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Abstract 

Histogram is a commonly used tool for visualizing data distribution. It has also been used in semi-supervised and 
unsupervised anomaly detection tasks. The histogram-based outlier score is a fast unsupervised anomaly detection method 
that has become more popular because of the rapid increase in the amount of data collected in recent decades. Histogram-
based outlier score can be computed using either static or dynamic bin-width histograms. When a histogram contains large 
gaps, the dynamic bin-width approach is preferred over the static bin-width approach. These gaps in a histogram usually 
occur as a result of various distributions in real data. When working with a static bin-width histogram, gaps can be utilized 
to acquire better distinction between outliers and inliers. In this study, we propose an adjusted version of the histogram-
based outlier score named adjusted histogram-based outlier score, which considers neighboring bins prior to density 
estimation. Results from a simulation study and real data application indicate that the adjusted histogram-based outlier 
score yields a better performance not only in the simulated data but also for various types of real data.   
Keywords: Unsupervised anomaly detection, Outlier, Histogram, Density estimation 

DÜZELTİLMİŞ HİSTOGRAM TABANLI AYKIRI DEĞER PUANI 

Özet 

Histogram verinin dağılımının gösteriminde yaygın olarak kullanılan bir yöntemdir. Ayrıca, yarı denetimli ve denetimsiz 
anomali tespiti için de kullanılmaktadır. Histogram tabanlı aykırı değer puanı, son yıllarda toplanan veri miktarındaki hızlı  
artış nedeniyle daha popüler hale gelen hızlı ve denetimsiz bir anomali belirleme yöntemidir. Histogram tabanlı aykırı 
değer puanı, statik veya dinamik kutu genişliğine sahip histogram kullanılarak hesaplanabilir. Histogramda kutular arası 
büyük boşluklar olduğunda, statik kutu genişliği yaklaşımı yerine dinamik kutu genişliği yaklaşımı daha iyi sonuçlar 
vermektedir. Histogramdaki kutular arası boşluklar gerçek verilerin geldiği çeşitli dağılımların bir sonucu olarak ortaya 
çıkabilmektedir. Statik histogram ile çalışırken, aykırı değerler ve olağan değerler arasında daha iyi bir ayrım elde etmek 
için bu boşluklardan yararlanılabilir. Bu çalışmada, yoğunluk kestirimi öncesinde komşu kutuları da dikkate alan 
düzeltilmiş histogram tabanlı aykırı değer puanı yöntemi önerilmiştir. Benzetim çalışması ve gerçek veri uygulamasından 
elde edilen sonuçlar, düzeltilmiş histogram tabanlı aykırı değer puanı yönteminin yalnızca yapay verilerde değil, aynı 
zamanda farklı türlerde gerçek verilerde de daha iyi bir performans sağladığını göstermektedir. 
Anahtar Kelimeler: Denetimsiz anomali belirleme, Aykırı değer, Histogram, Yoğunluk kestirimi 
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1.  Introduction 

Anomaly detection has been the subject of extensive 
research in recent decades due to its broad range of 
applications. It is widely used in various fields, including 
intrusion detection, medical diagnosis, credit card fraud 
detection, fault detection in safety-critical systems, and 
enemy activity surveillance [1]. Since the onset of 
anomaly detection research, there have been many 
definitions of what constitutes an anomaly. Earlier 
definitions have posited an outlier as an irrelevant, 
deviated observation or generated by a different 
mechanism [2-4]. Breunig et. al [5] and Chandola et. al [1] 

