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1. INTRODUCTION 

The daily schedule of hydroelectric power plants purposes to determine which units will be operating 

and their respective generation levels for the following day. In the formulation of the problem, a set of 

operational constraints is considered, as well as generation goals, which are guidelines based on system's 

operation planning. 

The works of [1] and [2] aim to improve the operating point considering an hourly energy generation 

time schedule for a set of hydroelectric plants in cascade. As the generation is predetermined, the 

improvement in performance comes from using the least amount of water to generate the same amount 

of energy. For this intent, a detailed representation of each plant was considered, with individualization 

of turbines and generators. This problem is classified as a hydro unit commitment and loading (HUCL). 

In the works mentioned, the Objective Function (OF) target is to minimize the sum of the total turbined 

flow in the plants. Additionally, nonlinear functions are considered to represent the water and energy 

mass balance equations, as well as operational constraints. This structure leads to large problems that 

require Mixed Integer Nonlinear Programming to solve. In this sense, the present paper proposes a 

Constructive Heuristic (CH) that uses a Non-Linear Programming (NLP) solver during its solution process. 

This solution strategy allows the resolution of problems with plants that have different sets of units, in 

which a sensitivity factor is used to determine the best group of units for each operating condition. 

 

2. MATERIAL AND METHODS 

The structure used in this work to mathematically represent the problem is inspired by [1]. The 

formulation contemplates the hydraulic, mechanical, and electrical losses present in the energy 

production process considering individual turbines, as well as the maximum and minimum flow limits of 

the turbine. However, the spillway discharged flows are not considered, as it works with discharge values 

lower than the capacity of the plant's reservoirs. Additionally, the turbined outflows are propagated by 

travel times. The mathematical formulation is presented in sequence through the equations numbered 

(01) to (14). The variable description is presented in Table 1. 

𝑀𝑖𝑛 𝑍 =  ∑ 𝐴𝑡
𝐻,𝑈𝑄𝑡

𝐻,𝑈

𝐻,𝑈,𝑡

 (1) 

𝑉𝑡+1
𝐻 = 𝑉𝑡

𝐻 + 𝛼 ∗ (𝐼𝑡
𝐻 +  ∑ 𝐴𝑡

𝐻,𝑈𝑄𝑡
𝐻,𝑈

𝑈

+ ∑ ∑ 𝐴𝑡−𝜏
𝐻,𝑈𝑄𝑡−𝜏

𝐻,𝑈

𝑈𝐻∈𝛽
) (2) 

𝐷𝑡
𝐻 ≤ ∑ 𝐴𝑡

𝐻,𝑈 ∗ 𝑃𝑔𝑡
𝐻,𝑈

𝑈

 (3) 

𝑃𝑚𝑖𝑛𝐻,𝑈 ≤ 𝑃𝑔𝑡
𝐻,𝑈 ≤ 𝑃𝑚𝑎𝑥𝐻,𝑈 (4) 

𝑃𝑔𝑡
𝐻,𝑈 =  𝑃𝑠𝑡𝑡

𝐻,𝑈 − 𝑃𝑔𝑔𝑡
𝐻,𝑈 − 𝑃𝑚𝑡𝑡

𝐻,𝑈 (5) 

𝑃𝑠𝑡𝑡
𝐻,𝑈 = 𝜂 ∗ 𝑄𝑡

𝐻,𝑈 ∗ 𝐻𝐻𝑡
𝐻,𝑈 ∗ 𝜌𝑡

𝐻,𝑈 (6) 

𝑃𝑚𝑡𝑡
𝐻,𝑈 = 𝑓1(𝑃𝑔𝑡

𝐻,𝑈)    𝑃𝑔𝑔𝑡
𝐻,𝑈 = 𝑓2(𝑃𝑔𝑡

𝐻,𝑈) (7) 

𝐻𝐻𝑡
𝐻,𝑈 = 𝑈𝑝𝑡

𝐻,𝑈´ − 𝐷𝑜𝑤𝑛𝑡
𝐻,𝑈 − 𝑙𝑜𝑡

𝐻,𝑈 (8) 

𝑈𝑝𝑡
𝐻,𝑈 = 𝑓3(𝑉𝑡

𝐻) (9) 
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𝐷𝑜𝑤𝑛𝑡
𝐻,𝑈 = 𝑓4(𝐴𝑡

𝐻,𝑈 ∗ 𝑄𝑡
𝐻,𝑈) (10) 

