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ABSTRACT
Residual analysis is often used to evaluate the precision of the parameter estimates of econometric models. Analysis of residuals
from regression is an important way of assessing the performance of a regression model in achieving the goal of accounting for
the independent variable under the underlying assumption. With the Monte Carlo Simulation (MCS) of a data set of sample size
40 over varied replications R = 20, 50, 100 and 150, we used residual analysis to study the relative performance of six estimators
of a simultaneous equation model under varied multicollinearity conditions. We found that the two-stage least squares (2SLS),
Limited Information Maximum Likelihood (LIML), and Three-Stage Least Squares (3SLS) estimators generated virtually similar
estimates. This is in agreement with the theory. In addition, the results revealed that notwithstanding the level of multicollinearity,
Ordinary Least Squares (OLS), followed by Indirect Least Squares (ILS), produced the lowest Sum of Squared Residuals (SSR)
of parameter estimates, an indication of the robustness of OLS in the presence of multicollinearity. This result also showed that
the single equation estimators (OLS and ILS) performed better than the system estimators under the condition of multicollinearity
to which we subjected our model. Furthermore, the Sum of Squared Residuals (SSR) generated for cases of low multicollinearity
are lower than those generated for cases of high multicollinearity.

Keywords: Residual Analysis, Simultaneous Equation Model, Monte Carlo Simulation, Estimators, Multicollinearity, Replica-
tions.

Introduction

Using the Monte Carlo Simulation framework proposed by Oduntan and Iyaniwura (2021), this paper applied a residual analysis
based on the Sum of Squared Residuals (SSR) criteria to examine the performance of 6 estimators vis-à-vis, Full Information
Maximum Likelihood [FIMF], Limited Information Maximum Likelihood [LIMF], Two-Stage Least Squares [2SLS], Three-Stage
Least Squares [3SLS], Indirect Least Squares [ILS], and Ordinary Least Squares [OLS], in the presence of multicollinearity. The
results show that OLS produced the lowest Sum of Squared Residuals (SSR), which is an indication of the robustness of OLS in
the presence of multicollinearity.

Analysis of residuals from regression is an important way of assessing the performance of a regression model in achieving
the goal of accounting for the independent variable under the underlying assumption. All residuals are expected to be small and
unstructured. Structured residual or those that are non-random sheds a "bad light" on the regression. Most problems that are
associated with the appointment of variables into the model as well as a choice of model estimator will turn up in the residuals.
Model diagnostics is an integral part of model determination, and an important part of the model diagnostics is residual analysis
(Farias and Branco, 2012). Analysis of the residuals plays an important role in validating the regression model. It is a powerful
diagnostic tool, as it helps in assessing whether or not some underlying assumptions of regression have been violated. These
violations may take a toll on the appropriateness of the model estimators. Residual analysis can be used as a powerful tool in
model improvement (Zhuang, 2006)

Graphical and numerical analysis of residuals can be informative about model misspecification even when data are censored or
grouped.(Chesher and Irish, 1987). In addition, many applied workers are strongly oriented to residual analysis for assessing model
adequacy (Pagan and Hall, 1983). Using a normal linear model, Chesher and Irish (1987) developed procedures for calculating
diagnostic statistics to detect model misspecification when grouped or censored data are analysed. Jalilian and Vahidi-Asl (2011),
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in their study on the use of residual analysis for inhomogeneous Neyman-Scott models, stated that ‘residual analysis method has
a good performance in assessing goodness-of-fit and revealing inadequacy of the fitted model’. Baddeley et al. (2005) defined
residuals for point process models fitted to spatial point pattern data and proposed diagnostic plots based on them. They observed
that ‘a plot of smoothed residuals against spatial location, or against a spatial covariate, is effective in diagnosing spatial trend or
covariate effects’.

In the literature, many studies used residuals of parameter estimates from regression to assess the performance of the regression
model in achieving the goal of accounting for the independent variable under the underlying assumption. Some of these studies
are as follows: Albert and Chib (1995), Farias and Branco (2012), Ogata (1988), Pagan and Hall (1983), Schoenberg (2003),
Clements, et al. (2011), Ardalani-Farsa, et al. (2010), Chaloner and Brant (1988) and Chaloner (1991).