have considered the definition of an anomaly within a 
broader spectrum by including neighborhood, pattern, 
and behavioral characteristics of data. In general, 
anomalies can be defined as data points that display 
different behavior from the majority of data. Anomalies 
may arise due to mechanical faults, changes in system 
behavior, fraudulent behavior, human error, instrument 
error, or just natural deviations in populations [6]. 
Anomaly detection approaches can be divided into three 
categories, which are supervised, semi-supervised, and 
unsupervised anomaly detection. Supervised anomaly 
detection methods require a fully pre-labeled training 
dataset tagged as normal or anomalous [1,6], and this 
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approach is similar to imbalanced classification. 
However, most classifiers cannot incorporate strongly 
imbalanced data [7]. Nevertheless, labeling all data as 
normal or anomalous in real-life applications is almost 
impossible. Additionally, the semi-supervised approach 
requires a training dataset but only recognizes data 
tagged as normal. This scenario is also known as novelty 
detection or novelty recognition [6]. Semi-supervised 
approaches are suitable for the fraud detection 
application domain. Unsupervised anomaly detection 
assumes that anomalous instances are far more 
infrequent than normal in data. Unsupervised methods 
do not require pre-labeled training datasets, enabling 
them to be flexible for real-life applications [1,6,7]. For 
example, in intrusion detection, a study by Zoppi et al. [8] 
compared various anomaly detection algorithms to 
identify unknown or novel threats. The findings showed 
that unsupervised anomaly detection algorithms 
outperform other machine learning algorithms when 
threats are unknown. The result of an anomaly detection 
algorithm can be a label or a score; semi-supervised and 
unsupervised methods generally output a score that can 
be transformed into a label using a threshold [7]. 

Histogram and kernel-based approaches are the most 
common unsupervised anomaly detection methods, 
especially in network security and fraud detection 
domains [9-13]. In addition, the data to be processed in 
these domains is usually very large. The increasing 
amount of data and the expectation of a quick response 
in such applications (network security, sensor networks, 
fraud detection) increases the requirement for fast and 
accurate anomaly detection methods. Among well-
known unsupervised anomaly detection methods, 
histogram-based approaches are both quick and 
competitive. While some state-of-the-art methods suffer 
from computation burden, histogram-based methods can 
complete tasks within minutes, even when applied to 
large-scale datasets [7,14]. Histogram-based methods 
can also be used in other application domains and 
anomaly detection scenarios. In 2012, Goldstein and 
Dengel [15] proposed a histogram-based scoring method 
called Histogram Based Outlier Score (HBOS). HBOS is an 
unsupervised multivariate anomaly detection method 
that computes an outlier score for each instance in data. 
According to various studies, HBOS provides competitive 
results for various anomaly detection scenarios 
[7,16,17]. Dobos et al. [18] compared various anomaly 
detection approaches, including HBOS, to detect non-
random errors which are caused by measurement bias, 
instrument failures, or process leaks.  

HBOS combines outlier scores obtained from the density 
of each feature of separate histograms. Histograms of 
these attributes are constructed using either a static bin-
width or a dynamic bin-width approach, where the 
height of each bin represents a density estimate [15]. 
Data in anomaly detection tasks involves various 
distributions, and gaps can frequently occur in these 
datasets. Therefore, the static bin-width approach may 
produce poor density estimation when applied to 

datasets containing huge gaps between data instances. If 
the number of bins is incorrectly calculated, almost all 
data may be collected in a few bins. Goldstein and Dengel 
[15] have provided a dynamic bin-width approach 
applicable to this eventuality. Due to the mentioned 
reason, the dynamic bin-width approach is favored over 
the static bin-width approach. Even though the dynamic 
bin-width approach is designed to work well with these 
issues, it may suffer from pointwise data fluctuations. 
Generally, both approaches offer practical advantages 
depending on the data [15]. In Section 2, we 
demonstrated the impact of determining the appropriate 
number of bins in the presence of gaps. In such cases, 
employing a robust data-based rule for determining the 
number of bins offers an advantage over approaches 
depending on the sample size.  

The static bin-width HBOS faces a potential limitation 
wherein inliers and outliers may receive equal density in 
a histogram. To overcome this issue, we propose an 
adjustment to the static bin-width HBOS involving the 
modification of densities by considering neighbor bins of 
the corresponding bin. The proposed method, Adjusted 
Histogram Based Outlier Score (AHBOS), efficiently 
utilizes gaps to detect outliers while successfully labeling 
inliers. According to real and simulated data outcomes, 
AHBOS generally yields better results. 

