
57

Journal of Awareness, Volume / Cilt: 8 - Issue / Sayı: 1 - Yıl / Year: 2023Journal of Awareness
Volume / Cilt: 8, Issue / Sayı: 1, 2023, pp.57-61
E-ISSN: 2149-6544
https://journals.gen.tr/joa
DOI: https://doi.org/10.26809/joa.1974

Received / Geliş: 20.12.2022
Accepted / Kabul: 31.01.2023

ARAŞTIRMA MAKALESİ/RESEARCH ARTICLE

Corresponding Author/ Sorumlu Yazar:
İsmail Ergen
E-mail: ismailergen@gmail.com

Citation/Atıf: ERGEN, İ. (2023). Generating video game characters using StyleGAN2. Journal of Awareness. 8(1): 57-61, DOI: 10.26809/joa.1974

Generating video game characters using
StyleGAN2

İsmail Ergen

Asst.Prof. Faculty of Fine Arts, Design and Architecture, İstinye University, Türkiye, e-mail: ismailergen@gmail.comy

Bu çalışma, Creative Commons Atıf 4.0 Uluslararası
Lisansı ile lisanslanmıştır.
This work is licensed under a Creative Commons
Attribution 4.0 International License.

Abstract

GANs have been getting better and better each year. The state of the art GAN models for generating 2D images have
become so good it is hard to differentiate generated images nowadays. In this paper we create 3 different sparse
data sets from video game assets and train them with StyleGAN2 to generate new artwork based on the previously
existing artworks of the video game in question

Keywords: Generative art, Videogame, StyleGAN

https://orcid.org/0000-0002-8847-7262

58

Ergen

1. INTRODUCTION

In order to gain a place in the developing vid-
eo game market, new video games are populat-
ed with assets that are eye-catching, iconic and
unique to the game. These assets are created by
artists, requiring lots of time and effort. There
are all kinds of different types of artists created
elements games use, but in this paper, we will fo-
cus on 2D art. For high number of video games,
the work that goes into creating new 2D art is
dependent on the existing art of the game since
video games aim putting together a consistent
virtual experience. Therefore, existing assets’
style, form, color palette etc. have a strong im-
pact on the assets created after. In this paper,
we propose three new data sets, each of them
consisting around 1K-2K images. And by train-
ing the state of the art GAN model StyleGAN2
[2] we produce new 2D assets from these sparse
and highly limited data sets. We show that these
newly produced images, might assist the cre-
ative thinking of artists or in some cases replace
the artists altogether.

Figure 1: Example generated 2D assets, on left League of Legends character avatars and on right Fortnite character outfits.

2. DATA COLLECTION AND PROCESSING

2.1. League of Legends Champion Avatar Icons

The first data set that was collected was League of Legends champion avatar icons. To obtain the data, 1289 avatars
were downloaded by using the developer api https://developer.riotgames.com/ docs/lol. These avatars were made
out of every champion skin in League of Legends. The League of Legends champions are made up from lots of
different characters that can be described as humanoid, animal like, spiritual being etc. Each of these retrieved
avatar images were of size 120x120. Since StyleGAN2 requires the input images to be of size 2 nx2 n and for the
transfer learning the minimum FFHQ [3] trained model was on 256x256, these images were resized using the
ImageMagick [5] utility into 256x256. How the dataset looked after these operations can be observed at Figure 2a.

2.2. League of Legends Champion Splash Art

The second data set that was collected was League of Legends champion splash arts. Similarly, to League of
Legends champion avatar icons, these were obtained at https://developer.riotgames.com/docs/ lol using Leauge of
Legends developer API. There was 1289 of them too just like avatars.

Figure 2: Retrieved and processed data set samples.

Splash art images were of size 1215x717. Each of these images consists a big background that is specific to the
character. Since our focus is on the character here, it was needed to cut these images around the characters. To
achieve this cut around the character, it was decided that a window size of 512x512 was going to be used. And to
center this window around the character two approaches were used.

Figure 1. Example generated 2D assets, on left
League of Legends character avatars and on right

Fortnite character outfits.

2. DATA COLLECTION AND PRO-
CESSING

2.1. League of Legends Champion Avatar Icons

The first data set that was collected was League
of Legends champion avatar icons. To obtain the
data, 1289 avatars were downloaded by using
the developer api https://developer.riotgames.
com/ docs/lol. These avatars were made out of
every champion skin in League of Legends. The
League of Legends champions are made up from
lots of different characters that can be described
as humanoid, animal like, spiritual being etc.
Each of these retrieved avatar images were of
size 120x120. Since StyleGAN2 requires the input
images to be of size 2 nx2 n and for the transfer
learning the minimum FFHQ [3] trained model

was on 256x256, these images were resized using
the ImageMagick [5] utility into 256x256. How
the dataset looked after these operations can be
observed at Figure 2a.

2.2. League of Legends Champion Splash Art

The second data set that was collected was
League of Legends champion splash arts. Sim-
ilarly, to League of Legends champion avatar
icons, these were obtained at https://developer.
riotgames.com/docs/ lol using Leauge of Leg-
ends developer API. There was 1289 of them too
just like avatars.

