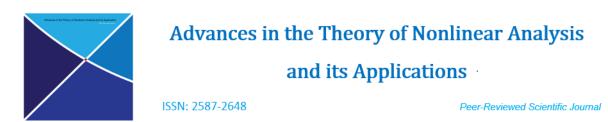
Advances in the Theory of Nonlinear Analysis and its Applications 7 (2023) No. 1, 189–194. https://doi.org/10.31197/atnaa.1249278 Available online at www.atnaa.org Research Article



The distortion of tetrads under quasimeromorphic mappings of Riemann sphere

V. V. Aseev

Sobolev Institute of Mathematics, Novosibirsk, 630090, Russia.

Abstract

On the Riemann sphere, we consider the ptolemaic characteristic of a four of non-empty pairwise nonintersecting compact subsets (generalized tetrad, or generalized angle). We obtain an estimate for distortion of this characteristic under the inverse to a K-quasimeromorphic mapping of the Riemann sphere which takes each of its values at no more then N different points. The distortion function in this estimate depends only on K and N. In the case K=1, it is an essentially new property of complex rational functions.

1. Introduction

For a mapping $f: D \to \mathbb{C}$ of a domain $D \subset \mathbb{C}$ the following concepts are equivalent: K-quasiregular mapping [6, 2.20, Definition], K-quasiconformal function [4, 5.2], and the mapping with bounded distortion $\leq K$ [8, Ch.1, 4.2]. Moreover, each of these mappings has a representation $f = g \circ h$ where $h: D \to \mathbb{C}$ is a K-quasiconformal mapping, and $g: h(D) \to \mathbb{C}$ is a holomorphic function.

The more general concept of K-quasimeromorphic mapping $f: D \to \overline{\mathbb{C}}$ of a domain $D \subset \overline{\mathbb{C}}$ was introduced in [7, Section 2] (see also the definition for mappings with bounded distortion in Riemann manifolds [8, Ch. I, 5.2]), and it is as well equivalent to a notion of K-quasiconformal function in $\overline{\mathbb{C}}$. In this case the representation $f = g \circ h$ is also true, where $h: D \to \overline{\mathbb{C}}$ is a K-quasiconformal mapping, and $g: h(D) \to \overline{\mathbb{C}}$ is a meromorphic function (see [5, Ch. VI, Definition, Satz 1.1, Satz 2.2]).

The ptolemaic characteristic $\beta(\Psi)$ of a tetrad $\Psi = (z_1, z_2; z_3, z_4)$ in $\overline{\mathbb{C}}$ had been employed in [9] and was modified in [1] for the case of generalized tetrads $\Psi = (A_1, A - 2; A_3, A_4)$ in $2^{\overline{\mathbb{C}}}$ (the definitions see below in section 2). The main result is the following Theorem

Email address: btp@math.nsc.ru (V. V. Aseev)

Received October 24, 2022; Accepted: February 17, 2023; Online: February 21, 2023.

Theorem 1.1. Given a positive integer N and $K \ge 1$, let $\mathbf{F}(N, K)$ denote the family of all non-constant K-quasimeromorphic mappings $f: \overline{\mathbb{C}} \to \overline{\mathbb{C}}$ which take each value at no more then N different points. Then there exists a homeomorphism $\omega_{N,K} : [0, +\infty) \to [0, +\infty)$ such that for each generalized tetrad Ψ in $\overline{\mathbb{C}}$ and for each mapping $f \in \mathbf{F}(N, K)$ the following inequality holds

$$\beta(f^{-1}(\Psi)) \le \omega_{N,K}(\beta(\Psi)). \tag{1.1.1}$$

The proof of this theorem will be given in Section 3.

It is worth to be noticed that this proof is based on the estimate (1.1.1) with K = 1 which will be established in the Lemma 2.2 and seems to present an essentially new global property of complex rational functions in $\overline{\mathbb{C}}$.

The inverse theorem is also true. It has been established in [2, Corollary] as follows.