Based on the expectation that the residuals should be small, in this paper, we conducted a numerical analysis of the residuals of
our parameter estimates to examine the performance of our estimators in the presence of multicollinearity using the Monte Carlo
Simulation (MCS). In section 2, we present the theoretical framework and empirical strategy of the study. Section 3 presents our
results and discussions, while section 4 provides the conclusion of the study.

Materials and Methods

Theoretical Framework

Let

𝑌 = 𝐹 (𝑋, 𝜙) + 𝑚𝑢 (1)

where μ ∼ 𝑁 (0, 𝜎2) satisfies the classical least squares assumptions.

Assign numerical values to 𝜙,and 𝜎2. On the basis 𝜎2, select normal deviates to be used in generating μ. Select a random
sample of size T for X and compute the numerical values of F(X,𝜙). Obtain vector Y by computing F(X,𝜙) + μ. Lastly, regress Y
on X to generate 𝜙

With the same sample size, repeat this process to facilitate the construction of the sampling distribution of (𝜙) and to investigate
the stability of the results. We then evaluate the precision of 𝜙 and make further evaluation of the efficiency of different estimators
of 𝜙, using the empirical distribution obtained.

Furthermore, as is well known, the OLS estimator 𝜙 of 𝜙 is the minimizer of

𝑄 =
∑︁
𝑖

(𝑦𝑖 − 𝑋𝜙)2

Hence, the residual from the model can be expressed as;

𝜀𝑖 = (𝑦 − 𝑋𝜙)

Using the Sum of Squared Residuals (SSR) criteria for the comparative analysis of the performance of different estimators on
the basis of the residuals generated by each estimator, the estimator with the least SSR is ranked best among the others.

The Empirical Strategy

Adopting the Monte Carlo simulation strategy of Oduntan and Iyaniwura (2021), we assumed the model

𝑦1𝑡 = 𝛽12𝑦2𝑡 + 𝛾11𝑋1𝑡 + 𝛾12𝑋2𝑡 + 𝑢1𝑡

𝑦2𝑡 = 𝛽21𝑦1𝑡 + 𝛾22𝑋2𝑡 + 𝛾23𝑋3𝑡 + 𝑢2𝑡
(2)

where

y’s are endogenous variables
x’s are exogenous variables
u’s are disturbance terms
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In the matrix form, equation 2 becomes

𝑌 = 𝑋𝜙 + 𝑢

where

𝑌 = [𝑦1𝑦2], 𝑋 = [1 1 1 𝑋1𝑋2𝑋3 1 1 1 ] 𝜙 = [𝛽1𝛽2𝛾1𝛾2𝛾3]
𝑢 = [𝑢1𝑢2]

where u ∼ 𝑁(0,𝜎2 ) satisfies the classical least squares assumptions.

We generated our data series as follows:

1. Set sample size = 40, for the purpose of this study. Arbitrarily assigned the following numerical values to the model’s
structural parameters.

2. Arbitrarily assigned the following numerical values to the model’s structural parameters.
𝛽12 = 1.8, 𝛾11 = 1.2, 𝛾12 = 0.6
𝛽21 = 0.4, 𝛾22 = 0.5, 𝛾23 = 1.4

(3)

3. Assign arbitrary values to the elements of the variance-covariance matrix of the disturbance terms at any given sample point.

