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Abstract

GANs have been getting better and better each year. The state of the art GAN models for generating 2D images have 
become so good it is hard to differentiate generated images nowadays. In this paper we create 3 different sparse 
data sets from video game assets and train them with StyleGAN2 to generate new artwork based on the previously 
existing artworks of the video game in question
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1. INTRODUCTION

In order to gain a place in the developing vid-
eo game market, new video games are populat-
ed with assets that are eye-catching, iconic and 
unique to the game. These assets are created by 
artists, requiring lots of time and effort. There 
are all kinds of different types of artists created 
elements games use, but in this paper, we will fo-
cus on 2D art. For high number of video games, 
the work that goes into creating new 2D art is 
dependent on the existing art of the game since 
video games aim putting together a consistent 
virtual experience. Therefore, existing assets’ 
style, form, color palette etc. have a strong im-
pact on the assets created after. In this paper, 
we propose three new data sets, each of them 
consisting around 1K-2K images. And by train-
ing the state of the art GAN model StyleGAN2 
[2] we produce new 2D assets from these sparse 
and highly limited data sets. We show that these 
newly produced images, might assist the cre-
ative thinking of artists or in some cases replace 
the artists altogether.

 

Figure 1: Example generated 2D assets, on left League of Legends character avatars and on right Fortnite character outfits. 

2. DATA COLLECTION AND PROCESSING  

2.1. League of Legends Champion Avatar Icons  

The first data set that was collected was League of Legends champion avatar icons. To obtain the data, 1289 avatars 
were downloaded by using the developer api https://developer.riotgames.com/ docs/lol. These avatars were made 
out of every champion skin in League of Legends. The League of Legends champions are made up from lots of 
different characters that can be described as humanoid, animal like, spiritual being etc. Each of these retrieved 
avatar images were of size 120x120. Since StyleGAN2 requires the input images to be of size 2 nx2 n and for the 
transfer learning the minimum FFHQ [3] trained model was on 256x256, these images were resized using the 
ImageMagick [5] utility into 256x256. How the dataset looked after these operations can be observed at Figure 2a.  

2.2. League of Legends Champion Splash Art 

The second data set that was collected was League of Legends champion splash arts. Similarly, to League of 
Legends champion avatar icons, these were obtained at https://developer.riotgames.com/docs/ lol using Leauge of 
Legends developer API. There was 1289 of them too just like avatars. 

 

Figure 2: Retrieved and processed data set samples. 

Splash art images were of size 1215x717. Each of these images consists a big background that is specific to the 
character. Since our focus is on the character here, it was needed to cut these images around the characters. To 
achieve this cut around the character, it was decided that a window size of 512x512 was going to be used. And to 
center this window around the character two approaches were used. 
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Splash art images were of size 1215x717. Each 
of these images consists a big background that 
is specific to the character. Since our focus is on 
the character here, it was needed to cut these im-
ages around the characters. To achieve this cut 
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Figure 3: Avatars getting feature matched to a corresponding splash image 

First approach was downloading another set of champion images called loading images. These images are basically 
cut-outs that focus around the whole body of the character. An example of loading image can be seen in Figure 4. 
After acquiring these loading images, OpenCV [1] library was used to template match all of these loading images 
to their corresponding splash images to find a character body center point in splash images. And using the center 
point values, the splash image was cut in the defined window size around the center point. Doing a relatively 
similarly centered dataset, but for some of the images template matching failed finding the center point. These 
images were removed from the data set and although the remaining images looked well centered their faces didn’t 
align with the other images in the dataset most of the time. 

 
Figure 4: League of Legends Champion Loading Image. 

Since the template matching with loading images, failed centering the faces. A second approach was tried this time 
finding the center point by using champion avatars. Since avatars had a circular cutout around them, and there 
were some effects applied to the avatar borders. Scaling them to appropriate sizes and trying to apply template 
matching against splash images immediately failed. So instead of template matching a more sophisticated method 
called feature matching was used and it succeed. Examples of an avatar getting feature matched to the splash image 
can be seen on Figure 3.  

Figure 3. Avatars getting feature matched to a corre-
sponding splash image
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First approach was downloading another set of 
champion images called loading images. These 
images are basically cut-outs that focus around 
the whole body of the character. An example 
of loading image can be seen in Figure 4. After 
acquiring these loading images, OpenCV [1] li-
brary was used to template match all of these 
loading images to their corresponding splash 
images to find a character body center point in 
splash images. And using the center point val-
ues, the splash image was cut in the defined win-
dow size around the center point. Doing a rela-
tively similarly centered dataset, but for some of 
the images template matching failed finding the 
center point. These images were removed from 
the data set and although the remaining images 
looked well centered their faces didn’t align with 
the other images in the dataset most of the time.
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Figure 4. League of Legends Champion Loading Im-
age.