Section 2 briefly covers existing methods in the related 
literature. The AHBOS is introduced in Section 3, 
followed by the numerical studies demonstrated in 
Section 4. Finally, Section 5 offers conclusions and 
discussions. 

2.  Methods 

This section presents static and dynamic bin-width 
approaches and possible problems associated with the 
presence of anomalies in histograms. Subsequently, 
HBOS and the proposed approach AHBOS are provided. 

2.1. Static and Dynamic Bin-Width Histograms  

A static bin-width (traditional) histogram is one of the 
most common methods to demonstrate data distribution. 
The static bin-width histogram for a dataset with N 
instances is constructed using k equal-width bins. The 
number of k should be pre-specified. The data instances 
falling into the bins determine the bin heights. These 
frequencies (heights) can also be considered to be 
density estimates.  

Dynamic bin-width histograms differ in terms of having 
non-static bin-widths where N/k data instances are 
distributed equally into k bins [15]. The area of each bin 
is equal since the number of samples that fall into the 
bins is equal. Every bin is rectangular, having a dynamic 
height and width. Data instances covering larger areas 
will eventually yield lower heights. In the dynamic bin-
width approach, data instances are distributed into 
specified bins equally. However, as this is not applicable 
in some cases, the algorithm should allow more than N/k 
instances in the bins. In addition to the area, the height of 
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these bins should also grow appropriately. The 
remaining instances can be allocated to the bin where the 

 

 

 
Figure 1. Static and dynamic bin-width histograms in the presence of an extreme value. 

 

median is located. Likewise, the number of bins in the 
dynamic histogram cannot be larger than the unique 
values in the feature [19]. In this case, the number of bins 
diminishes to the number of unique values in the feature. 

The critical point in constructing a histogram is correctly 
determining the bin number (k). Inappropriate k can 
cause “under-smoothing” or “over-smoothing”. Wand 
[20] discussed the choice of bin-width in detail and 
proposed a data-based choice. A common practice is to 
choose the square root of the N, where N is the number 
of instances 𝑥 [15]. Sturges’ rule [21] is the most well-
known and oldest method to compute the number of 
bins. hist() function in the R statistical programming 
language [22] has three built-in options for setting the 
“break” which are “Sturges” [21] as default, “Scott” [23], 
and “FD” [24]. After computing bin-width with these 
rules, R uses a “pretty” function that ensures a good 
choice of bin number [20,25]. The aforementioned rules 
are provided in Table 1. 

Table 1. Bin-width rules in the generic function hist() in 
R. 

Rule Bin-width 

Sturges (1926) max(𝑥) − min(𝑥)

⌈1 + 𝑙𝑜𝑔2𝑁⌉
 

Scott (1979) 3.49�̂�

√𝑁
3  

Freedman and Diaconis 
(1981) 

2 𝐼𝑄𝑅( 𝑥)

√𝑁
3  

Note: �̂�: sample standard deviation; IQR: interquartile 
range. 

 

Many studies have been published on determining the 
optimal number of bins [20,26]; however, this discussion 
is beyond the scope of this study.  

Wand [20] stated that practitioners should be cautious 
about using the default rules of statistical packages in 
applications where important features in the dataset 
could be unnoticed. To illustrate, assume a mixed dataset 
with 99 data from a standard uniform distribution [0:1] 
and an extreme point valued at 10. For simplicity, we set 
the k to 10 for both approaches. Figure 1 illustrates both 
approaches in the presence of an extreme value. 