Ω = [4.5 3.0 3.0 3.5] (4)

4. Select the values of the predetermined variables 𝑋1𝑡 , 𝑋2𝑡 and 𝑋3𝑡 from a pool of uniformly distributed random numbers with
the correlation coefficients 𝑟 (𝑥1𝑥2 ) , 𝑟 (𝑥2𝑥3 ) and 𝑟 (𝑥1𝑥3 ) defined as; (a) Low multicollinearity - insignificant at the 5(b) High
multicollinearity - significant at the 1This results in six sets of 𝑋 ′ s defined as 𝑟 (𝑥1𝑥2 ) ,𝑟 (𝑥2𝑥3 ) and 𝑟 (𝑥1𝑥3 ) : Low Multicollinearity
𝑟 (𝑥1𝑥2 ) ,𝑟 (𝑥2𝑥3 ) and 𝑟 (𝑥1𝑥3 ) : High Multicollinearity

5. From a Normal (0,1) distribution, generate the values of 𝑈1𝑡 and 𝑈2𝑡 for each sample point using the following two-step
procedure:
(a) Draw independent series 𝜀𝑡 of random normal deviates ∼ N(0,1) from a pool of random normal deviates.
(b) Transform the generated series into a series of random disturbances to guarantee conformity with the variance-covariance
matrix Ω using the method presented by Nagar (1969) as described below:
Oduntan and Iyaniwura (2021), further define a positive definite matrix Σ such that

Σ = 𝑃𝑃/ (5)

where P is an upper triangular matrix
Let

𝑃 = (𝑆11𝑆210𝑆22) (6)

Then

𝑆22 = +√𝜎22

𝑆21 =
𝜎12
𝑆22

(7)

𝑆11 = +
√︃
(𝜎11 − 𝑆2

21

We generated the random disturbance series using

𝑢 = 𝑃𝜀𝑡 =

(
𝑢𝑡1
𝑢𝑡2

)
= 𝑃

(
𝜀𝑡1
𝜀𝑡2

)
= (𝑆11 𝑆21 0𝑆22) (𝜀𝑡1 𝜀𝑡2)

(8)
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Hence,
𝑢𝑡1 = 𝑆11𝜀𝑡1 + 𝑆21𝜀𝑡2

𝑢𝑡2 = 𝑆22𝜀𝑡2
(9)

(vi) By reduced form, generate the endogenous variables from the values obtained for the X’s and U’s and the values assigned
to the structural parameters.
Consider the model,

𝑦1𝑡 = 𝛽12𝑦2𝑡 + 𝛾11𝑋1𝑡 + 𝛾1𝑡𝑋2𝑡 + 𝑢1𝑡 𝑦2𝑡 = 𝛽21𝑦1𝑡 + 𝛾21𝑋2𝑡 + 𝛾2𝑡𝑋3𝑡 + 𝑢2𝑡

Rearranging, we have,

𝑦1𝑡 − 𝛽12𝑦2𝑡 − 𝛾11𝑋1𝑡 − 𝛾2𝑡𝑋2𝑡 − 0𝑋3𝑡 = 𝑢1𝑡 − 𝛽21𝑦1𝑡 + 𝑦2𝑡 − 0𝑋1𝑡 − 𝛾21𝑋2𝑡 − 𝛾23𝑋3𝑡 = 𝑢2𝑡
or

𝐵𝑌𝑡 + Γ𝑋𝑡 = 𝑢 (10)
Where, 𝐵 = [1 − 𝛽12 − 𝛽211], Γ = [−𝛾11 − 𝛾1200 − 𝛾21 − 𝛾23],

𝑌𝑡 = [𝑦1𝑡 𝑦2𝑡 ], 𝑋𝑡 = [𝑋1𝑡𝑋2𝑡𝑋3𝑡 ], 𝑢 = [𝑢1𝑡𝑢2𝑡 ]

Rewriting Equation (10), we have

𝑌𝑡 = −𝐵−1Γ𝑋𝑡 + 𝐵−1𝑢

= − 1
1 − 𝛽12𝛽21

[1𝛽21𝛽121] [−𝛾11 − 𝛾1200 − 𝛾21 − 𝛾23] [𝑋1𝑡𝑋2𝑡𝑋3𝑡 ]

+ 1
1 − 𝛽12𝛽21

[1𝛽21𝛽121] [𝑢1𝑡𝑢2𝑡 ]

where 𝐵−1 =
1

(1 − 𝛽12𝛽21
[1𝛽21𝛽121]

(11)

