
Sinop Üniversitesi Fen Bilimleri Dergisi                       Sinop Uni J Nat Sci 2(1): 121-132 (2017) 

                                                                                                                             ISSN: 2536-4383 

 

121 
 

Research Article 

 

Evaluation of Group Homogeneity in Gaussian Mixture Models Using 

Combined Cluster and Discriminant Analysis 
 

Ezgi Nazman *a, Semra Erbaş a 

 
a Gazi University, Faculty of Science, Department of Statistics, Ankara, Turkey 

 

Abstract 

 

Cluster analysis is a widely used multivariate statistical method in many fields. Pairwise 

overlap is a measure of interaction between mixture components. Determining the number of 

homogeneous group is a difficult process due to the pairwise overlap. In this study, combined 

cluster and linear discriminant analysis is compared with combined cluster and quadratic 

discriminant analysis. Correctly classification rates of the Gaussian mixture components are 

obtained. Also, whether further division is necessary to obtain homogeneous groups is 

determined. The comparisons have been conducted by a simulation study for 81 different 

scenarios and an application is presented. 
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Birleştirilmiş Kümeleme ve Diskriminant Analizi Kullanarak Gauss Karma 

Modellerde Grup Homojenliğinin Değerlendirilmesi   
 

Öz 

 

Kümeleme analizi, pek çok alanda yaygın olarak kullanılan çok değişkenli bir 

istatistiksel analiz yöntemidir. İkili örtüşme,  karma bileşenler arasındaki etkileşimin bir 

ölçüsüdür.  İkili  örtüşmeden ötürü homojen grup sayısını belirlemek zor bir süreçtir. Bu 

çalışmada, birleştirilmiş kümeleme ve lineer diskriminant analizi ile birleştirilmiş kümeleme ve 

karesel diskriminant analizi karşılaştırılmıştır. Gauss karma bileşenlerin doğru sınıflama 

oranları elde edilmiştir. Ayrıca, homojen grupları elde etmek için daha ileri bölünmenin gerekli 

olup olmadığı belirlenmiştir. Karşılaştırma 81 farklı senaryo ile yürütülmüş ve bir uygulama 

sunulmuştur.  
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Introduction 

 

In recent years, mixture models 

have been often used to fit data where each 

of the mixture components are taken into 

the consideration as different groups or 

clusters in many fields. One of the widely 

used methods to extract information 

underlying components is cluster analysis 

[1,2,3]. Machine learning, artificial 

intelligence, pattern recognation, web 

mining and image segmentation in 

engineering; genetic, biology, 

microbiology, paleontology, psychiatry and 

clinic in medicine; geograpy, geology and 

remote sensing in earth science; sociology, 

psychology and archeology in social 

science; marketing and bussiness in 

economics can be given as example of the 

fields in which finite mixture models can be 

used to fit data [4,5,6]. On the other hand, 

how many groups should be 

homogeneously chosen has become a 

general question. It is known that the 

number of mixture components can not be 

always the same number with the number of 

groups [3,4,7,8]. Moreover, pairwise 

overlap of components might cause a 

complexity during determining group 

memberships of the observations, so there 

is need to simplify the clustering process.  

One of the applicable methods for 

validation of cluster results is linear 

discriminant analysis [9,10]. However, 

assumption that homogeneity of variance-

covariance matrix of the groups is not 

always provided in many situation. When 

the assumption that homogeneity of 

variance-covariance matrix of the groups is 

violated, quadratic discriminant analysis is 

generally preferred to discriminate 

observations to the groups and to classify 

new observations to the related groups 

[11,12].  

There are several studies comparing 

the performance of linear discriminant 

analysis and quadratic discriminant analysis 

in literature [13,14]. Cherry [15] combined 

cluster and linear discriminant analysis to 

develop a social bond typology of runway 

youth.  Hastie and Tibshirani [10] 

investigated the functionality of 

classification for Gaussian mixtures and 

applied a nonparametric regression method. 