In Figure 1, almost all data in the static bin-width 
histogram is accumulated in a single bin; hence, this does 
not represent a reasonable estimation of data. This 
example indicates why the static bin-width approach 
would not work well with anomalies. The over-
smoothing problem is inevitable if a non-robust rule 
computes the number of bins in the presence of extreme 
value(s). Since anomalies are expected in datasets, there 
is merit in using a robust FD rule for a static bin-width 
approach. Implementing the FD rule also allows the static 
bin-width approach to work efficiently with heavy-tailed 
distributions. 

The dynamic bin-width approach is recommended for 
unknown or heavy-tailed distributions. However, having 
only one extreme value would yield harmful effects on 
outlier scores of non-outlier observations. Since the 
number of data instances is distributed equally to the 
bins, non-outlier and outliers might fall into the same bin. 
As evident in Figure 1, having only one extreme value 
lowered the densities of other instances in the same bin. 
Eventually, this would increase the false positive rate. 

2.2. Histogram-Based Outlier Score  

HBOS is a non-parametric statistical technique 
incorporating feature specific densities from univariate 
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histograms. Not only numerical but also categorical data 
can be used to compute HBOS. Densities for categorical 
data can be obtained utilizing the frequency of each 
category. The height of each bin in a histogram 
represents an estimate of density for each dimension d. A 
static or dynamic method can be used to determine the 
bin-width. The densities are normalized such that the 
maximum value is 1. The HBOS of every instance x is 
calculated using the corresponding density (p) of the bins 
where the instance is located [15]; 

𝐻𝐵𝑂𝑆(𝑥) = ∑𝑙𝑜𝑔

𝑑

𝑖=1

(
1

ℎ𝑖𝑠𝑡𝑖(𝑝)
) (1) 

an instance is labeled as an anomaly if its score exceeds 
the predetermined threshold.  

HBOS assumes independence of the features, enabling 
the algorithm to multiply scores derived from inverse 
densities. As the number of features increases, the 
drawback of this assumption becomes less critical [7]. 
Using the logarithm on inverted densities provides 
robustness against extreme data fluctuations.  

3.  Adjusted Histogram-Based Outlier Score 

When working with static bin-width histograms, outliers 
and inliers may have the lowest densities, which is an 
additional concern. Since HBOS is a density-based 
approach, it might not be possible to distinguish these 
observations density-wise. When the population 
distribution is unknown, gaps between ordered values 
can be helpful for detecting outliers [27]. When working 
with heavy-tailed distributions or in the presence of 
extreme values, gaps in the histograms tend to occur 
more frequently. The neighborhoods of the bins and gaps 
also contain information that could be applied for better 
density estimation.  

With this motivation, we present a novel method based 
on adjusting bin heights using neighbor bins; the 
adjustment was calculated by taking the average of the 
corresponding bin and its adjacent bins’ heights. The 
method uses the FD rule as default to determine the 
number of bins, enabling the static bin-width histogram 
to work well with heavy-tailed distributions. 

Assuming that a static bin-width histogram consists of k 
bins, the adjusted height of the 𝑗𝑡ℎ bin is computed below: 

ℎ𝑗
′ =

ℎ𝑗−1 + ℎ𝑗 + ℎ𝑗+1

3
,𝑗 = 1, … , 𝑘 (2) 

where ℎ𝑗  is the height of the 𝑗𝑡ℎ bin of the histogram.  

The prime notation indicates the adjusted version of the 
corresponding bin. As the first and last bins naturally do 
not have an adjacent bin, we added dummy bins ℎ0 and 

ℎ(𝑘+1) with 0 height. The adjusted representation of the 

bin heights (ℎ𝑗
′) yields the adjusted histogram and these 

adjusted heights (densities) are subsequently 
normalized so that the maximum value is 1. 
Consequently, the AHBOS of every instance x is 

calculated using the corresponding adjusted height of the 
bins where the instance is located:  

𝐴𝐻𝐵𝑂𝑆(𝑥) = ∑𝑙𝑜𝑔

𝑑

𝑖=1

(
1

𝐴ℎ𝑖𝑠𝑡𝑖(𝑝)
) (3) 

Here, 𝐴ℎ𝑖𝑠𝑡 represents the adjusted histogram, which has 
been normalized, and 𝐴ℎ𝑖𝑠𝑡𝑖(𝑝) stands for the density of 
the corresponding instance for the ith feature. The sum 
of the logarithm of inverse densities yields the AHBOS for 
each instance.  