𝑙𝑜𝑡
𝐻,𝑈 = 𝑓5(𝐴𝑡

𝐻,𝑈 ∗ 𝑄𝑡
𝐻,𝑈) (11) 

𝜌𝑡
𝐻,𝑈 = 𝑓6(𝐴𝑡

𝐻,𝑈 ∗ 𝑄𝑡
𝐻,𝑈, 𝐻𝐻𝑡

𝐻,𝑈) (12) 

𝑓7(𝐻𝐻𝑡
𝐻,𝑈) ≤ 𝑄𝑡

𝐻,𝑈 ≤ 𝑓8(𝐻𝐻𝑡
𝐻,𝑈) (13) 

𝐴𝑡
𝐻,𝑈= {0,1} (14) 

 

Table 1. Variables Description 

Symbols Item Description 

Z Objective function 

𝑄𝑡
𝐻,𝑈 Turbined outflow in each unit at each stage 

𝐴𝑡
𝐻,𝑈 Boolean matrix to represent the operative state of the turbine 

H Set of hydroelectric plants 

U Set of generating units 

t Set of temporal steps or steps considered in the problem 

α Conversion term from cubic meters per second to hectometers per hour 

τ Travel time between hydroelectric plants 

𝛽𝑟 Set of hydroelectric power plants located upstream of hydroelectric power plant "r" 

𝑉𝑡
𝐻 Reservoir volume at each stage 

𝐷𝑡
𝐻 Energy requirement per reservoir at each stage 

𝑃𝑔𝑡
𝐻,𝑈 Net power generated by turbine at each stage 

𝑃𝑚𝑖𝑛𝐻,𝑈 Lower turbine power limit 

𝑃𝑚𝑎𝑥𝐻,𝑈 Maximum turbine power limit 

𝑃𝑠𝑡𝑡
𝐻,𝑈 Gross power generated by the turbine at each stage 

𝑃𝑔𝑔𝑡
𝐻,𝑈 Electrical losses of the generator at each stage 

𝑃𝑚𝑡𝑡
𝐻,𝑈 Mechanical losses of the generator at each stage 

𝐻𝐻𝑡
𝐻,𝑈 Net hydraulic head per step 

𝑈𝑝𝑡
𝐻,𝑈 Upstream level at each step 

𝐷𝑜𝑤𝑛𝑡
𝐻,𝑈 Downstream level at each step 

𝑙𝑜𝑡
𝐻,𝑈 Hydraulic and mechanical losses at each stage 

𝜌𝑡
𝐻,𝑈 Efficiency of the turbine at each stage 

𝜂 Constant that depends on the gravity and density of the water [kg m-2 s-2] 

f1, f2, f3, f4, f5, f6, f7 e f8 Polynomial or exponential functions 

The OF (1) is the minimization of turbine flows from all the power plants. As the generation is 

individualized and pre-defined, the only way to improve the system's performance is to improve its 

efficiency, which is, reducing the use of water to generate the same amount of energy. It is noteworthy 

that the choice of meeting an individualized generation goal per plant significantly restricts the system's 

decision-making freedom. This choice is associated to a strategy in which the plant operator does not 

optimize the complete problem; he only chooses machines to comply with a certain goal.  

Equation (2) deals with the mass balance of reservoirs. Equation (3) is the energy balance, in which the 

generation goal is guaranteed. Equation (4) deals with the maximum and minimum operating limits of 

the generator. In turn, equations (5) and (7) represent the mechanical and electrical losses of the 

generator. Equation (6) relates turbine's mechanical power output with turbine's efficiency and net head. 

Equation (8) deals with the transformation from gross head to net head. Equations (9) and (10) are 

upstream and downstream polynomials, respectively. Equation (11) estimates the hydraulic losses. 

Equation (12) represents the turbine's hydraulic performance curve. Equation (13) defines the maximum 

and minimum limits for turbine flow. Finally, Equation (14) is the turbine drive integrity constraint. 