Baudry et al. [16] determined the number of 

component in the mixture model by 

combining Bayesian Information Criterion 

(BIC) and Integrated Completed Likelihood 

(ICL) criterions. Tanos et al. [17] applied 

combined cluster and linear discriminant 

analysis to optimize monitoring network on 

the River Tisza. Morris and McNicholas 

[18] aimed to reveal underlying clusters in 

data set for generalized hyperbolic mixture 

models by applying clustering, 

classification and dimension reduction 

methods. Novak et al. [19] used combined 

cluster and linear discriminant analysis to 

verify chemically uniqueness of diesel fuel 

samples. Kovacs et al. [20] presented 

combined cluster and discriminant analysis 

and its applicability of the method with a 

case study on the water quality samples of 

Neusiedler See. In this regard, a comparison 

between linear discriminant analysis and 

quadratic discriminant analysis for 

Gaussian mixture models was aimed in 

order to reveal the change on correctly 

classification rates and detection of 

component homogeneity. 

In this study, our purpose is to 

obtain homogeneous number of groups 

from Gaussian mixture components which 

do not require further division. The 

comparison between linear discriminant 

analysis and quadratic discriminant analysis 

is studied by using a combined cluster and 

discriminant analysis method with a 

simulation study for various number of 

components, number of variables, sample 

sizes and pairwise overlaps. Correctly 

classification rates are calculated by 

dividing the number of correctly classified 

observations of components by the sample 

size are computed. Meanwhile, the 

homogeneity of the components are 
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investigated in order to reveal whether 

further division of the components are 

necessary. By this means, our study will 

able to offer an insight into the study plans 

of researchers for following studies before 

deciding sample structure and 

discrimination method. 

This study is organized as follows: 

In Section 2, cluster analysis is presented. 

Linear discriminant analysis, quadratic 

discriminant analysis and combined cluster 

and discriminant analysis are presented in 

Section 3. In Section 4, Gaussian mixture 

model is introduced. The process of the 

simulation is described in Section 5 with the 

results. In Section 6, an application is 

presented. In the final section, conclusion is 

given with the highlighted inferences. 

 

Cluster Analysis (CA) 

 

Cluster analysis (CA) is a 

multivariate statistical method which helps 

grouping observations of which natural 

groups are certainly unknown [2]. There are 

fundamentally two cluster analysis: 

hierarchical cluster analysis (HCA) and 

non-hierarchical cluster analysis. 

Hierarchical cluster analysis proceeds by 

either a series of successive mergers or a 

series of successive divisions. Hierarchical 

cluster analysis seeks to build a nested 

hierarchy which can cause decrease or 

increase on the number of groups. 

Agglomerative hierarchical algorithm starts 

with the individual data points and merges 

the most similar groups [5].  

 

Discriminant Analysis (DA) 

 

Discriminant analysis (DA) is a 

multivariate statistical method concerned 

with separating distinct sets of objects or 

observations and with allocating new 

objects to previously defined groups. 

Discrimination terminology was introduced 

by Fisher in the first seperatory problems 

[21]. Both linear discriminant analysis and 

quadratic discriminant analysis are two 

most widely used statistical methods for 

classification problems [22]. 

1G   and 2G   are the names of two 

groups and their number of observations are 

shown as 1n and 2n , respectively.   1X , 2X   

and 1S , 2S  indicate sample mean vectors, 

and estimated variance-covariance matrix 

based on sample sizes 1n  and 2n , 

respectively. The prior probability of iG  is 

given as prior probability 
ip  , 1,2i   and 

1 2 1p p  . 

 

Linear Discriminant Analysis (LDA) 

 

Linear discrimination method 

assumes that each group comes from a 

normal distribution with a common 

variance-covariance matrix.  

LDA classifies an observation 0x  to 

group 1G  if  

' 1 ' 1 2
1 2 1 2 1 20

1

1 (1 2)
( ) ( ) ( ) ln

2 (2 1)
pooled pooled

pc
x x S x x x S x x

c p

 
  

       
   

(1)                                  
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( 1) ( 1)

2
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n S n S
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n n

  


 
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and pooledS  is the pooled estimator of the 

common variance-covariance matrix. 