Furthermore,

𝑦1𝑡 =

[
𝛾11

1 − 𝛽12𝛽21

]
𝑋1𝑡 +

[
𝛾12 + 𝛽21𝛽21
1 − 𝛽12𝛽21

]
𝑋2𝑡 +

[
𝛽12𝛽23

1 − 𝛽12𝛽21
]𝑋3𝑡 +

[
𝜀1𝑡 + 𝛽21𝑢2𝑡
1 − 𝛽12𝛽21

]
𝑦2𝑡 =

[
𝛾11𝛽21

1 − 𝛽12𝛽21

]
𝑋1𝑡 +

[
𝛾11 + 𝛽21𝛾21
1 − 𝛽12𝛽21

]
𝑋2𝑡 +

[
𝛾23

1 − 𝛽12𝛽21
𝑋3𝑡

]
+
[
𝛽12𝑢1𝑡 + 𝑢1𝑡 )
1 − 𝛽12𝛽21

] (12)

We used equation 12 to produce the values of the dependent variables at each sample point.
6. The procedure described above is repeated over replications R = 20, 50, 100, 150, and
7. (viii) With the generated data sets for 𝑦1𝑡 , 𝑦2𝑡 , 𝑦3𝑡 , 𝑋1𝑡 , 𝑋2𝑡 ,and 𝑋3𝑡 structural parameters were generated using FIML, 3SLS,

LIMF, 2SLS, , ILS, and OLS estimators. (ix) Finally, we obtained the residuals of the estimates for further review and
analysis.

The Estimators

If OLS is applied to an equation in a simultaneous model, there will usually be more than one current endogenous variable in the
relation, and whichever variable is selected as the dependent variable, the remaining endogenous variables that are correlated with
the disturbance term will appear in the equation as explanatory variables. Hence, the OLS will be biased and inconsistent. In the
simultaneous equation models where the special assumptions of a recursive system are not valid, the valid estimating techniques
are ILS, 2SLS, LIML, 3SLS and FIML.

Indirect Least Squares or Reduced-form Methods (ILS): This method of estimation involves the application of the ordinary
least squares to each reduced-form equation of a model. Having obtained the reduced-form estimates in this way, the structural
coefficients were obtained using the algebraic transformation of the relationships between the reduced-form and the structural
coefficients of the model. ILS is a feasible estimation technique for an equation that is just identified.
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Two-Stage Least Squares (2SLS): This is a single-equation method and is probably the most popular for estimating over-
identified models. It is directly applied to the structural models. The objective of the two-stage least squares method is to reduce
the correlation of the explanatory endogenous variables with error terms as much as possible so that the ordinary least squares
method can be appropriately applied to each equation of the structural model. Where there exists exact identifiability, the 2SLS
estimates are identical to the ILS estimates

Limited Information Maximum Likelihood (LIMF): This is a single-equation method that uses the principle of maximum
likelihood. It is a “limited-information” method because it does not make full use of the information provided by the equations of
the model other than those of the particular equation under consideration. The limited information it requires on the other equation
of the model is the specification of the truly exogenous variables that are contained in those other equations. It is an appropriate
method for estimating over-identified models. The LIML estimator has the same asymptotic variance-covariance matrix as 2SLS.
However, the estimates of the asymptotic variances will differ.

Three-Stage Least Squares (3SLS): This method involves the application of the least squares method in three stages. The method
is related to the two-stage least squares method in that the first two stages are similar to those of the two-stage method, while in
the two-stage method, the two stages involve the structural-form equations of the model, and the first two stages of the three-stage
least squares method involve the reduced-form equations of the model. In the third stage of the three-stage least squares method,
the generalised least squares technique is applied to correct for any problem of heteroscedasticity that may arise in the model

Full Information Maximum Likelihood (FIMF): This is a system method based on the principle of maximum likelihood. It
requires a full knowledge of the structure of the equations in the model. It is computationally more expensive than 3SLS as it
involves the solution of non-linear equations. The most practical application of 3SLS and FIML occurs with fairly small models.