Figure 1: Example generated 2D assets, on left League of Legends character avatars and on right Fortnite character outfits.

2. DATA COLLECTION AND PROCESSING

2.1. League of Legends Champion Avatar Icons

The first data set that was collected was League of Legends champion avatar icons. To obtain the data, 1289 avatars
were downloaded by using the developer api https://developer.riotgames.com/ docs/lol. These avatars were made
out of every champion skin in League of Legends. The League of Legends champions are made up from lots of
different characters that can be described as humanoid, animal like, spiritual being etc. Each of these retrieved
avatar images were of size 120x120. Since StyleGAN2 requires the input images to be of size 2 nx2 n and for the
transfer learning the minimum FFHQ [3] trained model was on 256x256, these images were resized using the
ImageMagick [5] utility into 256x256. How the dataset looked after these operations can be observed at Figure 2a.

2.2. League of Legends Champion Splash Art

The second data set that was collected was League of Legends champion splash arts. Similarly, to League of
Legends champion avatar icons, these were obtained at https://developer.riotgames.com/docs/ lol using Leauge of
Legends developer API. There was 1289 of them too just like avatars.

Figure 2: Retrieved and processed data set samples.

Splash art images were of size 1215x717. Each of these images consists a big background that is specific to the
character. Since our focus is on the character here, it was needed to cut these images around the characters. To
achieve this cut around the character, it was decided that a window size of 512x512 was going to be used. And to
center this window around the character two approaches were used.

Figure 2. Retrieved and processed data set samples.

Splash art images were of size 1215x717. Each
of these images consists a big background that
is specific to the character. Since our focus is on
the character here, it was needed to cut these im-
ages around the characters. To achieve this cut
around the character, it was decided that a win-
dow size of 512x512 was going to be used. And
to center this window around the character two
approaches were used.

Figure 3: Avatars getting feature matched to a corresponding splash image

First approach was downloading another set of champion images called loading images. These images are basically
cut-outs that focus around the whole body of the character. An example of loading image can be seen in Figure 4.
After acquiring these loading images, OpenCV [1] library was used to template match all of these loading images
to their corresponding splash images to find a character body center point in splash images. And using the center
point values, the splash image was cut in the defined window size around the center point. Doing a relatively
similarly centered dataset, but for some of the images template matching failed finding the center point. These
images were removed from the data set and although the remaining images looked well centered their faces didn’t
align with the other images in the dataset most of the time.

Figure 4: League of Legends Champion Loading Image.

Since the template matching with loading images, failed centering the faces. A second approach was tried this time
finding the center point by using champion avatars. Since avatars had a circular cutout around them, and there
were some effects applied to the avatar borders. Scaling them to appropriate sizes and trying to apply template
matching against splash images immediately failed. So instead of template matching a more sophisticated method
called feature matching was used and it succeed. Examples of an avatar getting feature matched to the splash image
can be seen on Figure 3.

Figure 3. Avatars getting feature matched to a corre-
sponding splash image

59

Journal of Awareness, Volume / Cilt: 8 - Issue / Sayı: 1 - Yıl / Year: 2023

First approach was downloading another set of
champion images called loading images. These
images are basically cut-outs that focus around
the whole body of the character. An example
of loading image can be seen in Figure 4. After
acquiring these loading images, OpenCV [1] li-
brary was used to template match all of these
loading images to their corresponding splash
images to find a character body center point in
splash images. And using the center point val-
ues, the splash image was cut in the defined win-
dow size around the center point. Doing a rela-
tively similarly centered dataset, but for some of
the images template matching failed finding the
center point. These images were removed from
the data set and although the remaining images
looked well centered their faces didn’t align with
the other images in the dataset most of the time.

Figure 3: Avatars getting feature matched to a corresponding splash image

First approach was downloading another set of champion images called loading images. These images are basically
cut-outs that focus around the whole body of the character. An example of loading image can be seen in Figure 4.
After acquiring these loading images, OpenCV [1] library was used to template match all of these loading images
to their corresponding splash images to find a character body center point in splash images. And using the center
point values, the splash image was cut in the defined window size around the center point. Doing a relatively
similarly centered dataset, but for some of the images template matching failed finding the center point. These
images were removed from the data set and although the remaining images looked well centered their faces didn’t
align with the other images in the dataset most of the time.

Figure 4: League of Legends Champion Loading Image.

Since the template matching with loading images, failed centering the faces. A second approach was tried this time
finding the center point by using champion avatars. Since avatars had a circular cutout around them, and there
were some effects applied to the avatar borders. Scaling them to appropriate sizes and trying to apply template
matching against splash images immediately failed. So instead of template matching a more sophisticated method
called feature matching was used and it succeed. Examples of an avatar getting feature matched to the splash image
can be seen on Figure 3.

Figure 4. League of Legends Champion Loading Im-
age.