 

Quadratic Discriminant Analysis (QDA) 

 

Unlike LDA, QDA does not assume 

a common variance-covariance matrix. 

With this respect, Box-M test is one of the 

commonly used methods to test 

homogeneity of variance-covariance 

matrices of groups. 

   ' 1 1 ' 1 ' 1 2

0 1 2 0 1 1 2 2 0
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https://en.wikipedia.org/wiki/Covariance


Nazman and Erbaş                                                                Sinop Uni J Nat Sci 2 (1): 121-132 (2017) 

                                                                                                                             ISSN: 2536-4383 

 

124 
 

Combined Cluster and Discriminant 

Analysis (CCDA) 

 

Combined cluster and discriminant 

analysis is a method of which idea is to 

compare random grouping with 

preconceived grouping [23]. When the 

groups are not able to be discriminated by 

LDA, random groupings will be convenient 

to determine number of observations 

correctly classified. There exist the 

significance of random groupings behind of 

the idea. The package of this combined 

method can be found in R software under 

the ccda name and contains three main steps 

and these steps are given in the Section 

3.3.1.  

 

Combined Cluster and Linear 

Discriminant Analysis (CCLDA) 

 

The steps of combined cluster and 

linear discriminant analysis as follows if the 

variance-covariance matrices of 

components are homogeneous after 

applying Box-M test [20]. 

 

Let k  be the number of component 

1,...,i K .   

I) Components are obtained by applying 

HCA using Ward’s method. 

IIa) Each observation is labeled according 

to the component membership.  

IIb) The correctly classification rates of 

labeled observations are obtained by LDA 

(ratioi). 

IIc) The labels of components are obtained 

randomly by permuting the labels. 

IId) The randomly obtained correctly 

classification rates of labeled observations 

are obtained by LDA. Then, 95% quantiles 

of these correctly classification rates are 

determined (q95). 

IIe) The difference between IIb and IId is 

calculated (di=ratioi – qi,95). 

III) The number of components gives 

optimal group numbers in the situation 

where the difference value (di) is maximum. 

It is decided that investigated componets 

can not be divided further groups and it is 

homogeneous. Otherwise, the process of 

division groups should be proceeded. 

 

Combined Cluster and Quadratic 

Discriminant Analysis (CCQDA) 

 

In real life, assumption that a 

common variance-covariance matrix of 

groups tend to be violated in many 

situations especially for finite mixture 

models. QDA has a quadratic decision 

boundary, so application of this method 

might be more flexible. 

The algorithm in Section 3.3.1 is 

conducted for QDA when the variance-

covariance of the components are not 

homogeneous. So, if the Box-M test shows 

that the variance-covariance matrix of 

components are not homogeneous step IIb 

and step IId are conducted using QDA, 

respectively. 

 

Gaussian Mixture Models 

 

Gaussian mixture models 

containing more than one component have 

been studied in many fields. For example, 

wheats from different fields in agriculture, 

healthy and sick people in medicine, soil 

from different lands, water samples from 

different locations in the same river in 

geology and stock returns in crisis time and 

typical times in finance are some of the 

situations where researchers have to decide 

number of groups more carefully [23,24].  

Let 1 2( , ,..., )nX X XX  consist 

of n  independent and identically 

distributed p -dimensional observations 

from a finite mixture probability with 

multivariate Gaussian density  ; ,k kx    

where k  is the mean vector and k  is the 

covariance matrix of k th component.                                                                                                                                                                           

In finite mixture modeling, each of 

the components are assumed that they have 
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its own distribution and probability. The 

prior probability of the k th component is 

shown with k , and 
1

1
k

k

i




 . Let X  be 

distributed according to the finite mixture 

model given in Eq.5 

   
1

; ; ,
K

k k k

k

g x v x  


                          (5)          

where 

1 2( ', ' , ' ,..., ' )Kv v v v                                  (6)   