Results and Discussion

Our model is exactly identified (by Order and Rank conditions of identification). Hence, the unique estimates of the model are
realisable. Two scenarios of the presence of multicollinearity were considered. Scenario 1 relates to cases where the correlation
among the exogenous variables is significant at the 1% level designated as High Multicollinearity, while Scenario 2 relates to cases
where the correlation among the exogenous variables is insignificant at the 5% level designated as Low Multicollinearity. We
simulated a finite data set of sample size = 40 over replications R = 20, 50, 100 and 150 to evaluate the two cases of multicollinearity
under consideration. The parameter estimates generated from our estimation are highlighted in tables 1 to 4.

Table 1. Average of Parameter Estimates for Sample Size=40 over Replications R=20
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Table 1: Average of Parameter Estimates for 𝑆𝑎𝑚𝑝𝑙𝑒 𝑆𝑖𝑧𝑒 = 40 𝑜𝑣𝑒𝑟 𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑅 = 20  

  Parameter Estimates Equation 1 Parameter Estimates Equation 2 

Estimator Level of 

Multicollinearity 

𝛽ଵଶ 
(1.8) 

𝛾ଵଵ 
(1.2) 

𝛾ଵଶ 
(0.6) 

𝛽ଶଵ 
(0.4) 

𝛾ଶଶ 
(0.5) 

𝛾ଶଷ 
(1.4) 

 Low 0.4880 2.0917 3.7904 1.9980 -2.0296 -12.0598 

OLS High 0.5207 3.3235 1.6274 1.9616 0.1875 -13.4809 

 Low 8.3308 -39.5354 -99.5501 2.01144 -2.1363 -12.1603 

LIML High 1.0153 -1.8051 -4.4980 2.2571 -3.0877 -15.6055 

 Low 8.3308 -39.5354 -99.5501 2.01144 -2.1363 -12.1603 

2SLS High 1.0153 -1.8051 -4.4980 2.2571 -3.0877 -15.6053 

 Low 8.3308 -39.5354 -99.5501 2.01144 -2.1363 -12.1603 

ILS High 1.0153 -1.8051 -4.4980 2.2571 -3.0877 -15.6055 

 Low 8.3308 -141.9700 -101.3660 2.0114 -2.1363 -12.16603 

3SLS High 1.0153 -4.4980 -1.7601 1.8784 0.3502 -12.3540 

 Low -0.5334 4.8014 23.9146 1.33489 2.2288 -2.6684 

FIML High 0.8351 1.2333 -1.7886 2.0405 0.0048 -14.6314 

 

 Table 1 presents the average of the parameter estimates when the sample size is 40 over 20 
Table 1 presents the average of the parameter estimates when the sample size is 40 over 20 replications. A review of the estimates

revealed that of the six estimators considered, LIML, 2SLS and ILS produced identical parameter estimates.

Table 2 presents the average of parameter estimates when the sample size is 40 over 50 replications. A review of the estimates
revealed that of the six estimators considered, LIML and 2SLS produced identical parameter estimates.

Table 3 presents the average of parameter estimates when the sample size is 40 over 100 replications. Here, similar to the case
of 50 replications, LIML and 2SLS produced identical parameter estimates.

Table 4 presents the average of the parameter estimates when the sample size is 40 over 150 replications. Under this scenario, of
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Table 2. Average of Parameter Estimates for Sample Size=40 over Replications R=50
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replications. A review of the estimates revealed that of the six estimators considered, LIML, 2SLS 

and ILS produced identical parameter estimates. 

