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Abstract : In this article, an Iterated Modified Tabu Search (IMTS) approach is presented by improving
certain aspects of general Tabu Search to enhance the approximation of the Equitable coloring problem (ECP)
problem for a real-world problem of scheduling the ICC Cricket World Cup tournament. The proposed IMTS
introduces new point generation mechanisms and parameter updating rules to achieve this objective of the
tournament schedule. The IMTS algorithm defines different k-ECP instances and utilizes the search process
to determine the optimal solution for an instance of k-ECP by estimating the minimum k-coloring value. An
illustration of resolving the Cricket World Cup tournament scheduling problem using the proposed IMTS
algorithm is provided. Also, an assessment of the IMTS is also performed on a commonly used benchmark
instance. Both the results illustrate that the IMTS provided comparatively better solutions with high quality
and computational efficiency.

Keywords : Computational Efficiency, Cricket World Cup, Equitable Coloring Problem, Iterated Modified
Tabu Search, Scheduling Problem

1 Introduction
The Equitable Coloring Problem (ECP), a specialized variant of the general graph coloring problem, incorporates an essential
equity constraint: the disparity in size between any two random color classes must not exceed one unit. Real-world problems like
scheduling can be modelled as ECP for finding equitable chromatic number and resolved efficiently by avoiding incompatible
allocation of tasks or timings. However, the additional condition of ECP makes it NP-hard problem and difficult to solve
especially for problems with large-sized instances. Hence for solving the NP-complete problem and finding equitable chromatic
number of large-sized graph, the heuristics and search algorithms have been introduced. Tabu Search algorithm emerges as a
prominent choice, applied extensively for solving ECP to automatically compute the k-chromatic number. However, studies
indicate that, the Tabu Search algorithm increases time complexity particularly when confronted for larger graphs.

Graphs are discrete structures containing vertices connected via edges which are employed in all domains as abstract models
for analysis and illustration of real-world processes and problems [1], [2]. The relations between the entities in most domains
like bonds between atoms and elements in chemistry, work scheduling, bonds in DNA, etc. are more effectively illustrated
in the graphs [3]. This leads to active graph analysis tasks that can be formulated into problems and resolved using strategic
techniques and algorithms. Among all the challenges, scheduling quandaries encompass a universal classification involving
allocation predicaments, transcending domain boundaries and necessitating adept solutions. Graph coloring problem (GCP)
[4] is one such method to formulate the scheduling problems based on graph theory. The fundamental aim of GCP lies in
the allocation of colors to nodes within a graph, ensuring that neighboring nodes connected by an edge remain distinct in
coloration. Programming system tasks and the arrangement of objects often exhibit seamless compatibility with the principles of
the Graph Coloring Problem (GCP) [5]. Nonetheless, this approach encounters constraints when addressing specific scheduling
complexities, such as the equitable distribution of workloads among workers or the appropriate allocation of time to clients.
In these instances, the challenge lies in avoiding scenarios where a biased distribution emerges one worker burdened with an
excessive workload while another is assigned significantly fewer tasks, owing to an uneven allocation strategy. To overcome
these issues, the ECP [6] is formulated as a variant of GCP. An equitable k-coloring of an undirected graph are partitions of
its nodes into k disjoint independent sets where the colors of two independent sets vary maximum by one. In simple terms, an
equitable coloring with k colors is a conflict-free coloring with k colors, if it fulfills the equitable coloring conditions [7]. As a
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variant of the GCP, the ECP apprehends defining a minimum k called as equitable chromatic number. Leveraging the framework
of ECP, an abundance of challenges can be proficiently tackled using equitable scheduling strategies [8].