The pairwise overlap between     i th 

and j th groups is shown in Eq. 7 

\ \jij i j iw w w                                            (7)                                                                                                           

where 

\ijw  presents the misclassification rate 

explained that X  is mistakenly assigned to 

the j th group, although it is originated from 

the i th group. Similarly, \ jiw  indicates 

misclassification rate that originated from 

the j th group, but it is mistakenly assigned 

to the i th group. \ijw is given in the Eq. 8 

     \ ; , ; \, ,j i i i i j j j j i ii pw P X X X N           
  (8)                                              

Let’s assume that we have already known 

that 1s, 2s, and 3s are originally from the 

components A, B and C, respectively. If we 

obtain nine observations 2, 1, 2, 3, 1, 2, 2, 

3, 1 belong to the components C, A, C, A, 

B, B, B, A, A, respectively.  \BAw  1/9,

\A Cw 2/9 and \B Cw =2/9. 

 

Simulation Study 

 

Performances of both CCLDA and 

CCQDA were evaluated with a simulation 

study. MixSim [23] was used to generate 

Gaussian distributed data set. ccda [20] 

were used to obtain the correctly 

classification rates of LDA and QDA 

investigating homogeneity of the 

components. Besides, for components 

contained different pairwise overlaps were 

investigated to reveal whether further 

divisions are needed. 

In the simulation design, 81 

scenarios were conducted and shown in 

Table1 where the number of components (

k ) are 5, 10 and 20; number of variables (
p ) are 2, 3 and 5; sample sizes (n ) are 200, 

500 and 1000; pairwise overlaps       ( w ) 

are 0.01, 0.05 and 0.1, respectively. These 

notations are validated for all tables. The 

iteration was repeated 10000 times. 

According to Table 2, the highest 

correctly classification rates for CCLDA 

and CCQDA were computed for the 

Scenario8 and Scenario5, whereas the 

lowest correctly classification rates were 

computed for the Scenario73 and 

Scenario75, respectively. For Scenario71, 

correctly classification rates of CCLDA and 

CCQDA were computed as equal.  

Correctly classification rates of both LDA 

and QDA tend to decrease, when the 

number of component increase. It was seen 

that the correctly classification rates of 

CCQDA is higher than the correctly 

classification rates of CCLDA for seven 

scenarios when the number of components 

are 5 and 20. 

Table 3 indicates the number of 

obtained homogeneous groups after 

applying both CCLDA and CCQDA. If 

obtained number of group is the same as the 

number of component, the components 

have already been homogeneous and there 

is no need division of components into less 

groups. The least number of homogeneous 

groups are obtained 4, 6 and 13 for number 

of components 5, 10 and 20, respectively. 
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Table 1: Scenarios for number of components, sample sizes, number of variables and pairwise overlaps  

 

 

5k   
                      0.01w                        0.05w                         0.1w   

2p   3p   5p   2p   3p   5p   2p   3p   5p   

200n   Scenario1 Scenario4 Scenario7 Scenario10 Scenario13 Scenario16 Scenario19 Scenario22 Scenario25 

500n   Scenario2 Scenario5 Scenario8 Scenario11 Scenario14 Scenario17 Scenario20 Scenario23 Scenario26 

1000n   Scenario3 Scenario6 Scenario9 Scenario12 Scenario15 Scenario18 Scenario21 Scenario24 Scenario27 

 

10k   
                      0.01w                        0.05w                          0.1w   

2p   3p   5p   2p   3p   5p   2p   3p   5p   

200n   Scenario28 Scenario31 Scenario34 Scenario37 Scenario40 Scenario43 Scenario46 Scenario49 Scenario52 

500n   Scenario29 Scenario32 Scenario35 Scenario38 Scenario41 Scenario44 Scenario47 Scenario50 Scenario53 

1000n   Scenario30 Scenario33 Scenario36 Scenario39 Scenario42 Scenario45 Scenario48 Scenario51 Scenario54 

 

20k   
                 0.01w                     0.05w                     0.1w   

2p   3p   5p   2p   3p   5p   2p   3p   5p   

200n   Scenario55 Scenario58 Scenario61 Scenario64 Scenario67 Scenario70 Scenario73 Scenario76 Scenario79 