 
 
 
 
 
 
 
 
 

Table 2:  Average of Parameter Estimates for  𝑆𝑎𝑚𝑝𝑙𝑒 𝑆𝑖𝑧𝑒 = 40 𝑜𝑣𝑒𝑟 𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑅 = 50  
  Parameter- Estimates Equation 1 Parameter Estimates Equation 2 

Estimator Level of 

Multicollinearity 

𝛽ଵଶ 
(1.8) 

𝛾ଵଵ 
(1.2) 

𝛾ଵଶ 
(0.6) 

𝛽ଶଵ 
(0.4) 

𝛾ଶଶ 
(0.5) 

𝛾ଶଷ 
(1.4) 

 Low 0.5045 2.2038 3.3187 1.9785 -1.2544 -12.0612 

OLS High 0.5032 4.0824 1.3123 1.9463 0.2618 -13.2990 

 Low 3.2581 -19.6020 -25.4824 1.8961 -0.9107 -11.5692 

LIML High 1.4652 10.9583 -24.8366 3.9684 -38.1473 -18.3811 

 Low 3.2581 -19.6020 -25.4824 1.8961 -0.9107 -11.5692 

2SLS High 1.4652 10.9583 -24.8366 3.9684 -38.1473 -18.3811 

 Low 2.0035 -0.1073 -2.6265 0.6312 -1.415 2.1547 

ILS High 4.0433 2.3715 -2.2671 0.6342 -39.129 7.3114 

 Low 3.2582 -60.6614 -26.2084 2.0034 -1.4163 -12.801 

3SLS High 1.4652 -24.8340 11.0163 1.9563 0.1316 -13.289 

 Low -19.6766 -194.468 568.2325 45.6193 -195.3530 -748.395 

FIML High 0.5733 8.7574 -3.2427 1.9434 0.3035 -13.4245 

 

Table 2 presents the average of parameter estimates when the sample size is 40 over 50 
replications.  A review of the estimates revealed that of the six estimators considered, LIML and 
2SLS produced identical parameter estimates. 
 
 
 
 
 
 
 
 
 

Table 3. Average of Parameter Estimates for Sample Size=40 over Replications R=100
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Table 3: Average of Parameter Estimates for 𝑆𝑎𝑚𝑝𝑙𝑒 𝑆𝑖𝑧𝑒 = 40 𝑜𝑣𝑒𝑟 𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑅 = 100  
  Parameter Estimates Equation 1 Parameter Estimates Equation 2 

Estimator Level of 
Multicollinearity 

𝛽ଵଶ 
(1.8) 

𝛾ଵଵ 
(1.2) 

𝛾ଵଶ 
(0.6) 

𝛽ଶଵ 
(0.4) 

𝛾ଶଶ 
(0.5) 

𝛾ଶଷ 
(1.4) 

 Low 0.5121 2.3426 2.9612 1.9638 -0.7421 -12.4434 

OLS High 0.5073 3.9340 1.3713 1.9448 0.1395 -13.1436 

 Low 1.6505 -3.4215 -11.9137 2.0076 -0.8488 -13.5513 

LIML High 1.0365 -0.6845 48.8241 3.7157 -23.8199 -24.1025 

 Low 1.6505 -3.4215 -11.9137 2.0076 -0.8488 -13.5513 

2SLS High 1.0365 -0.6845 48.8241 3.7157 -23.8199 -24.1025 

 Low 2.0178 0.2571 -0.7066 0.5208 -0.9126 1.4084 

ILS High 3.6042 0.1563 0.7701 0.6334 -22.1673 5.2065 

 Low 1.6427 -23.9515 -12.2718 2.0593 -1.0705 -14.1672 

3SLS High 1.0366 -4.5398 0.6456 1.9414 0.0316 -12.9156 

 Low -9.4703 -95.3091 298.4402 23.8973 -97.9823 -382.582 

FIML High 0.6691 7.5479 -5.4429 1.9452 0.1703 -13.2548 

 

Table 3 presents the average of parameter estimates when the sample size is 40 over 100 
replications. Here, similar to the case of 50 replications, LIML and 2SLS produced identical 
parameter estimates.   
 