Round-robin sports tournament scheduling is one of the problems that can be resolved automatically using the ECP
formulation. Round-robin sports timetables are pivotal in any multi-team tournament, including the World Cup Football
tournaments and related domestic leagues, Olympic Games, Cricket World Cups and country-based cricket leagues especially
the most popular Premier League Cricket tournaments and almost all multi-player and multi-team tournaments [9]. The round-
robin scheduling includes n teams and constraint of all teams playing remaining teams precisely m times with a pre-determined
number of rounds. Towards the end of the scheduled phases, the teams with higher points or most wins will advance to the
next rounds. The two types of schedules in round robin are single round robins where two teams meet only once and double
round robins where two teams meet twice before the end of the schedule. The major scheduling problem in these tournaments
encompasses the traveling tournament problem and the availability of teams at specified times [10]. ECP conceptualizes round-
robin scheduling as graph-based problems and tackles them using search-based algorithms.

However, ECP is a NP-complete problem (NP-hard and NP combined together) which renders its resolution more intricate.
Many heuristic algorithms have been used to resolve ECP amongwhich Tabu search is themost prevalent algorithm. In this paper,
the ICC Cricket World Cup 2019 tournament scheduling problem is analysed and modeled as ECP. The Iterated Modified Tabu
Search (IMTS) Algorithm is proposed, aiming to mitigate the time complexity associated with solving ECP. The proposed IMTS
is an enhanced version of the Tabu search process whose new solution-generating process and updating of search parameters
are improved to provide an efficient approximation. The subsequent sections are structured as follows: Section 2 provides a
succinct overview of recent related research; Section 3 delineates the proposed approach for ECP resolution, while the Section
4 demonstrates its practical application in real-world scheduling scenarios. Section 5 presents the evaluation results, and finally,
Section 6 encapsulates the conclusions drawn from the study.

2 Related Works
Due to its profound relevance across multiple studies, a multitude of research endeavours has been steadfastly directed towards
the identification of efficient solutions for the ECP, with a parallel emphasis on their practical integration into real-world
applications. Yan et al. [11] presented an innovative approach to equitable coloring of Cartesian products using balanced
comprehensive manifold graphs. This approach utilizes the balancing factor to connect the graph based on the equity constraints
of ECP. Bahiense et al. [12] offered a branch-and-cut approach for the ECP based on inter-programming representatives. This
approach uses a primitive heuristic, splitting tactics and the first branch-and-cut strategy and enhances solutions for the ECP,
exhibiting an improved average relative gap.

DSATUR, a pivotal graph colo‘ring algorithm devised by mathematician Daniel Brélaz and rooted in the principles of the
greedy algorithm, stands as a cornerstone in this domain. Its extensive utilization for effectively addressing the challenges
posed by the ECP underscores its significance. San Segundo [13] proposed a new DSATUR approach for precise vertex
coloring problems by maximizing the saturation point to choose a new nominee vertex to color. Notably, it is one of the
proficient solutions for any ECP approximation. Méndez-Díaz et al. [14] proposed a polyhedral approach associated with a
0,1-integer program design for ECP. Méndez-Díaz et al. [15] developed an exact DSatur-based algorithm with novel pruning
procedures precisely developed from ECP constraints. Further expanding on this foundation, Méndez-Díaz et al. [16] also
introduced an advanced pruning measure from equity constraints based on the popular DSATUR approach. This approach
exploited arithmetical properties essential in equitable coloring and associated them with the methods of DSatur to provide an
effective approximation. Though DSatur is widely recognized to provide better coloring than greedy algorithms, it falls short
in comparison to the Recursive Largest First algorithm. This leads to the search for advanced DSatur and other algorithms for
solving ECP.

Recent research has employed the heuristic algorithm for solving the NP-hard problem of the ECP. The profound and
efficacious algorithm is the Tabu Search-based heuristic projected by Méndez-Díaz et al. [17] which uses a new local search
criterion. This approach utilized the dynamic Tabu version of previous research to improve the ECP approximation. Wang et al.
[18] proposed a hybrid Tabu search algorithm with feasible and infeasible searches for ECP. The process substitutes a possible
local search where the search centers on the most applicable and practicable solutions and an infeasible local search where an
organized exploration of solutions is acceptable by comforting the equity constraint. The hybrid Tabu search algorithm provided
satisfactory performance on common benchmark instances.