500n   Scenario56 Scenario59 Scenario62 Scenario65 Scenario68 Scenario71 Scenario74 Scenario77 Scenario80 

1000n   Scenario57 Scenario60 Scenario63 Scenario66 Scenario69 Scenario72 Scenario75 Scenario78 Scenario81 
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Table 2: Correctly classification rates of CCLDA and CCQDA for number of components, sample sizes,  number of variables and pairwise 

overlaps  

 
 

5k   
                                             0.01w                                               0.05w                                      0.1w   

       2p          3p          5p         2p         3p          5p         2p         3p         5p   

CCLD

A 

CCQD

A 

CCLD

A 

CCQD

A 

CCLD

A 

CCQD

A 

CCLD

A 

CCQD

A 

CCLD

A 

CCQD

A 

CCLD

A 

CCQD

A 

CCLD

A 

CCQD

A 

CCLD

A 

CCQD

A 

CCLD

A 

CCQD

A 

200n   0.975 0.950 0.960 0.975 0.975 0.970 0.930 0.895 0.895 0.905 0.945 0.885 0.805 0.815 0.810 0.805 0.870 0.795 

500n   0.980 0.958 0.972 0.976 0.988 0.972 0.914 0.962 0.884 0.882 0.926 0.894 0.860 0.900 0.810 0.792 0.846 0.816 

1000n 

 

0.981 0.952 0.975 0.969 0.984 0.976 0.914 0.911 0.895 0.886 0.918 0.897 0.850 0.917 0.820 0.781 0.844 0.805 

 

10k   
                                            0.01w                                     0.05w                                      0.1w   

      2p         3p          5p         2p        3p          5p         2p         3p          5p   

CCLD

A 

CCQD

A 

CCLD

A 

CCQD

A 

CCLD

A 

CCQD

A 

CCLD

A 

CCQD

A 

CCLD

A 

CCQD

A 

CCLD

A 

CCQD

A 

CCLD

A 

CCQD

A 

CCLD

A 

CCQD

A 

CCLD

A 

CCQD

A 

200n   0.965 0.925 0.950 0.955 0.960 0.950 0.865 0.825 0.795 0.800 0.860 0.770 0.635 0.610 0.660 0.640 0.715 0.745 

500n   0.964 0.946 0.968 0.926 0.970 0.950 0.810 0.760 0.818 0.792 0.868 0.790 0.656 0.592 0.718 0.606 0.768 0.664 

1000n 

 

0.956 0.937 0.966 0.932 0.969 0.942 0.797 0.799 0.810 0.774 0.841 0.789 0.665 0.606 0.692 0.646 0.734 0.665 

 

20k   
                                           0.01w                                     0.05w                                      0.1w   
     2p         3p           5p         2p         3p          5p         2p          3p         5p   

CCLD

A 

CCQD

A 

CCLD

A 

CCQD

A 

CCLD

A 

CCQD

A 

CCLD

A 

CCQD

A 

CCLD

A 

CCQD

A 

CCLD

A 

CCQD

A 

CCLD

A 

CCQD

A 

CCLD

A 

CCQD

A 

CCLD

A 

CCQD

A 

200n   0.950 0.895 0.940 0.942 0.935 0.735 0.725 0.675 0.740 0.745 0.770 0.750 0.560 0.565 0.655 0.580 0.640 0.595 

500n   0.908 0.912 0.950 0.908 0.928 0.868 0.750 0.736 0.768 0.666 0.644 0.644 0.662 0.602 0.644 0.528 0.624 0.536 

1000n 

 

0.914 0.917 0.947 0.903 0.949 0.893 0.704 0.752 0.779 0.883 0.777 0.667 0.616 0.501 0.630 0.511 0.645 0.532 
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Table 3: Obtained group numbers of CCLDA and CCQDA for number of components, sample sizes, number of variables and pairwise 

overlaps 

 
 

 

5k   

                                             0.01w                                               0.05w                                      0.1w   

       2p          3p          5p         2p         3p          5p         2p         3p         5p   