 
 
 
 
 
 
 
 
 

Table 4: Average of Parameter Estimates for  𝑆𝑎𝑚𝑝𝑙𝑒 𝑆𝑖𝑧𝑒 = 40 𝑜𝑣𝑒𝑟 𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑅 = 150  
  Parameter Estimates Equation 1 Parameter Estimates Equation 2 

Estimator Level of 

Multicollinearity 

𝛽
ଵଶ

 

(1.8) 
𝛾

ଵଵ
 

(1.2) 
𝛾

ଵଶ
 

(0.6) 
𝛽

ଶଵ
 

(0.4) 
𝛾

ଶଶ
 

(0.5) 
𝛾

ଶଷ
 

(1.4) 

 Low 0.5155 2.3845 2.8425 2.0237 -0.5955 -12.5358 

OLS High 0.5111 3.7765 1.4361 1.9514 0.1124 -13.2334 

 Low 1.6329 -1.3810 -8.9139 1.9109 -0.3902 -12.6113 

the six estimators considered, only LIML and 2SLS generated identical parameter estimates. In summary, in tables 1 to 4, while
LIML, 2SLS and ILS produced identical estimates over 20 replications, 50 replication appears to be the turning point for ILS as
it dropped off in the production of similar estimates with LIML and 2SLS from 50 replications and above.

Furthermore, in tables 1 to 4, the values in parentheses are the suggested true values of the parameters. We designated the best
estimators as those whose average estimates are closest to the true parameter value. For parameter 𝛽12 whose true value is 1.8, the
best estimates are obtained from OLS for both low and high multicollinearity. Similarly, for parameter 𝛽21 whose true value is 0.4,
the best estimates are obtained from OLS for both low and high multicollinearity. By theory, for an equation that is just identified,
estimates of parameters obtained by 2SLS, LIML, ILS and 3SLS should be identical (Johnston 1991). From our results, 3SLS,
2SLS and LIML produced virtually similar estimates. For our residual analysis, the six estimators we considered were reclassified
into 4 groups vis-à-vis: OLS, ILS, FIML and L23 (for LIML,2SLS and 3SLS).
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Table 4. Average of Parameter Estimates for Sample Size =40 over Replications R=150
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ଵଶ

 whose true value is 1.8, the best estimates are obtained 

from OLS for both low and high multicollinearity. Similarly, for parameter 𝛽
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 whose true value 

is 0.4, the best estimates are obtained from OLS for both low and high multicollinearity. By theory, 

for an equation that is just identified, estimates of parameters obtained by 2SLS, LIML, ILS and 

3SLS should be identical (Johnston 1991). From our results, 3SLS, 2SLS and LIML produced 

virtually similar estimates.  For our residual analysis, the six estimators we considered were 

reclassified into 4 groups vis-à-vis: OLS, ILS, FIML and L23 (for LIML,2SLS and 3SLS).   

Table 5 highlights the further evaluation of results in tables 1 to 4 using the Sum of Squared Residuals (SSR) of the parameter
estimates. Hence, the performance of the estimators in the presence of multicollinearity was assessed on the basis of the analysis
conducted on the SSR.

Table 5. Sum of Squared Residuals of Parameter Estimates (SSR)
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 Table 4 presents the average of the parameter estimates when the sample size is 40 over 

150 replications. Under this scenario, of the six estimators considered, only LIML and 2SLS 

generated identical parameter estimates. In summary, in tables 1 to 4, while LIML, 2SLS and ILS 

produced identical estimates over 20 replications, 50 replication appears to be the turning point for 

ILS as it dropped off in the production of similar estimates with LIML and 2SLS from 50 

replications and above. 

Furthermore, in tables 1 to 4, the values in parentheses are the suggested true values of the 

parameters. We designated the best estimators as those whose average estimates are closest to the 

true parameter value. For parameter 𝛽
ଵଶ

 whose true value is 1.8, the best estimates are obtained 

from OLS for both low and high multicollinearity. Similarly, for parameter 𝛽
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 whose true value 

is 0.4, the best estimates are obtained from OLS for both low and high multicollinearity. By theory, 

for an equation that is just identified, estimates of parameters obtained by 2SLS, LIML, ILS and 

3SLS should be identical (Johnston 1991). From our results, 3SLS, 2SLS and LIML produced 

virtually similar estimates.  For our residual analysis, the six estimators we considered were 

reclassified into 4 groups vis-à-vis: OLS, ILS, FIML and L23 (for LIML,2SLS and 3SLS).   