The main difference between the equations presented and those used in [1] is the consideration of the 

matrix 𝐴𝑡
𝐻,𝑈

 as a multiplier factor in all equations where there are variables 𝑄𝑡
𝐻,𝑈

 and 𝑃𝑔𝑡
𝐻,𝑈

. In [1], the 
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matrix 𝐴𝑡
𝐻,𝑈

 appears only in equations (04) and (13). Equation (04) is written as 𝐴𝑡
𝐻,𝑈 ∗ 𝑃𝑚𝑖𝑛𝐻,𝑈 ≤ 𝑃𝑔𝑡

𝐻,𝑈 ≤

𝐴𝑡
𝐻,𝑈 ∗ 𝑃𝑚𝑎𝑥𝐻,𝑈, while equation (13) is written as 𝐴𝑡

𝐻,𝑈 ∗ 𝑓7(𝐻𝐻𝑡
𝐻,𝑈) ≤ 𝑄𝑡

𝐻,𝑈 ≤ 𝐴𝑡
𝐻,𝑈 ∗ 𝑓8(𝐻𝐻𝑡

𝐻,𝑈). 

The problem (1) to (14) is non-linear in nature with integer and continuous variables. In this sense, a 

solution strategy based on CH is proposed. To apply this technique, the integrity constraints applied to 

variable “A” are relaxed, which changes from binary variable to continuous variable. This new variable is 

represented by the letter “a”. The variable indicates whether the unit is operating or not, with an upper 

limit of 1 and a lower limit of 0. This consideration affects two variables: the turbined flow (Q) and the 

net power generated (Pg). Table 2 presents this new treatment for the problem. 

Table 2. Equation Modifications 
 Original problem Modified problem 

Turbine flow 𝐴𝑡
𝐻,𝑈 ∗ 𝑄𝑡

𝐻,𝑈
 𝑎𝑡

𝐻,𝑈 ∗ 𝑄𝑡
𝐻,𝑈

 

Net power generated by turbine 𝐴𝑡
𝐻,𝑈 ∗ 𝑃𝑔𝑡

𝐻,𝑈 𝑎𝑡
𝐻,𝑈 ∗ 𝑃𝑔𝑡

𝐻,𝑈 

The CH scheme was inspired by [3] and [4]. In these problems, the technique was used to plan the 

expansion of transmission systems. Initially, the number of new lines and circuits was not subject to an 

integrality constraint. So, the solution could contemplate a fraction of the line to be built, which, in 

practice, is unrealistic. The purpose of the CH was to manipulate the results to transform the fraction 

results into integer results. 

In this work, as the variable “a” is simultaneously multiplied by outflow and power generated in the 

turbine. The generation target obliges that the variable “a” needs to be greater than zero. The main 

assumption of this work is that the NLP optimization process itself can indicate the best solution. The 

optimization process naturally leads to small “a” values for unnecessary turbines and “a” values equal to 

1 for turbines essential to the energy supply. 

Thus, with these modifications, the problem is represented by equations (15) to (28). 

𝑀𝑖𝑛 𝑍 =  ∑ 𝑎𝑡
𝐻,𝑈 ∗ 𝑄𝑡

𝐻,𝑈

𝐻,𝐺,𝑈,𝑡

 (15) 

𝑉𝑡+1
𝐻 = 𝑉𝑡

𝐻 + 𝛼 ∗ (𝐼𝑡
𝐻 + ∑ 𝑎𝑡

𝐻,𝑈 ∗ 𝑄𝑡
𝐻,𝑈

𝐺,𝑈

+ ∑ ∑ 𝑎𝑡−𝜏
𝐻,𝑈 ∗ 𝑄𝑡−𝜏

𝐻,𝑈

𝐺,𝑈𝐻∈𝛽
) (16) 

𝐷𝑡
𝐻 ≤ ∑ 𝑎𝑡

𝐻,𝑈 ∗ 𝑃𝑔𝑡
𝐻,𝑈

𝑈

 (17) 

𝑃𝑚𝑖𝑛𝐻,𝑈 ≤ 𝑃𝑔𝑡
𝐻,𝑈 ≤ 𝑃𝑚𝑎𝑥𝐻,𝑈 (18) 

𝑃𝑔𝑡
𝐻,𝑈 =  𝑃𝑠𝑡𝑡

𝐻,𝑈 − 𝑃𝑔𝑔𝑡
𝐻,𝑈 − 𝑃𝑚𝑡𝑡

𝐻,𝑈 (19) 

𝑃𝑠𝑡𝑡
𝐻,𝑈 = 𝜂 ∗ 𝑄𝑡

𝐻,𝑈 ∗ 𝐻𝐻𝑡
𝐻,𝑈 ∗ 𝜌𝑡

𝐻,𝑈 (20) 

𝑃𝑚𝑡𝑡
𝐻,𝑈 = 𝑓1(𝑃𝑔𝑡

𝐻,𝑈)    𝑃𝑔𝑔𝑡
𝐻,𝑈 = 𝑓2(𝑃𝑔𝑡

𝐻,𝑈) (21) 