CCLDA CCQDA CCLDA CCQDA CCLDA CCQDA CCLDA CCQDA CCLDA CCQDA CCLDA CCQDA CCLDA CCQDA CCLDA CCQDA CCLDA CCQDA 

200n   5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

500n   5 5 5 5 5 5 5 4 5 5 5 5 5 4 5 5 5 5 

1000n   5 5 5 5 5 5 5 5 5 5 5 5 5 4 5 5 5 5 

 

 

10k   

                                            0.01w                                     0.05w                                      0.1w   

      2p         3p          5p         2p        3p          5p         2p         3p          5p   

CCLDA CCQDA CCLDA CCQDA CCLDA CCQDA CCLDA CCQDA CCLDA CCQDA CCLDA CCQDA CCLDA CCQDA CCLDA CCQDA CCLDA CCQDA 

200n   10 10 10 10 10 9 9 9 10 10 10 9 9 10 10 10 10 6 

500n   10 10 10 10 9 10 10 10 10 10 9 10 10 10 10 10 9 10 

1000n   10 10 10 10 10 10 10 9 10 10 10 10 10 9 9 10 10 10 

 

 

20k   

                                           0.01w                                     0.05w                                      0.1w   
     2p         3p           5p         2p         3p          5p         2p          3p         5p   

CCLDA CCQDA CCLDA CCQDA CCLDA CCQDA CCLDA CCQDA CCLDA CCQDA CCLDA CCQDA CCLDA CCQDA CCLDA CCQDA CCLDA CCQDA 

200n   18 20 19 19 19 18 18 20 20 20 17 18 18 17 14 19 20 18 

500n   20 19 19 18 20 20 17 14 17 19 13 19 13 20 17 19 20 18 

1000n   20 20 18 18 18 17 17 13 18 18 17 20 20 17 18 18 17 19 
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Table 4: The superiority results of CCLDA and CCQDA for number of components, sample sizes, number of variables and pairwise 

overlaps  

 

 

 

   5k   
                      0.01w                        0.05w                         0.1w   

2p   3p   5p   2p   3p   5p   2p   3p   5p   

200n   CCLDA CCQDA CCLDA CCLDA CCQDA CCLDA CCQDA CCLDA CCLDA 

500n   CCLDA CCQDA CCLDA CCQDA CCLDA CCLDA CCQDA CCLDA CCLDA 

1000n   CCLDA CCLDA CCLDA CCLDA CCLDA CCLDA CCQDA CCLDA CCLDA 

 

  10k   
                      0.01w                        0.05w                          0.1w   

2p   3p   5p   2p   3p   5p   2p   3p   5p   

200n   CCLDA CCQDA CCLDA CCLDA CCQDA CCLDA CCLDA CCLDA CCQDA 

500n   CCLDA CCLDA CCLDA CCLDA CCLDA CCLDA CCLDA CCLDA CCLDA 

1000n   CCLDA CCLDA CCLDA CCQDA CCLDA CCLDA CCLDA CCLDA CCLDA 

 

 20k   
                 0.01w                     0.05w                     0.1w   

2p   3p   5p   2p   3p   5p   2p   3p   5p   

200n   CCLDA CCQDA CCLDA CCLDA CCQDA CCLDA CCQDA CCLDA CCLDA 

500n   CCQDA CCLDA CCLDA CCLDA CCLDA CCLDA CCLDA CCLDA CCLDA 

1000n   CCQDA CCLDA CCLDA CCQDA CCQDA CCLDA CCLDA CCLDA CCLDA 
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Table 4 is prepared to understand the 

comparison results of CCLDA and 

CCQDA. When the number of component 

is 5, CCQDA shows superiority for seven 

scenarios. For twenty scenarios, CCLDA 

has more correctly classification rates than 

CCQDA. When the number of component 

is 10, CCQDA shows superiority for only 

four scenarios. It is seen that LDA also tend 

to divide components into less 

homogeneous groups for Scenario71. 

 

CCLDA is more succesfull in terms 

of correctly classification rates for most of 

the scenarios for Gaussian mixture data. 