Lai et al. [19] suggested a solution to the ECP using backtracking based iterated Tabu search in which the approximation of
the ECP is performed with different fixed k values. The iterated Tabu search determines the k-coloring while the backtracking
system adjusts k to an appropriate value and the binary search determines a good initial k value. The experimental analysis
on common benchmark instances showed that this approach resulted in a better approximation of ECP than existing heuristic
methods. Sun et al. [20] proposed a memetic search process that utilizes a backbone-based crossover operator, a 2-phase Tabu
search strategy to resolve NP-hard ECP. Among the heuristic algorithms, the Tabu search based algorithms provide better
colorings for ECP and also significantly reduce the complexity. However, as the scale of instances escalates to larger proportions,
132 ECJSE Volume 11, 2024



Iterated Modified Tabu Search based Equitable Coloring...

these algorithms tend to exhibit heightened time complexities. Hence, this study acknowledges these challenges as focal research
issues and introduces IMTS algorithm for overcoming those limitations in resolving the ECP effectively.

3 Iterated Modified Tabu Search Algorithm for the ECP
The proposed IMTS operates in a solution space where the equity conditions is fulfilled and only the conditions of graph coloring
may be ignored. The k-ECP can be resolved by determining the solutions even after k+1 and continuing with k-1, k-2,. . . until
the solution is found [21]. The iterative process of IMTS results to obtain optimal k-coloring with k∈ k*-1,k*-2,. . . ,k*-m where
k* has receiving the minimum number of equitable k* colors and m is a back tracking depth parameter such that m>1. The
algorithm of the complete solution finding approach using IMTS is given as follows:

Algorithm 1 Proposed approach using IMTS algorithm for ECP

Require: Graph G = (V ,E), the number of colors k , the perturbation parameter β, the depth of tabu search α
Ensure: The best number of colors k∗ and an equitable k∗-coloring solution s∗

1: kr , sr are initial k and s values determined by binary search (BS)
2: (kr , sr)← BS(V ,E, α)
3: Update best results k∗ ← kr , k ← kr , s∗ ← sr

4: repeat
5: if k = k∗ − 1 or k = 2 then
6: k ← k∗ − 1
7: else
8: k ← k − 1
9: end if
10: Resolving equivalent k-ECP using IMTS, s← IMTS(k,G, α, β)
11: if f (s) = 0 then
12: k∗ ← k
13: s∗ ← s
14: end if
15: until Time T ≥ Tmax

16: return k∗ and s∗

Algorithm 1 consists of threemain processes: binary search to set an appropriate initial k value (kr), backtrackingmechanism
to set k for IMTS and finally using IMTS for solving the k-ECP and updating k∗. The proposed IMTS approach for ECP
terminates once the time reaches maximum limit even if the solution is not found. At this stage, the smallest number k∗ obtained
in the final step is considered as the approximate solution for the ECP.

For a given k-ECP, the IMTS initially searches the solution space where all possible k-classes assuring the equity constraint.
Ωk is the search space which is formulated as

Ωk = {C : ||Vi| − |Vj|| ≤ 1; i ̸= j} (1)

where C is the k-classes denoted as C = {V1,V2, · · · ,Vk} and i ≤ 1, j ≤ k are the instances. The whole search space Ω is
exploited by th e IMTS as given by

Ω =

n⋃
k=1

Ωk (2)

In this equation, the k-classes of the search space guarantee the equity constraint but the coloring constraint is not guaranteed
and might result in adjacent vertices getting the same color [22], [23]. Hence it becomes important to estimate the quality of the
k-class solution candidate. For achieving this objective, the IMTS familiarizes an evaluation function f (s)) by totalling the sum
of all conflicting edges in a k-class solution. Assigning s = {V1,V2, · · · ,Vk} as the k-class equity in Ω, the evaluation function
is given as.