𝐻𝐻𝑡
𝐻,𝑈 = 𝑈𝑝𝑡

𝐻,𝑈 − 𝐷𝑜𝑤𝑛𝑡
𝐻,𝑈 − 𝑙𝑜𝑡

𝐻,𝑈 (22) 

𝑈𝑝𝑡
𝐻,𝑈 = 𝑓3(𝑉𝑡

𝐻) (23) 

𝐷𝑜𝑤𝑛𝑡
𝐻,𝑈 = 𝑓4(𝑎𝑡

𝐻,𝑈 ∗ 𝑄𝑡
𝐻,𝑈) (24) 

𝑙𝑜𝑡
𝐻,𝑈 = 𝑓5(𝑎𝑡

𝐻,𝑈 ∗ 𝑄𝑡
𝐻,𝑈) (25) 

𝜌𝑡
𝐻,𝑈 = 𝑓6(𝑎𝑡

𝐻,𝑈 ∗ 𝑄𝑡
𝐻,𝑈 , 𝐻𝐻𝑡

𝐻,𝑈) (26) 

𝑓7(𝐻𝐻𝑡
𝐻,𝑈) ≤ 𝑄𝑡

𝐻,𝑈 ≤ 𝑓8(𝐻𝐻𝑡
𝐻,𝑈) (27) 
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0 ≤ 𝑎𝑡
𝐻,𝑈 ≤ 1 (28) 

In this case, as all variables of the problem are continuous, it can be solved by an NLP optimization 

package. In this sense, CONOPT [5] is used to solve the NLP problem. 

However, directly applying the optimization package does not solve the original problem (1) to (14), but 

its relaxed version. Thus, the proposed CH strategy solves problem (15) to (28) in steps to find the 

solution to the original problem. The solution scheme consists of two steps. The first one aims to reduce 

the dimension of the problem by setting the maximum possible amount of “a” values as integer with 

few solvers runs. In turn, in the second part, all configurations of units are exhaustively checked, and the 

best result is chosen. 

The first step starts with solving problem (15) to (28). After the first resolution of the problem with NLP, 

“a” values of the sets of turbines (represented by “G”) are summed for the hydroelectric plant and for 

each time step. If there is more than one group of units in a hydropower plant at this time step, a 

Sensitivity Factor (SF) is used. The SF is a fraction between the sum of “a” factor in this group and the 

total number of units in this group. The SF value can be interpreted as a percentage of units in operation. 

Equation (29) represents the calculation of SF. The Ng variable represents the number of units per 

generator set. 

𝑆𝐹𝑡
𝐻,𝐺 =

∑ 𝑎𝑡
𝐻,𝐺,𝑈

𝑈⊂𝐺

𝑁𝑔𝑡
𝐻,𝐺  (29) 

SF is used to choose which group should be privileged in the very first iteration. For example, considering 

there are two distinct groups in a power plant, the X group with three turbines and the Y group with 

two. For a defined time, step, if the sum of “a” for Group X is 1.5 and 0.8 for Y, the SF will be 0.5 and 0.4, 

respectively. In this case, group X must be indicated for the first iteration. 

Furthermore, in this first iteration, "a" is used as an indicator of the number of units that should be set 

to 1. For example, if there are three units in the group and all of them have "a" equal to 0.5, then the 

sum is 1.5. This value indicates that at least one turbine must be set to 1. The number also indicates that 

at least one turbine must be set to 0. Thus, the CH defines unit U1 must be as on (1) and unit U3 off (0). 

The “a” value of the middle unit is not defined yet, as the first iteration does not indicate a clear value 

for it. 

At the end of the first part, for each period and each group, there must be only one unit without a fixed 

“a” value. Thus, the second step of the algorithm consists of testing free “a” value of each set of turbines. 

The testing order follows the ascending order of the indices of time steps, plants and generator sets. 

Tests of combinations of different “a” values were not considered. 

The problem is solved with turbines with free “a” values set to 0 and then to 1. The option that results in 

the smallest objective function is the solution. If one of the alternatives is unfeasible, the other possibility 

is chosen. Usually, the lack of solution is related to a fixed value of 0, since there is a generation target 

for each plant that must be satisfied. 

