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Abstract

An R-module M is said to be (quasi) t-discrete if M is t-lifting and has the property (D,) (respectively, has the
property (D3)), where 7 is a preradical in R — mod. It is shown that: (1) direct summands of a (quasi) T-discrete
module are (quasi) T-discrete; (2) a projective module M is t-discrete if and only if T(M—M) is semisimple and T(M)

M
Soc(M)

is Soc-discrete and Rad (%(M)) is semisimple.

is QSL; (3) if a projective module M is Soc-lifting, then
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T-Ayrik Modiiller Uzerine

Oz

T tiim sol R-modiillerin kategorisinde 6nciil radikal olmak iizere t-yiikseltilebilir ve (D,) 6zelligini saglayan
(strastyla, (D3) 6zelligini saglayan) bir R-modiilii M e (ayrik) T-ayrik denir. Su gosterilmistir: (1) Bir (quasi) -
ayrik modiiliin her direkt toplam terimi (quasi) t-ayriktir; (2) bir projektif M modiiliiniin T-ayrik olmasi igin

gerek ve yeter kosul % nin yaribasit ve t(M) nin QSL olmasidir; (3) bir projektif M modiili Soc-

. S M M "
yiikseltilebilirse, SocUD) Soc-ayriktir ve Rad (W) yaribasittir.
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On t-discrete modules

1. Introduction

In our article, all rings are associative with identity and all modules are unity left modules over
these rings. For a ring R, R — mod denotes the category of all left R-modules. A submodule N
of a module M will be denoted by N < M. A nonzero E < M is called essential in M and written
by E S M if E N F # 0 for every nonzero submodule F of M. We call a module M extending
if it satisfies (C;), that is, its submodules are essential in a direct summand of M as in [5].

We call an extending module M continuous if it satisfies (C,), that is, every submodule
isomorphic to a direct summand of M is a direct summand as in [5].

We call an extending module M quasi continuous if it satisfies (C3), that is, whenever M =
AD®B=C®D and A N C = 0, M has a decomposition M = (ADC)DE as in [5] Since a module
M with (C,) has the property (C3) every continuous module is quasi continuous. Injective
modules are an example of a continuous module.

As a dual notation of an essential submodule of 4, one call a proper submodule S of 4 small in
M and denoted by S < M if S+X is not M for every proper submodule X<M. With the notation
of immediately extending modules, lifting modules are defined as: M is lifting if it satisfies

(D;) For any A<M, we can write M = A; @ L, A; < A and A N L K L for submodules
Ay, L of M.

We call a lifting module M quasi-discrete if it satisfies
(D) IfA<M with% = B and M = B®C, we can write M =A®A’.

We call a lifting module M discrete if it satisfies

(D3) Whenever M = A®B, M = C®D and M = A + C, M has a decomposition M =
(AnC)DE.

The modules that provide quasi-projective and the property (D,) are coincide. Since a module
M with (D,) provides (D3), quasi-discrete modules are a generalization of discrete modules. It
is obvious that (quasi) discrete modules are a dual notion of (quasi) continuous modules.
Although injective modules are continuous, a projective module usually does not have to be
discrete. Hollow modules (that is, its proper submodules are small) are quasi-discrete. The
family of (quasi-) discrete modules are extensively studied by researchers. A module M has
the property P* if for every submodule A of M M has the decomposition M = A’@B such that

A" < Aand % < Rad (%) for some submodules A" and B of M. Every lifting module has the

property P*. Also, a finitely generated module with the property P is lifting. In general, a
module with the property P* need not be lifting. For example, consider the left Z-module M =

7Q. Since radical modules have the property P*, M has the property P*. On the other hand, M
is not lifting.
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In recent years, types of lifting modules have been defined and studied in R—mod with the help
of preradicals. A functor t from the category R — mod to itself is said to be preradical if it
provides the following properties:

(1) (M) <M , where M € R — mod;
(2) If f:M — M' is homomorphism, then f(t(M)) S (M) and 7(f) is the restriction of
to t(M").
A preradical T for R — mod is called exact if for N<M t©(N) = N n (M), and it is called

radical lfT( (M)) 0.

Rad(M) and Soc(M) denote the radical, socle of a module M, respectively. Rad and § are radical
in R—mod, and Soc is an exact preradical in R — mod.

Let 7 be a preradical in R — mod. Following [1, 2.8 and 2.9], we call M t-/ifting if for any
N<M, we can write M = A@B withA S Nand NN B < t(B) for 4, B<M. In[l1], fort =
Rad, M is Rad-lifting if and only if M has the property P". Lifting modules are an example of
Rad-lifting modules. It is shown in [1, 2.10 (2)] that whenever M = A®B is a 7-lifting module,
so does 4.

2. Preliminaries

Let R be a ring and t be a preradical in R — mod. In our study, we introduce the concept of
(quasi) t-discrete modules. We obtain some properties of such modules. In particular, we show
that direct summands of a (quasi) T-discrete module are (quasi) t-discrete. Moreover, we prove

that a projective module M is t-discrete if and only if % is semisimple and T (M) is QSL. Also,

we show that if a projective module M is Soc-lifting, = M__is Soc-discrete and Rad(

o) so (M)) 15

semisimple.
3. Main Theorem and Proof
In this section, we study on (quasi) t-discrete modules.

Definition 3.1 A module M is called t-discrete (respectively, quasi t-discrete) if M is t-lifting
with (D,) (respectively, (D3)).

Theorem 3.2 Given a (quasi) T-discrete module M = N@N'. Then N is (quasi) discrete.