f (s) = ΣVi,Vj∈Eδ (i, j) (3)

where,

δ (i, j) =

{
1 if E ∈ {1, 2, · · · , k}
0 otherwise

(4)
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The selected k-class solution is considered ideally equitable k-coloring satisfying both the equity and coloring constraints
only when the s ∈ Ω and f (s) = 0. This solution is considered ideal since the search process of IMTS filters between the
available k-class solutions by attaining the optimal solution with evaluation f (s) = 0, thus resulting in effecting transitioning
of solutions for k-ECP.

3.1 IMTS procedure for k-ECP

The proposed IMTS procedure includes the process of initialization and the process of applying the modified tabu search for
obtaining the mandatory solution. This process is repeated for n iterations and the perturbation operator is used by IMTS to
modify the mandatory solution to obtain new mandatory solution. This solution will be considered mandatory until the better
solution is produced in other iterations. This iterated process of the modified search process will eliminate the conflicting
solutions and results in optimal equitable k-coloring solution until β number of consecutive perturbations. Algorithm 2 shows
the IMTS procedure for k-ECP. This algorithm determines the best mandatory solution based on the evaluation function f (s).

Algorithm 2 IMTS procedure for k-ECP

Require: Graph G = (V ,E), k , β, α
Ensure: The best solution s
1: Initializing s← Solution(V ,E, k)
2: Applying s← Modified Tabu Search(s, α)
3: Consecutive perturbation counter d ← 0 for unchanged s
4: repeat
5: s′ ← Perturbation Operator(s)
6: s′′ ← Modified Tabu Search(s′, α)
7: if f (s′′) < f (s) then
8: s← s′′

9: d ← 0
10: else
11: d ← d + 1
12: end if
13: until d = β or f (s) = 0
14: return s

Step 3 of Algorithm 2 presents the initialization process. The sole purpose of the solution initialization process will be
to generate an initial solution with fewer conflicts. Algorithm 3 presents the solution initialization process. Let U be the list
of unassigned vertex nodes and v is the randomly selected vertex. The set of neighbors of v in Vi is given by Γi (v). This
initialization process is performed by randomly selecting the vertices and assigning them with the suitable k color classes. After
the completion of the assigning processes, the remaining vertices are categorized as unassigned vectors and are assigned to one
of the existing k-color class based on the greedy approach.

Algorithm 3 Solution initialization of IMTS

Require: Graph G = (V ,E), k
Ensure: k-class candidate for ECP
1: for i ∈ [1, k] do
2: Vi ← ∅
3: end for
4: Set of unassigned vertices U ← V
5: for i ∈ [1, k] do
6: Select a vertex v randomly from V
7: Vi ← Vi ∪ {v}, U ← U \ {v}
8: end for
9: i← 1
10: while U ̸= φ do
11: v← arg min{|Γi(v)| : v ∈ U}
12: Vi ← Vi ∪ {v}, U ← U \ {v}
13: i← 1 + (i mod k)
14: end while

The preliminary process of setting the solutions is performed by defining the initial value of i as 1 and i-th color class Vi as
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the initial class. This initial color class is assigned with the unassigned vertex v that has the smallest number of neighbors in Vi.
This random assigning process is continued by setting i← 1+ i modk , and repeating the steps again for all other vertices. After
assigning color classes to all vertices, the newer solution is saved and the optimal solution is determined by the modified Tabu
search process presented in steps 4 and 8 in Algorithm 2.