Continuing with the previous example, first, the value "a" of U2 should be set to 0 and then the value 

should be set to 1. Assuming that the OF result is 8 for "a" set to 0, and the OF value is 9 when “a” is set 

to 1, the best choice is the former option - 8. Therefore, the value of “a” should be set to 0. 
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3. THEORY 

The HUCL problem requires a strategy to deal with nonlinear equations and integer variables related to 

unit commitment. For purposes of planning the operation of a large electrical system, as analyzed by 

[6], the linearization of equations and disregarding integer variables for hydroelectric plants can be 

perfectly justified, given the other complexities involved. 

Thus, one way to consider at least hydro unit commitment is to use Mixed Integer Linear Programming 

(MILP). In this case, the problem equations must also be linearized, but the individual turbines are 

represented. This method is more accurate but can be very time-consuming for large-scale systems [7,8].  

In turn, the consideration of nonlinearities and hydro unit commitment requires the Mixed Integer 

Nonlinear Programming (MINLP). However, despite recent improvements to optimization packages, 

these are only suitable for small problems compared to industry-relevant problems. Even today, practical 

problems must be simplified and reduced in size to obtain treatable formulations in the process, limiting 

the benefits of greater mathematical detail in the representations of the problems [9].  

Some research such as [10] and [11] propose strategies combining different solvers to deal with the 

problem. [11] consider the resolution in two stages. The first phase solves the relaxation of a mixed 

integer nonlinear program to obtain the turbined water flow, the reservoir volume and the number of 

units operating in each period of the planning horizon. The second stage solves a linear mixed-integer 

scheduling problem to determine which combination of turbines to use in each period. In turn, [10] 

divide the problem into three parts. Initially, unfeasible and undesirable solutions are discarded. Then, 

dynamic programming is used to solve the unit commitment problem of the ideal static unit for a given 

generation of plants, viable unit combinations and current hydraulic conditions. Finally, the HUCL 

problem is formulated and solved as a large network problem with boundary constraints. 

These strategies are robust ways to create fast and efficient decision support systems to plan real-time 

unit generation schedules. However, both methods require linearization of equations. [1] assesses that, 

from the standpoint of the Independent System Operator (ISO), the considerable number of reservoirs 

prevents it from considering the complex modeling associated with hydroelectric units. For this reason, 

for [6], the hydroelectric units are modeled by a piecewise-linear function, and the unit commitment 

constraints of the hydroelectric units are not considered. Therefore, a discrete mixed nonlinear intrinsic 

modeling is replaced by a continuous linear modeling. 

[1] proposed a mathematical cascade model formulated to minimize, in each plant and time stage, the 

turbine flow required to supply the hourly generation goal defined by ISO. This approach allows using 

non-linear equations, but does not aim to solve the problem of the complete system. Therefore, it is 

being considered to complement the ISO perspective. The resolution method applied in [1] is divided 

into two phases. The first is to apply the Lagrangian Relaxation to obtain the optimal dual solution, which 

is unfeasible in relation to the primal variables, as it solves a convexified form of the HUCL problem. 

Later, this solution is used as a starting point to recover the viability of the primal solution, through the 

inexact Augmented Lagrangian. 

It should be noted that the problem presented by [1] is non-linear and non-convex, therefore, it is 

mathematically impossible to guarantee the optimal solution. Under these conditions, the use of a well-

established strategy, such as the proposal, is coherent to give a sufficiently good operating point for 

hydroelectric plants. The use of Constructive Heuristics is a feasible method to deal with this type of 

problem. 
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4. RESULTS AND DISCUSSION 

The methodology is applied to solve the test problem presented by [1]. In this test system, a four 

hydroelectric powerplants cascade is considered. Each plant must be able to supply a generation goal 

for 24 hourly time steps. Equations (15) to (28). 

In this context, the application of the methodology leads to a problem of 16 blocks of restrictions and 

13 blocks of variables with 13593 non-null elements, 3547 unique variables and 4247 equations. In 

addition, there are 7225 non-linear array entries in the model. For the first solution, with a free “a” value 

for all units, the CONOPT requires 1381 iterations to find the solution. Also, the solver needs to run a 

few more times for the first step of CH and many times for the second step. However, after the first 

solution of the problem, the calculation time decreases drastically, due to the improvement of the 

starting point. In the first step of the solution strategy, less than 60 solver iterations are required for 

convergence. In turn, for the second part of the method, 30 interactions are enough for convergence. 