Theorem 1.2. Let N be a positive integer, $\omega : [0, +\infty) \to [0, +\infty)$ be a homeomorphism, and $\mathbf{G}(N, \omega)$ denote the family of all multivalued mappings $F : \overline{\mathbb{C}} \to 2^{\overline{\mathbb{C}}}$ such that $\#F(w) \leq N$ for every $w \in \overline{\mathbb{C}}$ and $F(w_1) \cap F(w_2) = \emptyset$ provided $w_1 \neq w_2$. If $F \in \mathbf{G}(N, \omega)$ and the inequality

$$\beta(F(\Psi)) \le \omega(\beta(\Psi)). \tag{1.2.1}$$

holds for each tetrad Ψ in $\overline{\mathbb{C}}$ then $F(\overline{\mathbb{C}}) = \overline{\mathbb{C}}$ and the left inverse mapping $f = F^{-1} : \overline{\mathbb{C}} \to \overline{\mathbb{C}}$ belongs to $\mathbf{F}(N, K)$ where K depends only on N and ω .

2. Definitions and the Main Lemma

The chordal (spherical) metric $q(\cdot, \cdot)$ on the Riemann sphere $\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ is defined by

$$q(z_1, z_2) = \frac{|z_1 - z_2|}{\sqrt{(1 + |z_1|^2)(1 + |z_2|^2)}} \text{ for } z_1, z_2 \in \mathbb{C}; \quad q(z, \infty) = \frac{1}{\sqrt{1 + |z|^2}}.$$

By a tetrad $\Psi = (z_1, z_2; z_3, z_4)$ we mean a four of distinct points in $\overline{\mathbb{C}}$ divided into two pairs. Its ptolemaic characteristic is defined by

$$\beta(\Psi) = \frac{q(z_1, z_3) \cdot q(z_2, z_4) + q(z_1, z_4) \cdot q(z_2, z_3)}{q(z_1, z_2) \cdot q(z_3, z_4)}$$

We also consider a generalized tetrad as a four of non-empty pairwise non-intersecting compact subsets in $\overline{\mathbb{C}}$ divided into two pairs. Then the ptolemaic characteristic of a generalized tetrad $\Psi = (A_1, A_2; A_3, A_4)$ is defined by

$$\beta(\Psi) = \max_{a_1 \in A_1; \ a_2 \in A_2} \left\{ \min_{a_3 \in A_3; \ a_4 \in A_4} \beta(a_1, a_2; a_3, a_4) \right\}$$

Given a positive integer N, let $\mathbf{R}(N)$ denote the family of all rational functions $f : \overline{\mathbb{C}} \to \overline{\mathbb{C}}$ such that $\#f^{-1}(w) \leq N$ for each $w \in \overline{\mathbb{C}}$.

Generalized tetrads are a special kind of so called *generalized angles*. This notion was introduced in [1, Section 3] as a four of arbitrary subsets $\Psi = (A_1, A_2; A_3, A_4)$ in a ptolemaic metric space (X, ρ) under the conditions $A_3 \neq \emptyset \neq A_4$ and $\#(A_3 \cup A_4) \geq 2$. The angular characteristic (or the value) $\alpha(\Psi)$ of a generalized angle Ψ was defined as

$$\alpha(\Psi) = \inf_{a_1 \in A_1; \ a_2 \in A_2} \left\{ \sup_{a_3 \in A_3; \ a_4 \in A_4} \frac{\rho(a_1, a_2) \cdot \rho(a_3, a_4)}{\rho(a_1, a_3) \cdot \rho(a_2, a_4) + \rho(a_1, a_4) \cdot \rho(a_2, a_3)} \right\}$$

under the agreement $\alpha(\Psi) = 1$ if $A_1 = \emptyset$ or $A_2 = \emptyset$. It is clear that $\beta(\Psi) = 1/\alpha(\Psi)$ for general tetrads in $\overline{\mathbb{C}}$. So the result [1, Lemma 4.2] may be reformulated as follows **Proposition 2.1.** Let X and Y be ptolemaic metric spaces, $F : X \to 2^Y$ be a multivalued mapping such that $F(x_1) \cap F(x_2) = \emptyset$ for all $x_1 \neq x_2$, and $\omega : [0, +\infty) \to [0, +\infty)$ be a homeomorphism. If the inequality $\beta(F(\Psi)) \leq \omega(\beta(\Psi))$ holds for any tetrad Ψ in X then it is also true for any generalized tetrad Ψ in X.

Now we can prove the main lemma.