3.2 Modified Tabu Search Algorithm
The modified Tabu search is achieved by improving the new point generation mechanisms and parameter updating rules of the
basic Tabu search [24]. Themain purpose ofmodifying the basic Tabu search is to guarantee the best balance between exploration
and exploitation searches and improve the convergence rate such that the algorithm does not end up in the local optimum. The
entire search process of the Tabu search consists of the intensification, diversification and refinement phases. The intensification
phase initializes the search to quickly obtain optimal point. The diversification phase exploits the unknown spaces for better
optimal points while the refinement phase filters the obtained best points and selects the global optimum solution. As defined
above, the intensification and refinement phases searches for optimal solution among the available points while diversification
phase generates new solutions for the other phases. To improve this process, the Gaussian probability density function (pdf) is
used in the modified Tabu search. The main constraint for generating new solutions is that the 68−95−99.7 rule, which defines
that 68% of the points obtained from a Gaussian distribution are inside one standard deviation from the mean value, while 95%
of the points are within two and 99.7% are within three standard deviations. This constraint is satisfied by generating new points
in a relatively small neighbor of the specific point. Similarly for diversification phase, better local optima must be obtained to
avoid stagnating at a local optimal point. For this purpose, Cauchy pdf is used which produce new points that stay in unexplored
spaces from the current optimal points without constraints like Gaussian. The Gaussian and Cauchy pdf are given by.

G(xi) =
1√
2πσ2

i

exp
(
− (xi − µi)

2

2σ2
i

)
(5)

C(xi) =
1(

πγi

[
1 +

(
xi−ai
γi

)2
]) (6)

where xi is the solution point, µi is the mean value, σi is the standard deviation, γi is the scaling parameter and ai is the
location of the optimal solution. Based on these pdf functions, the new solution points can be obtained as

xi = µi + σiP (7)

xi = ai + γi tan [π (P− 0.5)] (8)

Here P is the accumulation function specified as the integral of either Gaussian or Cauchy pdf denoted as F (u) in the below
equation.

P =

∫ ∞

−∞
F (u) du (9)

Secondly, the parameter updating rule is improved based on the scalar parameter γ and standard deviation σ. Setting larger
value of these parameters will yield in low convergence speed while a smaller value will reduce the global searching capability.
Hence dynamic updating is used for automatically determining these parameters for obtaining optimal solution.

ai+1 = a0 − a0
(
1− 1

i

)q

(10)

where a0 = xu−xl
10 and q = log29/30(w) with w is the attenuation parameter and xu and xl are the higher and lower limits

of the dynamic strategy.As the searches advances, a is reduced steadily and improves the converging speed of the algorithm.
Based on this process, the search process is performed in IMTS which is given in Algorithm 4.

Specified a neighbourhood function N , the evaluation function f (s) in equation (3), and a given initial solution s0, the
modified Tabu search provides the best solution to replace the mandatory solution. Here d is the parameter set to count the
consecutive iterations where sb is not updated i.e., sb stays the best solution. By using the modified steps as described above, the
optimal solution is obtained in less time and also the solution is globally optimal, thus averting the local optima situation. The
utilization of Gaussian and Cauchy pdf in Tabu search has significantly improved the optimal solution determination as shown
in Figure 1.
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Algorithm 4 Modified Tabu Search process

Require: Input solution s0, the neighbourhood N , and α
Ensure: Best solution sb
1: Generate new solution using G(xi) and C(xi)
2: Current solution s← s0
3: Best solution obtained until now sb ← s
4: Iteration counter d ← 0
5: repeat
6: Select the best neighbourhood solution s′ ∈ N (S)
7: s← s′

8: Update parameters using Equations 8 and 9
9: Update Tabu list
10: if f (s) < f (sb) then
11: sb ← s
12: d ← 0
13: else
14: d ← d + 1
15: end if
16: until f (s) = 0
17: return sb