4.  Numerical Studies 

We conducted real and simulated data applications to 
evaluate the performance of the AHBOS. We used 17 
simulated and 11 real data sets. Receiver operating 
characteristic (ROC), Precision-Recall (PR) curves, and F-
1 score were evaluated as the performance metrics. 

The ROC curve is a commonly used metric in binary 
classification. Provost et al. [28] suggested using the ROC 
curve over accuracy. The ROC curve represents how the 
True Positive Rate varies against the False Positive Rate. 
We used the area under the ROC curve (ROC-AUC) results 
which is equal to 1 for perfect classification. Naturally, 
anomalies rarely occur in the data, resulting in 
imbalanced classification. Davis and Goadrich [29] 
argued that the performance of the ROC curve is 
questionable for imbalanced classification. They 
recommended using the PR curve alongside the ROC 
curve. The PR curve represents the Precision (P) versus 
Recall (R) for all thresholds. The area under the PR curve 
(PR-AUC) ranges from 0 (naive classification) and 1 
(perfect classification). We also included the F-1 
measure, which yields a balanced result of Precision and 
Recall: (2×P×R/(P+R)).  

For all performance metrics, we applied the Friedman 
test [30,31] and the Nemenyi post-hoc test [32] to check 
whether the differences between methods were 
statistically significant [33]. In the study, the significance 
level of the tests was set to 0.05. 

All computations were performed using “R 4.2” [22]. The 
“Cutpointr” and “MLmetrics” packages were used to 
compute ROC-AUC, F-1 score, and PR-AUC [34,35]. 
Three-dimensional plot was constructed via the 
“Scatterplot3d” package [36]. Statistical tests were 
performed with “PMCMRplus” package [37]. R codes are 
available on https://github.com/eyildiztepe/AHBOS.  

4.1. Simulation Study 

HBOS is based on the assumption of independence 
between features, and this assumption usually does not 
hold for real data. Therefore, we generated simulated 
datasets not only to control global outliers but also to 
provide gaps. For the sake of simplicity, the number of 
features was limited to three. We generated data 
independently from a standard normal distribution 
(N(0,1)), and a certain percentage of data was replaced 
with outliers. The first two variables contain outliers 

from shifted chi-square distribution (𝜒(1)
2 + 5) and the 
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final variable only contains an extreme value of 100. 
Figure 2 provides the 3d visualization of one simulation 
setting when the number of instances is 1000 and the 
outlier percentage is 0.05. Inliers and outliers are 
represented as circles and triangles, respectively. Figure 
2 clearly illustrates the successful generation of gaps of 
varying magnitudes between outliers, thereby fulfilling 
our primary objective in the simulation study. We used a 
broad range of sample sizes and outlier percentages to 

cover many possible settings. Also, consistency was 
acquired by repeating the data generation process ten 
times, and the results’ averages are provided in Table 2. 
The number of best scores for all settings is indicated at 
the bottom of the table. Performance metrics were 
calculated for a predetermined threshold and optimized 
for the maximum F-1 score. The best results are 
highlighted in boldface. 

 
Figure 2. 3d scatter plot of the generated data when # of instances is 1000, and the outlier percentage is 0.05. Circles 

and triangles indicate normal and anomalous instances, respectively. 