However, the correctly classification rates 

both CCLDA and CCQDA generally 

decrease when the number of component 

increases. It is also clear that large average 

pairwise overlap can cause low correctly 

classification rates for both CCLDA and 

CCQDA. 

 

Application Study 

 

Glass identification data set from 

UCI Machine Learning Repository was 

used for application study. The sample size 

of data set is 214 and number of variables is 

9. The description of the variables are 

refractive index (RI), and mass percentages 

of the elements Na, Mg, Al, Si, K, Ca, Ba 

and Fe. The data set was created by B. 

German (Central Research Establishment, 

England) and it is available in the MASS 

package of R. The purpose of classification 

considering glass sample is to investigate 

forensic studies. The high correctly 

classification rates and correctly clustered 

components are helpful to recognize crime 

behind the variables. Building windows 

float processed (1), building windows non-

float processed (2), vehicle windows float 

processed (3), containers (4), tableware (5) 

and headlamps (6) are the components of 

data. According to the Box-M results, p-

value was found 0.0001. Therefore, at 

individual significance level ( 0.05  ), 

there is sufficient evidence to reject the null 

hypothesis 
0H  that the variance-covariance 

matrices of the Glass data set are equal. 

Thus, we used CCQDA in order to obtain 

correctly classification rate and the number 

of homogeneous groups. 

After applying CCQDA, the correctly 

classification rate was calculated as 94.3%. 

Besides, number of component was reduced 

from 6 to 4. Together the components 

number 1, 2 and 3 constitute one group. The 

remained components number 4, 5 and 6 

still remain only one group after applying 

CCQDA.  

 

Conclusion 

 

The basic idea of our study is to 

overcome uncertainity of the number of 

homogeneous groups for Gaussian mixture 

components. With this purpose, we 

evaluated correctly classification rates of 

CCLDA and CCQDA and determined the 

number of homogeneous groups in terms of 

various number of components, number of 

variables, sample sizes and pairwise 

overlaps using 81 scenarios. In general, 

despite the correctly classification rates of 

CCLDA is obtained higher than correctly 

classification rates of CCQDA for totally 62 

scenarios, there is no large differences 

between CCLDA and CCQDA. It can be 

inferred that high overlap rate and high 

number of component may cause decrease 

in the correctly classification rates for both 

CCLDA and CCQDA. It has been known 

that LDA has superiority to QDA because 

of the estimated number of parameters 

during classification process [22]. This 

study reveals that the number of component 

and the overlap rate are the other important 

considerations in addition to the number 

variable and sample size. While making a 

decision about number of homogeneous 

groups, CCLDA can be preferred instead of 

CCQDA in most cases.  

Since CCDA does not provide 

satisfactory results when there exist outliers 
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in data set, outliers and noise variables are 

still open to be a part of discussion. This 

study will able to offer an insight into the 

study plans of researchers for following 

studies before deciding sample structure 

and discrimination method. 

 

References 

 

[1] Reynolds D, 2009. Gaussian 

mixture models. In Encyclopedia of 

Biometrics, 1st ed. New York: 

Springer  Science and Business Media, 

659–663.  

[2] Everitt B, Landau S, Leese M, 

Stahl D,2011. Cluster Analysis. 5th ed. 

Wiley 

      Series. 

[3] Melnykov V, Maitra R, 2010. 

Finite mixture models and model based 

clustering Statistics Surveys, 4:80-116.

 [4] Melnykov V, 2016. Merging 

mixture components for clustering through 

pairwise overlap Journal of Computational 

and Graphical Statistics, 25(1):66-90. 

[5] Duda RO, Hart PE, Stork DG, 

2000.Pattern Classification, 2nd ed. New 

York: John Wiley & Sons, Inc. 

[6] Johnson RA, Wichern DW, 

1998. Applied multivariate analysis, 4th 

ed.New Jersey: Prentice Hall, Englewood 

Cliffs. 

[7] Baudry JP, Raftery AE, Celeux 

G, Lo K, Gottardo R, 2008. Combining 

Mixture Components for Clustering 

Technical Report 540, University of 

Washington, Seattle. 