Figure 1: Gaussian and Cauchy pdf performance in IMTS

4 Application of IMTS for ECP in Scheduling ICC Cricket World Cup 2019
ICC Cricket World Cup is the global competition conducted by the International Cricket Council (ICC) every four years. The
Men’s World Cup tournament held in 2019 is modeled as ECP for scheduling the tournament. The 2019 event was contested by
men’s national teams of ten cricketing countries. It was from 30 May to 14 July, 2019 with the league matches taking place in
round robin format. The semi-finals and final were played as knock-out format. The tournament was organized in seven cricket
grounds across six cities in England and Wales. The matches were scheduled on the basis of flexibility of the TV audience
with one match taking place each weekday and two matches taking place in weekends to attract the cricketing crowds. This
strategy is mainly based on the profit model but it also considers the travel flexibility of the cricketing players and officials. In
this work, the multi-nation tournament is considered for evaluating the effectiveness of ECP in solving the scheduling problems.
For simplicity, only the main matches in the league stage is considered while knock-out matches are left out due to their easy
scheduling.

The 10 teams participated in the tournament are sorted in alphabetical order for evaluation. Afghanistan, Australia,
Bangladesh, England, India, New Zealand, Pakistan, South Africa, Srilanka and West Indies are the teams. They are numbered
1, 2, · · · , 10 for match ordering. By sorting the match combinations, the single round robin format will lead to 45 matches in 9
rounds which are shown in the Table 1

As the tournament is single round robin, the teams are ordered as the nodes of a graphG = (V ,E)where each vertex v ∈ V as
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Table 1: Round-robin schedule format
Round Matches

1 1,2 3,9 4,8 5,7 6,10

2 1,3 2,10 4,9 5,8 6,7

3 1,4 2,3 5,9 6,8 7,10

4 1,5 2.4 3,10 6,9 7,8

5 1,6 2.5 3,4 7,9 8,10

6 1,7 2,6 3,5 4,10 8,9

7 1,8 2,7 3,6 4,5 9,10

8 1,9 2,8 3,7 4,6 5,10

9 1,10 2,9 3,8 4,7 5,6

Figure 2: ICC World Cup Round robin schedule of nine rounds

an unordered pair v = {ti, tj}, representing a match amongst teams ti and tj. The vertices number |V |becomes 1
2n(n − 1) and

the number of possible colors k = n − 1 is determined for concrete scheduling. The edge dimensions are given by [25] as in
equation 11

D =
4(n− 2) + 1

|V | − 1
(11)

Figure 2 shows the IMTS for World Cup tournament by splitting the scheduling process for each day. In this pattern, the
tournament can be organized in 10 or 11 days including the knock-out matches. Each round can be contested in one day at 5
venues and thus the time can be minimized and also the expenditure.

Figure 3 shows the input graph plotted for evaluation for the tournament with the said 10 teams. The plot is obtained by the
node plot structure used to construct the graph vertices. The edges are connected based on the matches assumed.

Figure 4 shows the Plot area of the graph for assigning the 10 teams as vertices of the graph G and utilizing it in scheduling
the matches. Once scheduled, the edges of the graph denote the matches and coloring of the vertices illustrate the teams that
can be scheduled in the same round. Scheduling of the matches on the same day reduces the overall timing of the schedule.
On comparing with the original schedule of the tournament, few constraints are avoided. The main constraint is the scheduling
based on TV audiences. The other constraint is the allocation of reserve days and possible extensions of playing time that might
affect the travel schedule.
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Figure 3: Input Graph of World Cup Tournament

Figure 4: Plotting of the Scheduled Teams in Graph Vertices

Figure 5 shows the coloring output of the World Cup tournament scheduling problem. From the results, it can be seen that
the coloring constraint of no adjacent vertices have the same colour and equity constraint are satisfied by the IMTS approach.
This justifies the performance of the suggested IMTS algorithm for the ECP.