Table 2. ROC-AUC, PR-AUC, and F1-Score results for the simulated data 

 ROC-AUC PR-AUC F-1 Score 

N % # Sta Dyn AHBOS Sta Dyn AHBOS Sta Dyn AHBOS 

100 5 5 0.9938 0.9615 0.9998 0.6906 0.3466 0.7963 0.8812 0.6526 0.9909 

100 10 10 0.9467 0.9566 0.9929 0.5840 0.4891 0.8280 0.6983 0.7814 0.9244 

500 1 5 0.9996 0.9902 1.0000 0.7528 0.2621 0.8000 0.9652 0.5715 1.0000 

500 5 25 0.9847 0.9815 0.9982 0.7509 0.5743 0.9149 0.7332 0.7561 0.9550 

500 10 50 0.9445 0.9411 0.9877 0.6485 0.5214 0.8478 0.6587 0.6897 0.8776 

1000 1 10 0.9997 0.9964 1.0000 0.8667 0.5117 0.8970 0.9549 0.7666 0.9905 

1000 5 50 0.9853 0.9900 0.9960 0.7550 0.7285 0.8887 0.7507 0.8053 0.8985 

1000 10 100 0.9517 0.9350 0.9880 0.6853 0.5506 0.8608 0.6562 0.6452 0.8731 

5000 1 50 0.9993 0.9993 0.9997 0.9058 0.8249 0.9458 0.8747 0.9523 0.9475 

5000 5 250 0.9816 0.9857 0.9925 0.7559 0.6970 0.8447 0.7018 0.7463 0.7927 

5000 10 500 0.9275 0.9004 0.9676 0.6421 0.5070 0.7357 0.6204 0.5688 0.6976 

10000 1 100 0.9989 0.9996 0.9995 0.8989 0.8933 0.9350 0.8395 0.9734 0.8853 

10000 5 500 0.9761 0.9877 0.9876 0.7332 0.7232 0.7887 0.6852 0.7786 0.7361 

10000 10 1000 0.9293 0.9500 0.9668 0.6402 0.6260 0.7296 0.6123 0.6494 0.6857 

50000 1 500 0.9990 0.9984 0.9995 0.9070 0.8357 0.9376 0.8399 0.7856 0.8806 

50000 5 2500 0.9758 0.9680 0.9875 0.7330 0.6238 0.7893 0.6812 0.6396 0.7296 

50000 10 5000 0.9147 0.9066 0.9528 0.6293 0.5774 0.6858 0.6053 0.6170 0.6488 

Best score in 0/17 2/17 15/17 0/17 0/17 17/17 0/17 3/17 14/17 

Note: N is the number of instances. % and # indicate the percentage and number of outliers, respectively. Sta, Dyn, and 
AHBOS refer to results for static bin-width, dynamic bin-width, and AHBOS, respectively.  
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ROC-AUC results in the simulation study demonstrated 
how all methods performed well, and the results were 
above 0.90. A closer inspection of the ROC-AUC results 
indicates that AHBOS achieved the maximum scores in 
15 of 17 cases, and for the remaining two cases, the 
results were very close. When considering the PR-AUC 
results, AHBOS performed best in all cases. Similar to the 
ROC-AUC results, AHBOS achieved a maximum of 14 of 
17 F-1 scores. Dynamic bin-width HBOS yielded the 
highest F-1 scores in the remaining three cases. The 
overall results showed that AHBOS is more successful 
than the other approaches in terms of the performance 
metrics used in the simulation study. In other words, 
AHBOS performed best in the presence of gaps and global 
outliers. 

We have used the Friedman test to test the null 
hypothesis that all methods’ performance metrics are 
equal on the datasets. If the null hypothesis is rejected, 
Nemenyi post-hoc test is conducted for all pairwise 
comparisons. The Friedman test and Nemenyi post-hoc 
test p-values are given in Table 3. According to the 
Friedman test results, p-values were lower than the 
significance level for all metrics. That is, at least one 
method was different from the others for all metrics. 
Pairwise comparisons showed that AHBOS is 
significantly different from the other methods. 