From the SSRs in table 5, at both levels of multicollinearity, for the two equations and over all replications, OLS generally
rendered the lowest SSR followed by ILS compared to other estimators. Thus, on the basis of our analysis of the residual, OLS
performed best in all cases compared with other estimators in both equations. However, the SSRs generated for cases of low
multicollinearity are lower than those generated for high multicollinearity. Furthermore, for equation 1, at low multicollinearity,
OLS generated SSR values of 151.55, 170.10, 176.10 and 175.90 for replications R = 20, 50, 100 and 150„ respectively. Hence,
100 replications appear to be the turning point in the performance of OLS at this instance. A similar turning point could not be
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established for OLS in the case of high multicollinearity in equation 1. For equation 2, at low multicollinearity, OLS generated
SSR values of 9.95, 20.51, 30.08 and 30.20 for replications R = 20, 50, 100 and 150, respectively. Hence, for this case, the SSR
progressively increased as the replications increased. Also for equation 2, at high multicollinearity, OLS generated SSR values of
27.64, 37.47, 39.90 and 37.32 for replications R = 20, 50, 100 and 150, respectively, with a turning point at replication R = 100.
Table 6 further highlights the performance of the six estimators on the basis of the SSR of the parameter estimates and also in
terms of the reclassification adopted above (OLS, ILS, FIML and L23 (for LIML,2SLS and 3SLS).

Table 6. Performance of Estimators using the Sum of Squared Residuals (SSR)
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generated identical parameter estimates. In summary, in tables 1 to 4, while LIML, 2SLS and ILS 
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Furthermore, in tables 1 to 4, the values in parentheses are the suggested true values of the 

parameters. We designated the best estimators as those whose average estimates are closest to the 

true parameter value. For parameter 𝛽
ଵଶ

 whose true value is 1.8, the best estimates are obtained 

from OLS for both low and high multicollinearity. Similarly, for parameter 𝛽
ଶଵ

 whose true value 

is 0.4, the best estimates are obtained from OLS for both low and high multicollinearity. By theory, 

for an equation that is just identified, estimates of parameters obtained by 2SLS, LIML, ILS and 

3SLS should be identical (Johnston 1991). From our results, 3SLS, 2SLS and LIML produced 

virtually similar estimates.  For our residual analysis, the six estimators we considered were 

reclassified into 4 groups vis-à-vis: OLS, ILS, FIML and L23 (for LIML,2SLS and 3SLS).   

The estimator that generated the lowest SSR is classified as a Good Performer, while the estimator with the next lowest SSR
is displayed in brackets. Estimators that generated large numerical SSRs are classified as Large SSRs. These results confirm the
superiority of OLS at both levels of multicollinearity for both equations in the model and over the different replications considered.
From table 6 it can be deduced that generally, OLS yielded the lowest SSR followed by ILS, while the system estimators generally
produced a large SSR.

Conclusions

In a Monte Carlo Simulation (MCS) study, we analysed the residuals of our parameter estimates with a view to evaluating the
relative performance of six system estimators (OLS, ILS, 2SLS, 3SLS, LIML and FIML) under varied levels of multicollinearity.
Our simultaneous equation model was estimated with a Monte Carlo simulated data set of sample size 40 over different replications
R = 20, 50, 100 and 150. We found that, in line with theory and as also confirmed by Johnston (1991) for the just identified
equation, the 3SLS, LIML and 2SLS estimators produced virtually identical estimates. For the OLS in equation 1, replication R =
100 appears to be the turning point in the progressive rise of the SSR. The results revealed that irrespective of the magnitude of
multicollinearity, OLS yielded the lowest SSR followed by ILS, while all the system estimators generated large SSRs. This result
indicates the robustness of the OLS in the presence of multicollinearity. Also, the SSRs generated for cases of low multicollinearity
are lower than those generated for cases of high multicollinearity. This is in agreement with the theory on the need to maintain
low multicollinearity in econometric models for the optimal performance of the estimators.
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