5 Performance Evaluation
The approximation of the proposed IMTS for ECP is performed in the previous section for the scheduling problem of ICCCricket
World Cup 2019. The results have shown effectiveness of the proposed approach. In addition to that evaluation, the proposed
IMTS is applied on benchmark instances which are commonly in evaluating GCP and ECP problems. The experimental setup
is given in the Table 2

The performance of the IMTS is provided in Table 3 along with a comparison of existing methods namely Tabu
Search (TS) [17] and BITS [19]. The proposed IMTS is measured for the value of initial k (ki) , best k (kb) and average
values of k (kavg) for 20 runs for estimating the success rate (SR). A total of 60 benchmark instances are utilized which
weregenerated in DIMACS machine benchmark format with varying number of nodes available at the following link:
https://turing.cs.hbg.psu.edu/txn131/graphcoloring.html. The evaluations are performed for the proposed IMTS for 20 runs on
138 ECJSE Volume 11, 2024
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Figure 5: Equitable Coloring of the World Cup Scheduling Problem

Table 2: Experimental Setup
OS Windows 7 and above, 32bit

Processor Intel core i5 3470 3.2 GHz

Storage 500GB Intel SSD SC2CT060A3 ATA device

RAM 4GB DDR3

Network bandwidth 1 Gbps

Simulation tool MATLAB v.2016b

Simulation time 600 seconds

Total Runs 20

Number of Instances 60

each instance to validate the success rates.
From the table 3, it can be found that the IMTS algorithm has better values of ki, kb and kavgwith significantly higher success

rates than the existing schemes TS and BITs on most instances, thus suggesting that the proposed IMTS reduces the convergence
rate and hence the final solutions are better. For a total of 20 runs of the proposed IMTS on each instance, the algorithm returned
successful solutions on most runs, indicated by the SR rate. This shows the significance of the proposed approach in handling
the ECP and its applications to real-world problems.

6 Conclusion
The introduced IMTS algorithm for tackling the equitable coloring problem demonstratesmarked enhancements in performance,
attributed to its integration of the modified Tabu search technique alongside a strategic backtracking approach. The algorithm’s
efficacy is substantiated through its application to address the scheduling conundrum of the ICC Cricket World Cup tournament,
yielding favorable outcomes. Furthermore, assessments conducted on benchmark instances underscore the IMTS algorithm’s
superiority in delivering improved results and notably accelerated convergence rates for the ECP. The algorithm’s effectiveness is
a synergy of the combined efforts of its constituent processes. Notably, the IMTS algorithm’s versatility extends to the successful
resolution of other real-world NP-hard problems as well.
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Table 3: Computational results of IMTS algorithm on benchmark instances
Instance Nodes TS BITS IMTS

kb ki kb kavg SR ki kb kavg SR
DSJC125.1 125 5 5 5 5 20/20 5 5 5 20/20
DSJC125.5 125 18 17 17 17.5 20-Oct 17 16 16.5 20-Dec
DSJC125.9 125 45 44 44 44 20/20 43 42 42.65 20/20
DSJC250.1 250 8 8 8 8 20/20 8 8 8 20/20
DSJC250.5 250 32 32 30 31.9 20-Jan 31 30 30.45 20-Aug
DSJC250.9 250 83 72 72 72 20/20 70 69 69.65 20/20
DSJC500.1 500 13 13 13 13 20/20 13 13 13 20/20
DSJC500.5 500 63 57 56 56.95 20-Jan 53 53 53.25 20-Jul
DSJC500.9 500 182 130 129 129.9 20-Feb 127 127 127.6 20-Nov
DSJR500.1 500 12 12 12 12 20/20 12 12 12 20/20
DSJR500.5 500 133 126 126 126.3 14/20 121 121 121.2 17/20
DSJC1000.1 1000 22 22 21 21.95 20-Jan 21 21 21.25 20-Jul
DSJC1000.5 1000 112 112 103 105.1 20-Mar 105 103 104.95 20-Dec
DSJC1000.9 1000 329 254 252 253.3 20-Jan 232 230 232.65 20-Nov