Lemma 2.2. Given a positive integer N, there exists a homeomorphism $\omega_N : [0, +\infty) \to [0, +\infty)$ such that for each generalized tetrad $\Psi = (A_1, A_2; A_3, A_4)$ in $\overline{\mathbb{C}}$ and for all rational functions $f \in \mathbf{R}(N)$ the following inequality holds

$$\beta(f^{-1}(A_1), f^{-1}(A_2); f^{-1}(A_3), f^{-1}(A_4)) \le \omega_N(\beta(A_1, A_2; A_3, A_4)),$$

that is

$$\beta(f^{-1}(\Psi)) \le \omega_N(\beta(\Psi)) . \tag{2.2.1}$$

Proof. Regarding the Proposition 2.1 we reduce the proof of the estimate (2.2.1) to the case where Ψ is an arbitrary tetrad in $\overline{\mathbb{C}}$. Let us prove that in this case it suffices to show that for all $t \geq 1$

$$\eta_N(t) := \sup \beta(f^{-1}(\Psi)) < \infty \tag{2.2.2}$$

where the supremum is taken over all tetrads Ψ in $\overline{\mathbb{C}}$ with $\beta(\Psi) \leq t$ and all functions $f \in \mathbf{R}(N)$.

Indeed, the function $\eta_N(t)$ is non-decreasing in $[1, +\infty)$. Letting $\eta_N^*(t) \equiv \sup\{\eta_N(t) : n \leq t < n+1\}$ as $t \in [n, n+1), n \geq 1$, and $\eta_N^* \equiv 0$ as $t \in [0, 1)$ we obtain a non-decreasing majorant for η_n . Letting $\omega_N^* = \eta_N^*(n) + (\eta_N^*(n+1) - \eta_N^*(n)) \cdot (t-n)$ for $t \in [n, n+1], n = 0, 1, ...$, we obtain a continuous majorant for η_n . Finally, the function $\omega_N(t) = \omega_N^*(t) + t$ is a homeomorphism which is desired in (2.2.1).

Now we shall prove (2.2.2). Suppose, on contrary, that (2.2.2) fails for some fixed $t \ge 1$. It means that there exist a sequence of tetrads $\{\Psi_n = (a_n, b_n; c_n, d_n)\}$ with $\beta(\Psi_n) \le t$, and a sequence of rational functions $\{f_n \in \mathbf{R}(N)\}$ such that

$$\beta(f^{-1}(\Psi_n)) \to \infty \text{ as } n \to \infty.$$
 (2.2.3)

For each given n we consider the Möbius transformation $\mu_n : \overline{\mathbb{C}} \to \overline{\mathbb{C}}$ such that $\mu_n(a_n) = 0$, $\mu_n(b_n) = 1$, $\mu_n(d_n) = \infty$, and mark the point $Z_n = \mu_n(c_n)$. Since the ptolemaic characteristic β of generalized tetrads is invariant under Möbius transformations, we obtain the estimate $\beta(\mu_n(\Psi_n)) = \beta(\Psi_n) \leq t$. Therefore, replacing in (2.2.3) functions f_n by $\mu_n \circ f_n \in \mathbf{R}(N)$ and tetrads Ψ_n by $\mu_n(\Psi_n)$ we pass to the following situation: there exist a sequence of points $Z_n \in \mathbb{C} \setminus \{0, 1\}$ such that

$$\beta(\Psi_n) = \beta(0, 1; Z_n, \infty) = |Z_n| + |1 - Z_n| \le t$$
(2.2.4)

and a sequence of functions $f_n \in \mathbf{R}(N)$ such that

$$\beta(f_n^{-1}(\Psi_n)) = \beta(f_n^{-1}(0), f_n^{-1}(1); f_n^{-1}(Z_n), f_n^{-1}(\infty)) \to \infty \text{ as } n \to \infty.$$
(2.2.5)

Since

$$\beta(f_n^{-1}(\Psi_n)) = \max_{x_n \in f_n^{-1}(0); \ y_n \in f_n^{-1}(1)} \left\{ \min_{z_n \in f_n^{-1}(Z_n); \ w_n \in f_n^{-1}(\infty)} \beta(x_n, y_n; \ z_n, w_n) \right\}$$

there exist points $x_n^o \in f_n^{-1}(0)$ and $y_n^o \in f_n^{-1}(1)$ such that

$$\beta(f_n^{-1}(\Psi)) = \min_{z_n \in f_n^{-1}(Z_n); \ w_n \in f_n^{-1}(\infty)} \beta(x_n^o, y_n^o; \ z_n, w_n) \ .$$