Table 3. The Friedman and Nemenyi post-hoc test 
results for the simulated data 

Metric 
Friedman test 

p-value 
Nemenyi post-hoc test 

p-value 

ROC-AUC 3.97e-5 Sta vs Dyn 0.9372 

  AHBOS vs Sta 0.0007 

  AHBOS vs Dyn 0.0002 

    
PR-AUC 4.14e-8 Sta vs Dyn 0.0010 

  AHBOS vs Sta 0.0010 

  AHBOS vs Dyn 1.7e-08 

    
F-1 Score 1.03e-4 Sta vs Dyn 0.5585 

  AHBOS vs Sta 0.0001 

  AHBOS vs Dyn 0.0057 

Note: The p-values lower than the significance level of 
0.05 are given in boldface. 

4.2. Real Data Studies 

There is a vast number of datasets used for anomaly 
detection in numerous publications, but many have 
questionable validity, missing references, or are publicly 
unavailable [38]. For the sake of reliability and 
reproducibility, we considered some commonly used 
benchmark datasets. Our real data application comprises 
11 benchmark datasets that cover many aspects of the 
application fields and vary in size, dimension, and outlier 
percentage. Five data sets were pre-processed datasets 

published by Goldstein for anomaly detection tasks [39]. 
The remaining six datasets, which are commonly used 
benchmark datasets, were obtained from the ODDS 
Library [40]. A description of the real datasets is 
provided in Table 4, and the performance metrics are 
provided in Table 5.  

According to ROC-AUC results, out of 11 results, AHBOS 
had the highest 7, and dynamic bin-width HBOS had the 
highest 4. Compared with static bin-width HBOS, AHBOS 
had the highest results or very close values. It can be seen 
from the PR-AUC and F1-score results that AHBOS 
performed better than the other methods. AHBOS had 8 
best F-1 scores while it was the second in the remaining 
3 data sets. The dynamic bin-width HBOS gave better 
results in all metrics for “annthyroid” dataset. Overall, 
AHBOS showed better and more competitive 
performance than other methods, especially for PR-AUC 
and F1-score. 

For real datasets, the Freidman test p-value was found 
0.075 for ROC-AUC results, and none of the methods 
were found significantly different from others. The 
Friedman test p-values were found 0.02 and 0.019 for PR-
AUC and F-1 score results, respectively. According to 
Nemenyi post-hoc test results for PR-AUC, AHBOS was 
significantly different than dynamic bin-width HBOS (p-
value 0.015). For the F-1 score, the AHBOS and static bin-
width HBOS were found significantly different (p-value 
0.028). 

The performance metrics obtained from the real data 
study agree with the simulation results, although the 
difference was not as sharp. This can be attributed to the 
diverse characteristics of the real datasets, such as 
variations in sample size, number of variables, anomaly 
percentage, and the presence of gaps. 

Table 4. Description of the real datasets 

Dataset N d # % 

ionosphere2 351 33 126 35.90 

b-cancer1 367 30 10 2.72 

pima2 768 8 275 35.90 

cardio2 1831 21 176 9.61 

musk2 3062 166 97 3.17 

satellite1 5100 36 75 1.49 

satimage-22 5803 36 71 1.22 

pendigits2 6870 16 156 2.27 

annthyroid1 6916 21 250 3.61 

shuttle1 46464 9 878 1.89 

kdd991 620098 38 1052 0.17 

Note: N is the number of instances. d, #, and % indicate 
dimension, number of outliers, and percentage of 
outliers, respectively. Superscripts on data names give 
the sources, (1) are from Goldstein [39] and (2) are from 
ODDS Library [40]. 
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Table 5. ROC-AUC, PR-AUC, and F1-Score results for real datasets 