R125.1 125 - 5 5 5 20/20 5 5 5 20/20
R125.5 125 - 36 36 36 20/20 36 36 36 20/20
R250.1 250 - 8 8 8 20/20 8 8 8 20/20
R250.5 250 - 67 66 66.65 20-Jul 66 66 66 20-Nov
R1000.1 1000 - 20 20 20 20/20 20 20 20 20/20
R1000.5 1000 - 269 250 250.4 20-Dec 257 248 248.34 16/20
le450_5a 450 - 5 5 5 20/20 5 5 5 20/20
le450_5b 450 7 5 5 5 20/20 5 5 5 20/20
le450_5c 450 - 5 5 5 20/20 5 5 5 20/20
le450_5d 450 8 5 5 5 20/20 5 5 5 20/20
le450_15a 450 - 15 15 15 20/20 15 15 15 20/20
le450_15b 450 15 15 15 15 20/20 15 15 15 20/20
le450_15c 450 - 15 15 15.1 18/20 15 15 15 19/20
le450_15d 450 16 15 15 15.7 20-Jun 15 15 15 15/20
le450_25a 450 - 25 25 25 20/20 25 25 25 20/20
le450_25b 450 25 25 25 25 20/20 25 25 25 20/20
le450_25c 450 - 26 26 26 20/20 26 26 26 20/20
le450_25d 450 27 26 26 26 20/20 26 25 26.1 20/20
wap01a 2368 46 43 42 42.6 20-Aug 44 41 42.1 15/20
wap02a 2464 44 42 41 41.8 20-Apr 41 41 41 13/20
wap03a 4730 50 46 45 45.05 19/20 44 42 43.55 19/20
wap04a 5231 - 46 44 44.15 17/20 45 45 45.1 15/20
wap05a 905 - 50 50 50 20/20 50 50 50 20/20
wap06a 947 - 42 41 41.7 20-Jun 41 41 41 20-Nov
wap07a 1809 - 43 43 43.05 19/20 43 41 41.8 17/20
wap08a 1870 - 43 43 43.05 19/20 42 41 41.75 17/20

flat300_28_0 300 36 35 34 34.7 20-Jun 33 33 33.45 20-Sep
flat1000_50_0 1000 - 112 101 102.8 20-Jan 102 99 101.2 20-Mar
flat1000_60_0 1000 - 112 102 102.9 20-May 109 101 102.5 20-Aug
flat1000_76_0 1000 112 112 102 103.4 20-Mar 109 99 101.65 20-Jan
latin_square_10 900 130 129 115 120 20-Jan 121 113 117.17 20-Jun

C2000.5 2000 - 202 201 201.6 20-Jul 198 197 198.4 20-Aug
C2000.9 2000 - 504 502 502.4 20-Nov 502 493 498.6 14/20
mulsol.i.1 197 50 49 49 49 20/20 49 48 48.45 20/20
mulsol.i.2 188 48 36 36 36.35 13/20 33 31 32.8 18/20
fpsol2.i.1 496 78 65 65 65 20/20 61 61 61 19/20
fpsol2.i.2 451 60 47 47 47 20/20 43 43 43.25 20/20
fpsol2.i.3 425 79 55 55 55 20/20 53 51 52.5 20/20
inithx.i.1 864 66 54 54 54 20/20 49 49 50.35 20/20
inithx.i.2 645 93 36 36 36.35 13/20 35 31 33.75 15 /20
inithx.i.3 621 - 38 37 37.45 20-Nov 35 35 35 20-Oct
zeroin.i.1 211 51 49 49 49 20/20 45 45 45 19/20
zeroin.i.2 211 51 36 36 36 20/20 34 33 33.4 20/20
zeroin.i.3 206 49 36 36 36 20/20 33 33 33 20/20
myciel6 95 7 7 7 7 20/20 7 7 7 20/20
myciel7 191 8 8 8 8 20/20 8 8 8 20/20
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