Since the template matching with loading imag-
es, failed centering the faces. A second approach
was tried this time finding the center point by us-
ing champion avatars. Since avatars had a circu-
lar cutout around them, and there were some ef-
fects applied to the avatar borders. Scaling them
to appropriate sizes and trying to apply template

matching against splash images immediately
failed. So instead of template matching a more
sophisticated method called feature matching
was used and it succeed. Examples of an avatar
getting feature matched to the splash image can
be seen on Figure 3.

Using the center from the second approach im-
ages were cut to the size of 512x512. Producing
a mostly face centered, character image dataset
that can be seen at Figure 2b.

2.3. Fortnite Outfit Icons

The last data set that was prepared was made up
from Fortnite outfit icons. A total of 1267 imag-
es were fetched from the website https://skindb.
co/fortnite. Each image that was fetched was al-
ready of size 512x512 so

scaling wasn’t necessary. But color space of these
images had an alpha layer so that was removed
and anywhere that was transparent were filled
with white for the whole dataset. Samples from
the resulting dataset can be seen at Figure 2c.

3. TRAINING

For the training of the model Google Colab en-
vironment was picked. And the state of the art
GAN model Style - GAN2 [2] with ADA(Adap-
tive Discriminator Augmentation) [4] was used.
For all of the trained model instances transfer
learning was applied on top of the models pre-
trained with FFHQ [3].

While deciding on the training parameters only
gamma value (Gamma) and augs (Augmenta-
tions Specifier) were changed between train-
ings. Also, since the training of the model with
the GPU resources from Google Colab already
took quite a bit as is, instead of using a quan-
titative quality metric like fid50k full (which al-
most tripled training times, adding 45 minutes
between each snapshot) the quality of the mod-
el’s situation was done qualitatively. Specifically,

Table 1. Average timings for Tesla P100 GPU on Google Colab.

5. CONCLUSION

Looking at the results it is clear that, even if the datasets that are being used are not large, and very much sparse,
it is possible to train a model that can have some convincing outputs. Even if the outputs are not ready to publish
in a video game, they are certainly close. Also it is pretty possible for an artist to use these outputs when in need
of inspiration. Looking at the amount of progress GANs had in recent years, it reasonable to guess that in near
future artists will incorporate GANs in their work even more so than now.

REFERENCES

[1] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

[2] Karras et al. Analyzing and improving the image quality of StyleGAN.

[3] Karras et al. A style-based generator architecture for generative adversarial networks.

[4] Karras et al. Training generative adversarial networks with limited data.

[5] The ImageMagick Development Team. Imagemagick.

Table 1: Average timings for Tesla P100 GPU on Google Colab.

https://skindb.co/fortnite
https://skindb.co/fortnite

60

Ergen

by observing set of outputs with constant seeds
between snapshots and traversing incrementally
on the feature planes to check for signs of over
fitting.

For each of the datasets mirroring on x axis was
applied and the best performing augmentation
setting was found to be as ’bg’, meaning pixel
blitting, geometric transforms only. According
to Karras et al. [4] for a dataset of 2k images only
using pixel blitting, geometric and color trans-
forms yielded best results. Which is a quite simi-
lar consensus to ours. And for the gamma, it was
settled upon the value of 50.

The training went at different speeds for differ-
ent image resolutions which can be observed on
Table 1. Be aware that here speeds are averaged
for Tesla P100 GPUs running on Google Colab.

Respectively we were able to train data sets
League of Legends champion avatars for around
2000 kimg, League of Legends champion splash
arts for 1600 kimg and Fortnite outfit icons for
around 1000 kimg.

4. RESULTS

Looking at the outputs of each trained model
both handpicked at Figure 5 and random at Fig-
ure 6, it is obvious that the worst performing one
is the League of Legends champion splash arts
based one. And it seems like the Fortnite outfit
icons is the best performing one even though it
didn’t have the time to train as much as others.
It looks like the reason behind Fortnite one being
the best is the data set being way cleaner, all the
faces are almost aligned at the same place and
the background is plain white.

Figure 5: Handpicked examples for trained models.

Figure 6: Random examples for each trained model.

Figure 5. Handpicked examples for trained
models.

Figure 5: Handpicked examples for trained models.

Figure 6: Random examples for each trained model. Figure 6. Random examples for each trained model.

5. CONCLUSION

Looking at the results it is clear that, even if the
datasets that are being used are not large, and

61

Journal of Awareness, Volume / Cilt: 8 - Issue / Sayı: 1 - Yıl / Year: 2023

very much sparse, it is possible to train a model
that can have some convincing outputs. Even if
the outputs are not ready to publish in a video
game, they are certainly close. Also it is pretty
possible for an artist to use these outputs when
in need of inspiration. Looking at the amount of
progress GANs had in recent years, it reasonable
to guess that in near future artists will incorpo-
rate GANs in their work even more so than now.

REFERENCES

BRADISKI, G. (2000). The OpenCV Library. Dr.
Dobb’s Journal of Software Tools, 2000.

Karras et al. Analyzing and improving the image
quality of StyleGAN.

Karras et al. A style-based generator architecture for
generative adversarial networks.

Karras et al. Training generative adversarial networks
with limited data.

The ImageMagick Development Team. Imagemagick.