[8] Goldberger J, Roweis S, 2005. 

Hierarchical clustering of a mixture model. 

In Advances in Neural Information 

Processing Systems MIT Press, 17:505–

512.  

[9] El-Hanjouri MMR, Hamad BS, 

2015. Using cluster analysis and 

discriminant analysis methods in 

classification with application on standart 

of living family in Palestinian Areas 

International Journal of Statistics, 5(5):213-

222. 

[10] Hastie T, Tibshirani R, 1996. 

Discriminant analysis by Gaussian mixtures 

Journal of the Royal Statistical Society, 

5(1):155-176.  

[11] Flury B W, Schmid M J, 1992. 

Quadratic discriminant functions with 

constraints on the covariance matrices some 

asymptotic results Journal of Multivariate 

Analysis 4:244-261. 

[12] Ganesalingam S, Nanthakumar 

A, Ganesh S, 2011. An analytical 

expression for the error rate associated with 

the quadratic discriminant function Journal 

of Statistics and Management Systems,  

14(6):1027-1040. 

[13] Goswamiand S, Wegman EJ, 

2016. Comparison of Different 

Classification Methods on Glass 

Identification for Forensic Research Journal 

of Statistical Science and Application, 4(3-

4):65-84. 

[14] Engelhardt A, Kanawade R, 

Knipfer C, Schmid M, Stelzle F, Adler W, 

2014. Comparing classification methods for 

diffuse reflectance spectra  to improve 

tissue specific laser surgery BMC Medical 

Research Methodology,  14(91):1-15. 

[15] Cherry A, 1993. Combining 

cluster and discriminant analysis to develop 

a social bond typology of runaway youth 

Research on Social Work Practice, 

3(2):175-190. 

[16] Baudry JP, Raftery AE, Celeux 

G, Lo K, Gottardo R, 2010. Combining 

mixture components for clustering  Journal 

of Computational and Graphical Statistics, 

19(2):332-353. 

[17] Tanos P, Kovacs J, Kovacs S, 

2015. Optimization of the monitoring 

network on the River Tisza (Central 

Europe, Hungary) using combined cluster 

and discriminant analysis, taking 

seasonality into account  Environmental 

Monitoring and Assessment  DOI: 

10.1007/s10661-015-4777-y. 

https://dx.doi.org/10.1007/s10661-015-4777-y


Nazman and Erbaş                                                                Sinop Uni J Nat Sci 2 (1): 121-132 (2017) 

                                                                                                                             ISSN: 2536-4383 

 

132 
 

[18] Morris K, McNicholas PD, 

2016. Clustering, classification, 

discriminant analysis and dimension 

reduction via generalized hyperbolic 

mixtures Computational Statistics and Data 

Analysis, 97:133-150. 

[19] Novak M, Palya D, Bodai Z, 

Nyiri Z, Magyar N, Kovacs J, Eke Z, 2017. 

Combined cluster and discriminant 

analysis: An efficient chemometric  

approach in diesel fuel  characterization 

Forensic Science International 270:61-69. 

[20] Kovacs J, Kovacs S, Magyar N, 

Tanos P, Hatvani IG, 2014. Classification 

into homogeneous groups using combined 

cluster and discriminant analysis 

Environmental Modelling & Software, 57: 

52-59. 

[21] Fisher RA, 1936. The use of 

multiple measurements in taxonomic 

problems, Annals of Eungenics, 7:179-188. 

[22] McLachlan G, 2004. 

Discriminant analysis and statistical pattern 

recognition. 2th ed. John Wiley&Sons. 

  

[23] Melnykov V, Chen WC, Maitra 

R, 2012. MixSim: An R package for 

simulating data to study performance of 

clustering algorithms Journal of  Statistical 

Software, 51(12):1-25. 

[24] Baudry JP, Raftery AE, Celeux 

G, Lo K, Gottardo R, 2010. Combining 

mixture components for clustering, Journal 

of Computational and Graphical Statistics, 

19(2):332-353. 

                                                                                                                              