Chose some point $w_n^o \in f_n^{-1}(\infty)$ and consider the Möbius transformation $\eta_n : \overline{\mathbb{C}} \to \overline{\mathbb{C}}$ such that

$$\eta_n(0) = x_n^o, \ \eta_n(1) = y_n^o, \ \eta_n(\infty) = w_n^o.$$

Because of möbius-invariance of ptolemaic characteristic β we have the equality

$$\beta(f_n^{-1}(\Psi_n)) = \beta(\eta_n^{-1}(f_n^{-1}(\Psi_n))) .$$

Situation. Given a positive integer N, there exist a number $t \ge 1$, a sequence of points $\{Z_n\}$ in $\mathbb{C}\setminus\{0,1\}$, and a sequence of functions $\{f_n\}$ in $\mathbf{R}(N)$ such that

$$|Z_n| + |1 - Z_n| \le t , (2.2.6)$$

$$f_n(0) = 0, \ f_n(1) = 1, \ f_n(\infty) = \infty$$
, (2.2.7)

and

$$\beta(0,1;z_n,w_n) = \frac{q(0,z_n) \cdot q(1,w_n) + q(0,w_n) \cdot q(1,z_n)}{q(0,1) \cdot q(z_n,w_n)} \to \infty \quad \text{as } n \to \infty$$
(2.2.8)

under an arbitrary choice of points $z_n \in f_n^{-1}(Z_n)$, $w_n \in f_n^{-1}(\infty)$. In particular, letting $w_n \equiv \infty$ we obtain from (2.2.8) the convergence

$$|z_n| + |1 - z_n| \to \infty \quad \text{as} \quad n \to \infty$$

$$(2.2.9)$$

under an arbitrary coice of points $z_n \in f_n^{-1}(Z_n)$.

Suppose there exists a bounded subsequence $\{w_n \in f_n^{-1}(\infty)\}$. Then we would have for this subsequence the convergences

$$\frac{q(0,z_n)}{q(w_n,z_n)} = \frac{|z_n| \cdot \sqrt{1+|w_n|^2}}{|w_n-z_n|} \to 1 ,$$

$$\frac{q(1,z_n)}{q(w_n,z_n)} = \frac{|1-z_n| \cdot \sqrt{1+|w_n|^2}}{\sqrt{2} \cdot |w_n-z_n|} \to 1$$

Then we obtain boundedness of subsequences

$$\frac{q(0, z_n) \cdot q(1, w_n)}{q(0, 1) \cdot q(w_n, z_n)} \sim \frac{|1 - w_n|}{2\sqrt{1 + |w_n|^2}} ,$$
$$\frac{q(0, w_n) \cdot q(1, z_n)}{q(0, 1) \cdot q(w_n, z_n)} \sim \frac{|w_n|}{\sqrt{2} \cdot \sqrt{1 + |w_n|^2}}$$

which contradicts (2.2.8). Therefore, the assumption above is impossible, so $|w_n| \to \infty$ as $n \to \infty$ under an arbitrary choice of $w_n \in f_n^{-1}(\infty)$.

Thus we have the convergence of the sets

$$f_n^{-1}(\infty)$$
 $\} \to \{\infty, f_n(1)(Z_n) \to \{\infty\}$. (2.2.10)

Moreover, passing to a suitable subsequences we may assume without loss of generality that

$$Z_n \to Z_0 \neq \infty \quad \text{as } n \to \infty \;.$$
 (2.2.11)

For more convenience of notation let us denote f_n^{-1} by F_n . Consider an increasing sequence of open disks $B_j = \{z : |z| < R^{(j)}\}$ where $1 < R^{(1)} < \dots < R^{(j)} < \dots$ and $R^{(j)} \to +\infty$ as $j \to \infty$.

Let $\{f_n^{(j)}\}\$ be a given subsequence in $\{f_n\}$, and $\{Z_n^{(j)}\}\$ be the corresponding subsequence of points. Because of (2.2.10) there exists a number $n^{(j)}$ such that

$$F_n^{(j)}(\infty) \cap \overline{B}_{j+1} = \emptyset \ ; \ F_n^{(j)}(Z_n^{(j)}) \cap \overline{B}_{j+1} = \emptyset$$

for all $n \ge n^{(j)}$.