Since the template matching with loading imag-
es, failed centering the faces. A second approach 
was tried this time finding the center point by us-
ing champion avatars. Since avatars had a circu-
lar cutout around them, and there were some ef-
fects applied to the avatar borders. Scaling them 
to appropriate sizes and trying to apply template 

matching against splash images immediately 
failed. So instead of template matching a more 
sophisticated method called feature matching 
was used and it succeed. Examples of an avatar 
getting feature matched to the splash image can 
be seen on Figure 3. 

Using the center from the second approach im-
ages were cut to the size of 512x512. Producing 
a mostly face centered, character image dataset 
that can be seen at Figure 2b.

2.3. Fortnite Outfit Icons

The last data set that was prepared was made up 
from Fortnite outfit icons. A total of 1267 imag-
es were fetched from the website https://skindb.
co/fortnite. Each image that was fetched was al-
ready of size 512x512 so

scaling wasn’t necessary. But color space of these 
images had an alpha layer so that was removed 
and anywhere that was transparent were filled 
with white for the whole dataset. Samples from 
the resulting dataset can be seen at Figure 2c.

3. TRAINING

For the training of the model Google Colab en-
vironment was picked. And the state of the art 
GAN model Style - GAN2 [2] with ADA(Adap-
tive Discriminator Augmentation) [4] was used. 
For all of the trained model instances transfer 
learning was applied on top of the models pre-
trained with FFHQ [3].

While deciding on the training parameters only 
gamma value (Gamma) and augs (Augmenta-
tions Specifier) were changed between train-
ings. Also, since the training of the model with 
the GPU resources from Google Colab already 
took quite a bit as is, instead of using a quan-
titative quality metric like fid50k full (which al-
most tripled training times, adding 45 minutes 
between each snapshot) the quality of the mod-
el’s situation was done qualitatively. Specifically, 

Table 1. Average timings for Tesla P100 GPU on Google Colab.

5. CONCLUSION 

Looking at the results it is clear that, even if the datasets that are being used are not large, and very much sparse, 
it is possible to train a model that can have some convincing outputs. Even if the outputs are not ready to publish 
in a video game, they are certainly close. Also it is pretty possible for an artist to use these outputs when in need 
of inspiration. Looking at the amount of progress GANs had in recent years, it reasonable to guess that in near 
future artists will incorporate GANs in their work even more so than now. 
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by observing set of outputs with constant seeds 
between snapshots and traversing incrementally 
on the feature planes to check for signs of over 
fitting.

For each of the datasets mirroring on x axis was 
applied and the best performing augmentation 
setting was found to be as ’bg’, meaning pixel 
blitting, geometric transforms only. According 
to Karras et al. [4] for a dataset of 2k images only 
using pixel blitting, geometric and color trans-
forms yielded best results. Which is a quite simi-
lar consensus to ours. And for the gamma, it was 
settled upon the value of 50. 

The training went at different speeds for differ-
ent image resolutions which can be observed on 
Table 1. Be aware that here speeds are averaged 
for Tesla P100 GPUs running on Google Colab. 

Respectively we were able to train data sets 
League of Legends champion avatars for around 
2000 kimg, League of Legends champion splash 
arts for 1600 kimg and Fortnite outfit icons for 
around 1000 kimg.

4. RESULTS

Looking at the outputs of each trained model 
both handpicked at Figure 5 and random at Fig-
ure 6, it is obvious that the worst performing one 
is the League of Legends champion splash arts 
based one. And it seems like the Fortnite outfit 
icons is the best performing one even though it 
didn’t have the time to train as much as others. 
It looks like the reason behind Fortnite one being 
the best is the data set being way cleaner, all the 
faces are almost aligned at the same place and 
the background is plain white.

 
 
Figure 5: Handpicked examples for trained models. 

 

Figure 6: Random examples for each trained model. 

Figure 5. Handpicked examples for trained 
models.  
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Figure 6: Random examples for each trained model. Figure 6. Random examples for each trained model.
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datasets that are being used are not large, and 
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very much sparse, it is possible to train a model 
that can have some convincing outputs. Even if 
the outputs are not ready to publish in a video 
game, they are certainly close. Also it is pretty 
possible for an artist to use these outputs when 
in need of inspiration. Looking at the amount of 
progress GANs had in recent years, it reasonable 
to guess that in near future artists will incorpo-
rate GANs in their work even more so than now.
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