The first solution, without “a” integrality restriction, has a value of 51302 m3/s. In the first stage, this 

value is increased by 0.25% and, at the end of the second stage, the value is 51745 m3/s, an increase of 

0.86%. Tables 3 and 4 illustrate how the method works for plants H1 and H4 in the fifth time step. 

Table 3. Results of “A” by the Heuristic for t = 5 and H=1 

t=5 H=1 Solver output First Step Second Step 

g1 u1 0.801 1 1 

g1 u2 0.801 1 1 

g1 u3 0.801 0.46 1 

Table 3 shows, in practice, how the method works when there is only one generator set. The sum of the 

values of “a” from the solver is equal to 2,403, which causes turbines U1 and U2 to be fixed at 1 in the 

first step, while U3 remains free. In the second step, the solution is evaluated for value of “a” for U3 set 

to zero and set to one, and the best one is chosen. In this case, there is no solution to the problem if “a” 

is set to 0. For this reason, the “a” of U3 is set to 1. 

Table 4 shows the CH operation for two generator sets. By the initial output of the solver, there is an 

indication that the units of group 1 are more appropriate than those of group 2. The Sensitivity Factor 

numerically indicates this solver result and directs the first step starting with group 1. When starting for 

group 1, all units U1, U2 and U3 were set at 1, as the sum value was 3. For the second generator set, the 

sum of the values of “a” was 0.3, which indicates that U2 must be set at 0 and U1 must remain free for 

the second stage. In the second stage, through the exhaustive test, it is concluded that the smallest value 

of the Objective Function occurs when the U1 of G2 is equal to 0. 

Table 4. Results of “A” by the Heuristic for t = 5 and H=4 

t=5 H=4 Solver output 
First Step Second Step 

Fixing the G with higher SF Fixing the other G Testing the free values 

g1 u1 1 FS G1 = 1 1 1 

g1 u2 1  1 1 

g1 u3 1  1 1 

g2 u1 0.156 FS G2 = 0.16 0.15 0.3 

g2 u2 0.156  0.15 0 

The results were compared with the values of [1]. The OF value found in this article (51745 m³/s) is 

compatible with the value of 51868.6 m³/s found by [1], with a difference of 0.24% approximately. 

Furthermore, the number of turbines in operation for each time step was the same in both papers. In 

this sense, the results indicate that the methodology can solve the HUCL problem for the case of four 

hydropower plants in cascade. 
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Complementarily, the coherence of the algorithm was evaluated for different operating conditions, with 

the variation of the initial volume of the reservoirs and variation of the generation goals. The Table 5 

presents the cases tested with different percentages of initial volume in relation to the useful volume 

and different percentages of target in relation to the base case value. 

Table 5. Tests Considered for Algorithm Validation 

Generation 

goal 

 Initial volume of reservoirs 

30% 40% 50% 60% 70% 

50% Case 1a Case 1b Case 1c Case 1d Case 1e 

100% Case 2a Case 2b Case 2c Case 2d Case 2e 

105% Case 3a Case 3b Case 3c Case 3d Case 3e 

The results of these tests are compiled in Fig. 1, where the value of the Objective Function is presented 

for each case tested. 

 
Figure 1. Algorithm results for different initial conditions 

By observing Fig. 1, it is possible to see that the algorithm can represent the expected behavior for the 

system. For example, when the upstream reservoir level decreases, the flow requirement increases to 

ensure the same generation goal. This occurs because, with a smaller head, it is necessary to increase 

the turbined flow to obtain the same power. On the other hand, reducing the generation target, the 

turbined flow also decreases. With less need for generation, there is, consequently, less need to turbine 

water. 

Finally, it is worth noting that the structure of the algorithm allows testing slight changes in the model's 

considerations, which incurs in the possibility of continuing the work from some alternatives. 

 

5. CONCLUSIONS 

The approach proposed from Constructive Heuristics solves a simple problem previously postulated in 

the literature. The design of the proposal is related to the definition of the main restrictions for solving 

the problem. 
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The methodology is not guaranteed to be the most efficient or effective in the search for the global 

minimum, however it allows the monitoring, by the algorithm, of the search for the minimum value 

based on the Sensitivity Factors. In this sense, other Sensitivity Factors and other sets can be included to 

complement the optimization monitoring. 

Finally, it is highlighted that the use of algorithms based on sets with the activation of NLP solvers and 

support of Constructive Heuristics is a promising approach to deal with complex optimization problems 

such as those observed in the electricity sector. The construction of the problem and the solution 

strategy are key factors for the success of the analysis. 
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