Proof. By [9, 2.10.(2)], we obtain that N is t-lifting. Hence N is (quasi) t-discrete by [5, Lemma
4.6].

Given modules U <X. In [6], U is said to be strongly lifting in X provided whenever % =

AJr—UEBﬂ, we can write M = Z&T where Z < 4, Z;U and 22 = T;U. Alkan [3]
generalizes the definition; U is called quasi strongly Ilftlng (OSL) in X if Wheneverg = A+—U EB =

we can write X = Z@T,Z €4 and Z+ U= A4 + U. Observe from [3, Lemma 3.5] that 1f a
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module M is t-lifting, then t(M) is QSL. Using this fact we obtain that a characterization of
(quasi) t-discrete modules.

Proposition 3.3 Let M be a module with (D,) (respectively, (D3)). Then the following
statements are equivalent:

(1) it is (quasi) t-discrete,
(2) it is T-supplemented and 7(M) is QSL.
3) % is semisimple with OSL t(M).

Proof. By Lemma 3.5 and Proposition 3.6 in [3].
Corollary 3.4 A projective module M is t-discrete if and only if %M) is semisimple and (M)
is QSL.
Proof. Since projective modules are (D,), it follows from Proposition 3.3.

Given a module E. We call E (quasi) Rad-discrete if E has the property P* and (D>)
(respectively, has the property P* and (D3)) as in [7].

Lemma 3.5 A projective M is Rad-discrete if and only if M is semilocal and Rad (M) is QSL.
Proof. The proof follows from Corollary 3.4.
Theorem 3.6 The following statements are equivalent for a ring R:

(1) R is semiperfect;
(2) R is Rad-discrete;
(3) R has the property (P*);
(4) R is Rad-®-supplemented;
(5) R is semilocal and Rad(R) is QSL.
Proof. (1)=(2)=(3)=(4)=(1) By [7, Corollary 2.10].

(1)e(5) It follows from Corollary 3.4.

Follows from [6, Theorem 10], the socle Soc( zgR) of a ring R is strongly lifting. Using this fact
we characterize Soc-discrete rings in the following.

R

Proposition 3.7 A ring R is Soc-discrete if and only if is semisimple.

Soc(gR)
Proof. By Corollary 3.4 and [6, Theorem 10].
Given a module E. We call E t-torsion free if T(E) = 0.

Proposition 3.8 Let M be a t-torsion free module. If it is quasi t-discrete, it is semisimple.
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Proof. Let N < M. By assumption, we can write M = A@B with A < N and N N B € ©(B).
Since M is t-torsion free, we can writte NN B S 7(B) S t(M) =0andsoN=NNB =A@
(N n B) = A, as required.

Recall from [2] that a submodule Z of a module E is a -—supplement of some submodule 7<M
provided Z+TisMand ZN T S 7 (Z).

Theorem 3.9 Let 7 be an exact preradical and let M be a t-lifting module and V be t-supplement
in M. Then V is t-lifting.

Proof. Let N < V. Since M is t-lifting, we can write M = A@ B, A< N and N N B € ©(B).
By the modularity, we can write V is A@(V N B), and clearly, NN (V N B) = NN B < t(B).
Since 7 is an exact preradical in R-Mod, we can write T(V N B) isV N t(B). Now NNB <
V nt(B)is t(V N B). It means that V is 7-lifting.

Corollary 3.10 Let 7 be an exact preradical in R — Mod and M be a uniform R-module. If M
is T-lifting, then every t-supplement submodule ¥ of M is quasi 7-discrete.

Proof. By Theorem 3.9, we obtain that V is z-lifting. Since uniform modules have the property
(D3), we get that V is quasi t-discrete.

Proposition 3.10 Let 7 be a radical in R — Mod and M be a (quasi) t-discrete module with
small T(M). Then (M) = Rad (M) and it is (quasi) discrete.

Proof. By [2, 2.10 (1)], we obtain that Rad (M) < t(M). Since t(M) K M, t(M) = Rad(M)
is small in M. So M is lifting. Hence it is (quasi) discrete.

A module E is called -forsion if E=1(E). For example, semisimple modules are Soc-torsion,
radical modules are Rad-torsion, and projective semisimple modules are §-torsion.

Lemma 3.11 Suppose that M is a t-lifting module. If N < M is t-torsion, % is T-lifting.

Proof. Let N <A< M. Then we can write M = A’@B, A’<A and ANnB < t(B) for
submodules A, B < M. It follows that %z AT+N+% and 224N ¢ T(B;N). Since N is t-

. . A'+N
torsion, we can write N

)0 (5%) = 0. Thus 7 is 7-lifting.

Theorem 3.12 Suppose that N is a T-torsion submodule of a projective module M. If M is t-

lifting, % is T-discrete.

Proof. Since M is a projective module and N is t-torsion, % has the property (D,). Applying

Lemma 3.11, we deduce that % is T-discrete.
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M

1s Soc-discrete and its
Soc(M)

Corollary 3.13 If M is a projective and Soc-lifting module, then

radical is semisimple.

M
Soc(M)

Proof. Following Theorem 3.12, we get that is Soc-discrete. Also, applying [2, 2.10 (1)],

M

Rad(Soc(M)

) is semisimple. This completes the proof.

4. Conclusion

In this article, we introduce the concept of (quasi) t-discrete modules and investigate the basic
properties of these modules by preradicals in R — mod, where R is an associative ring with
identity. We characterize projective t-discrete modules. We show that if a module is 7-lifting,

then its factor modules by 7-torsion submodules are t-lifting. We prove that if a projective
M

Soc(M)

module M is Soc-lifting, then is Soc-discrete and its radical is semisimple
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