)

∼ ((−4(1 + (−1 + ℎ32)𝜌13 − 𝐾𝜌23 − 𝜌24 + 𝜌34 − ℎ32𝜌34 + 𝐾𝜌12𝜌34) +

2
Ω2

𝐾2 (−𝐾𝜌23 + 𝜅3
2((−1 + ℎ32)𝜌13 − 𝐾𝜌23) − 𝜌24 − 𝜅4

2𝜌24 + 𝜌34 − ℎ32𝜌34 + 𝜅4
2𝜌34 −

ℎ32𝜅4
2𝜌34 + 𝐾 𝜅4

2𝜌12𝜌34 + 2 𝜅2
2(𝜌12 + 𝐾𝜌12𝜌34) +

Ω4

𝐾4 (𝜅4
2(𝜌24 + (−1 + ℎ32)𝜌34) +

2𝐾(𝜅3
2𝜌23 − 𝜅2

2𝜅4
2𝜌12𝜌34))) (−

2Ω2

𝐾2 (−𝐾𝜌23 + ℎ32𝐾𝜌23 − 2(−1 + ℎ32)𝜅3
2(𝜌13 − 𝐾𝜌23) −

𝜌24 − 𝜅4
2𝜌24 + 𝜌23 − ℎ32𝜌34 + 𝜅4

2𝜌34 − ℎ32𝜅4
2𝜌34 − 𝐾𝜅4

2𝜌34𝜌12 + ℎ32𝐾𝜅4
2𝜌12𝜌34 +

2𝜅2
2𝜌12(−1 + (−1 + ℎ32)𝐾𝜌34)) − 4 (+(−1 + ℎ32𝜌13 + 𝜌24 − 𝜌34 + ℎ32𝜌34 − (−1 +

ℎ32)𝐾(𝜌23 + 𝜌12𝜌34)) +
Ω4

𝐾4 (−𝜅4
2(𝜌24 + (−1 + ℎ32)𝜌34) + 2(−1 + ℎ32)𝐾(𝜅3

2𝜌23 +

𝜅2
2𝜅4

2𝜌12𝜌34)))) /(4(−1 + ℎ32)2𝐾2 ((−2 +
Ω2

𝐾2) (−1 +  
Ω2

𝐾2 𝜅3
2) 𝜌23 + (−1 +

Ω2

𝐾2 𝜅2
2 ) (−2 +  

Ω2

𝐾2 𝜅4
2) 𝜌12𝜌34)

2

) . 

 

(A4) 

 