Dataset 
ROC-AUC PR-AUC F-1 Score 

Sta Dyn AHBOS Sta Dyn AHBOS Sta Dyn AHBOS 

ionosphere2 0.5224 0.6927 0.6912 0.3140 0.2575 0.4780 0.5768 0.5967 0.6560 

b-cancer1 0.9826 0.9801 0.9824 0.5522 0.4225 0.5502 0.6250 0.5556 0.6250 

pima2 0.6402 0.6544 0.6738 0.5096 0.5077 0.5238 0.5291 0.5451 0.5577 

cardio2 0.8514 0.8400 0.8986 0.4741 0.3895 0.5117 0.4850 0.4696 0.5391 

musk2 0.9999 1.0000 1.0000 0.9874 0.9897 0.9895 0.9848 1.0000 0.9949 

satellite1 0.9232 0.9294 0.9291 0.5801 0.5657 0.6177 0.5970 0.6074 0.6143 

satimage-22 0.9816 0.9804 0.9850 0.7873 0.7992 0.8250 0.7737 0.8000 0.8085 

pendigits2 0.9356 0.7875 0.9400 0.2673 0.1573 0.2699 0.3486 0.2576 0.3655 

annthyroid1 0.8323 0.9160 0.8508 0.1605 0.2812 0.1809 0.2645 0.3311 0.2772 

shuttle1 0.9966 0.9933 0.9966 0.8782 0.7640 0.8754 0.8568 0.7115 0.8547 

kdd991 0.9979 0.9936 0.9981 0.7056 0.6772 0.7185 0.6678 0.6600 0.6813 

Best score in 2/11 4/11 7/11 2/11 2/11 7/11 2/11 2/11 8/11 

Note: Sta, Dyn, and AHBOS refer to results for static bin-width, dynamic bin-width, and AHBOS, respectively. Superscripts 
on data names give the sources, (1) are from Goldstein [39] and (2) are from ODDS Library [40]. 
 

5.  Conclusion 

In the Internet era, it is vital to take prompt and 
immediate action in situations such as credit card fraud 
detection, intrusion detection, and enemy activity 
surveillance. The ever-increasing amount of data and the 
expectation of rapid response in modern applications has 
greatly increased the need for fast and accurate methods. 
HBOS meets the expectations since it is a quick 
unsupervised anomaly detection method and can be 
calculated using either a static or dynamic bin-width 
histogram. HBOS has gained substantial popularity and is 
widely used in many application areas and benchmark 
studies [8,17,18]. 

However, several issues directly affect the performance 
of the HBOS. The choice of incorrect bin number causes 
an over-smoothing problem in the static bin-width 
approach in the presence of extreme values. This 
explains why the dynamic bin-width approach has 
gained popularity over the static bin-width approach. 
However, the dynamic bin-width approach tends to label 
inliers as anomalies in the presence of gaps. This issue 
can be fixed in the static bin-width approach by 
implementing a commonly used robust bin size rule FD. 
Since the FD rule is robust to extreme values, the 
constructed histograms are not affected by extreme 
values. Another issue about the static bin-width 
approach is that inliers and outliers might get equal 
densities. In this case, histogram gaps could be used to 
remedy this issue. Gaps in the static bin-width histogram 
are more likely to occur in circumstances when the 
parent distribution has a heavy tail or anomalies exist. 
However, scores obtained from static bin-width 
histograms do not consider the gaps that could be used 
to increase the performance of HBOS. This study presents 
the AHBOS, which modifies the static bin-width 
histogram’s densities depending on both the bins and 
their neighbors. Simulation and real data application 

results supported the fact that the proposed method 
improves performance. Based on the simulation results, 
the AHBOS performed better than the HBOS method for 
all performance metrics, especially for the PR-AUC 
measure. Except for a few cases, the real data study also 
yielded a result supporting the simulation outcomes. The 
new approach demonstrated that it could compete well 
with dynamic bin-width HBOS when dealing with heavy-
tailed or unknown distributions. The adjustment also 
performed well in the absence of gaps. Furthermore, 
AHBOS can be improved through the implementation of 
various algorithms for determining the bin number. In 
future work, the performance of the AHBOS will be 
investigated in intrusion detection applications, where 
HBOS is widely used. In conclusion, the AHBOS holds 
promise for application in both research and practical 
scenarios, overcoming the limitations of traditional 
HBOS methods. 
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