It means that for all $n \ge n^{(j)}$ the functions $f_n^{(j)}(z)$ do not take the values ∞ and $Z_n^{(j)}$ in the disk \overline{B}_{j+1} . Thus we have two sequences

$$\{\varphi_n^{(j)}(z) = f_n^{(j)}(z) - Z_n^{(j)}\}; \left\{\psi_n^{(j)}(z) = \frac{1}{f_n^{(j)}(z) - Z_n^{(j)}}\right\}, \ n \ge n^{(j)}$$
(2.2.12)

of holomorphic functions in the disk B_{i+1} which do not take the value 0.

Since each of these functions takes any its value at no more then N distinct points, the conditions of generalized Montel's Theorem ([3, Ch. II, Section 7, Theorem 2]) are fulfilled. According to this theorem both families (2.2.12) of holomorphic functions in B_{i+1} are normal families. It means that there exist a subsequence $\{f_n^{(j+1)}\} \subset \{f_n^{(j)}\}$ and the corresponding subsequence of points $\{Z_n^{(j+1)}\} \subset \{Z_n^{(j)}\}$ such that each of two sequences

$$\{\varphi_n^{(j+1)}(z) = f_n^{(j+1)}(z) - Z_n^{(j+1)}\}, \left\{\psi_n^{(j+1)}(z) = \frac{1}{f_n^{(j+1)}(z) - Z_n^{(j+1)}}\right\}$$

converges uniformly on compact subsets of B_{j+1} either to ∞ or to a holomorphic function in B_{j+1} . It follows from (2.2.11) that $f_n^{(j+1)}(0) - Z_n^{(j+1)} = -Z_n^{(j+1)} \to -Z_0 \neq \infty$, and therefore the sequence $\{\varphi_n^{(j+1)}\}$ converges to a holomotphic function $\varphi^{(j+1)}$ uniformly on compacts in B_{j+1} .

In the case where the initial sequences $\{\varphi_n^{(j)}\}$ and $\{\psi_n^{(j)}\}$ were converging to holomorphic functions $\varphi^{(j)}$ and $\psi^{(j)}$ in B_j , we have $\varphi^{(j+1)}(z) = \varphi^{(j)}(z)$ and $\psi^{(j+1)}(z) = \psi^{(j)}(z)$ for all $z \in B_j$.

Thus the chains $\{\varphi_n^{(1)}\} \supset \{\varphi_n^{(2)}\} \supset \dots \{\varphi_n^{(j)}\} \supset \dots$ and $\{\psi_n^{(1)}\} \supset \{\psi_n^{(2)}\} \supset \dots \supset \{\psi_n^{(j)}\} \supset \dots$ of subsequences are obtained. Then the diagonal sequences $\{\varphi_j^{(j)}\}$ and $\{\psi_j^{(j)}\}$ converge uniformly on compacts in \mathbb{C} to holomorphic functions $\varphi(z)$ and $\psi(z)$. Since $\varphi(0) = -Z_0 \neq \varphi(1) = 1 - Z_0$ and $\psi(0) = -1/Z_0 \neq \psi(1) =$ $1/(1-Z_0)$, each of the functions $\varphi(z)$ and $\psi(z)$ is non-constant.

Each function in a sequence $\{\varphi_j^{(j)}\}$ takes any its value at no more than N points. So according to [3, Ch. I, Section 1, Theorem 2] the entire function $\varphi(z)$ is a polynomial of degree $\leq N$. But the equality $\varphi_{i}^{(j)}(z) \cdot \psi_{i}^{(j)}(z) \equiv 1$ for all j and $z \in B_{j}$ implies the equality $\varphi(z) \cdot \psi(z) \equiv 1$ at every point $z \in \mathbb{C}$. It is impossible because the polynomial $\varphi(z)$ has a point z_0 where $\varphi(z) = 0$.

This contradiction being obtained completes the proof of the lemma.

3. Proof of the Main Theorem

The absolute ratio (or cross-ratio) $|x_1, x_2, x_3, x_4|$ of distinct points in \mathbb{R}^d is defined by

$$|x_1, x_2, x_3, x_4| = \frac{q(x_1, x_3) \cdot q(x_2, x_4)}{q(x_1, x_2) \cdot q(x_3, x_4)}$$

where $q(\cdot, \cdot)$ denotes the chordal distance between points in \mathbb{R}^d . The distortion of absolute ratio under Kquasiconformal mappings $f: \mathbb{R}^d \to \mathbb{R}^d$ had been thoroughly studied by M. Vuorinen in his paper [10]. He had obtained the estimate [10, Theorem 3.5]

$$|f(x_1), f(x_2), f(x_3), f(x_4)| \le \eta_{K,d}(|x_1, x_2, x_3, x_4|)$$

where the distortion function $\eta_{K,d}$ depends only on K and d. The distortion function $\eta_{K,2}$ has the explicit expression [10, (1.9), (1.10)].

Since

$$\beta(x_1, x_2; x_3, x_4) = |x_1, x_2, x_3, x_4| + |x_1, x_2, x_4, x_3|$$

we can just obtain the estimate for the distortion of ptolemaic characteristic of a tetrad $\Psi = (x_1, x_2; x_3, x_4)$ under a K-quasiconformal automorphism of $\overline{\mathbb{R}^d}$

$$\beta(f(\Psi)) = |f(x_1), f(x_2), f(x_3), f(x_4)| + |f(x_1), f(x_2), f(x_4), f(x_3)| \le 2\eta_{K,d}(|x_1, x_2, x_3, x_4| + |x_1, x_2, x_4, x_3|) = 2\eta_{K,d}(\beta(\Psi)) .$$

Moreover, it follows from the Proposition 2.1 that the estimate

$$\beta(f(\Psi)) \le 2\eta_{K,d}(\beta(\Psi)) \tag{3.1.1}$$

is also valid for every general tetrad in \mathbb{R}^d .

Now let us consider $f \in \mathbf{F}(N, K)$ and a tetrad Ψ in $\overline{\mathbb{C}}$. It has been mentioned in section 1 that $f = g \circ h$ where $h : \overline{\mathbb{C}} \to \overline{\mathbb{C}}$ is a K-quasiconformal mapping and $g : \overline{\mathbb{C}} \to \overline{\mathbb{C}}$ is a rational function $g \in \mathbf{R}(N)$. Applying the Lemma 2.2 to the rational function $q \in \mathbf{R}(N)$ we get the estimate

$$\beta(g^{-1}(\Psi)) \le \omega_N(\beta(\Psi))$$
.

Applying the estimate (3.1.1) to the K-quasiconformal mapping h^{-1} and the generalized tetrad $g^{-1}(\Psi)$ we get the estimate

$$\beta(h^{-1}(g^{-1}(\Psi))) \le 2\eta_{K,2}(\beta(g^{-1}(\Psi))) \le 2\eta_{K,2}(\omega_N(\beta(\Psi))) .$$

Thus we obtain the desired estimate

$$\beta(f^{-1}(\Psi)) \le \omega_{N,K}(\beta(\Psi))$$

with the distortion function $\omega_{N,K} = 2\eta_{K,2} \circ \omega_N$ depending only on K and N. Now the Theorem 1.1 is proved.

Acknowledgement

The study was carried out within the state contract of the Sobolev Institute of Mathematics (project FWNF-2022-0005).

References

- [1] V.V. Aseev, Generalized angles in Ptolemaic Möbius structures, Siberian Math. J. 59 (2018) 189-201.
- [2] V.V. Aseev, Multivalued quasimöbius mappings on Riemann sphere, Siberian Math. J. 64 (2023) (in print).
- [3] G.M. Goluzin, Geometric Theory of Functions of a Complex Variable, Translations of Math. Monographs 26, American Math. Society, Providence - Rhode Island 02904 (1969).
- [4] H.P. Künzi, Quasikonforme Abbildungen, Spinger-Verlag, Berlin-Göttingen-Heidelberg (1960).
- [5] O. Lehto and K.I. Virtanen, Quasikonforme Abbildungen, Springer-Verlag, Berlin-Heidelberg-New York (1965).
- [6] O. Martio, S. Rickman, and J. Väisälä, Definitions for quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I 448 (1969) 1-40.
- [7] O. Martio, S. Rickman, and J. Väisälä, Distortion and singulaities of quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I 465 (1970) 1-13.
- [8] Yu.G. Reshetnyak, Space Mappings with Bounded Distortion, Translations of Math. Monographs 73, American Math. Society, Providence - Rhode Island (1989).
- [9] S. Rickman, Characterization of quasiconformal arcs, Ann. Acad. Sci. Fenn. Ser. A I Math. 395 (1966) 1-30.
- [10] M. Vuorinen, Quadruples and spatial quasiconformal mappings, Math. Z. 205 (1990) 617-628.