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Abstract

The paper deals with the notion of quasi hemi-slant submersions from Lorentzian para Sasakian manifolds
onto Riemannian manifolds. These submersions are generalization of hemi-slant submersions and semi-slant
submersions. In this paper, we also study the geometry of leaves of distributions which are involved in the
definition of the submersion. Further, we obtain the conditions for such distributions to be integrable and totally
geodesic. Moreover, we also give the characterization theorems for proper quasi hemi-slant submersions and
provide some examples of it.

Keywords: Hemi-slant submersions, Lorentzian para Sasakian manifolds, Quasi hemi-slant submersions, Slant
submersions.
2010 AMS:53C12, 53C15, 53C25, 53C50, 55D15.

1. Introduction

In differential geometry the theory of Riemannian submersions was firstly defined and studied by O’Neill [1] and Gray [2], in
1966 and 1967, respectively. In 1976, Watson [3] studied almost complex type of Riemannian submersions and introduced
almost Hermitian submersions between almost Hermitian manifolds. Latar on, Chinea [4] extended the idea of almost
Hermitian submersion to different sub-classes of almost contact manifolds. There are so many important and interesting
results about Riemannian and almost Hermitian submersion which are studied in ( [5]- [7]). As a natural generalization of
holomorphic submersions and totally real submersions, B. Sahin introduced the notion of slant submersions [8], semi-invariant
submersions [9] and hemi-slant Riemannian submersions from almost Hermitian manifolds onto Riemannian manifolds in 2011,
2013 and 2015 respectively. There are many research articles on Riemannian submersions between Riemannian manifolds
equipped with different structures have been published by several geometers ( [10]- [27]).

Magid and Falcitelli et. al. stablished the theory of Lorentzian submersions in [28] and [29], respectively. In 1989,
Matsumoto [30] introduced the notion of Lorentzian para Sasakian manifolds. Later, Mihai and Rosca studied the same notion
independently in [31]. Recently, Gunduzalp and Sahin studied paracontact and Lorentzian almost paracontact structures in [32]
and [33]. Kumar et. al. in [34] defined and studied conformal semi-slant submersions from Lorentzian para Sasakian manifolds
onto Riemannian manifolds. As a natural generalization of hemi-slant submersions, semi-slant submersions and bi-slant
submersions, Prasad, Shukla and Kumar in [35] introduced the notion of quasi bi-slant submersions from Kaehler manifold
onto a Riemannian manifold.

Beside the introduction this paper contains three sections. In the second section, we present some basic informations related
to quasi hemi-slant Riemannian submersion needed throughout this paper. In the third section, we obtain some results on quasi
hemi-slant Riemannian submersions from Lorentzian para Sasakian manifold onto Riemannian manifold. We also study the
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geometry of leaves of distribution involved in above submersion. Finally, we obtain certain conditions for such submersions to
be totally geodesic. In the last section, we provide some examples for such submersions.

2. Preliminaries

In this section, we recall main definitions and properties of Lorentzian para Sasakian manifolds.
An (2n+ 1)-dimensional differentiable manifold M; which admits a (1,1) tensor field ¢, a contravariant vector field &, a
1-form 7 is called Lorentzian para Sasakian manifold with Lorentzian metric gy, ( [31], [36]) which satisfy:

¢ = I+n®E  $0E=0, Mo =0, Q.1

ne&) = -1, gu(Z1,8)=n(Z1), (2.2)

e (921,022) = em(Z1,22) +n(Zi)N(Z2),  em (9Z1,22) = gm, (Z1,9Z2), (23)
Vz& = 07, (2.4)
(V2,0)Z2 = gm(Z1,22)8 +n(Z2)X +21n(Z1)n(Z)E, (2.5)

where V represents the operator of covariant differentiation with respect to the Lorentzian metric gy, and Z;,Z; vector fields
on M.
In a Lorentzian para Sasakian manifold, it is clear that

rank(¢) = 2n. (2.6)
Now, if we put

D(Z1,22) = P(22,21) = gm, (Z1,922) = gm, (921, 22) (2.7)
then the tensor field @ is symmetric (0,2) tensor field, for any vector fields Z; and Z, on M;.

Example 2.1 ( [36]). Ler R**! = {(x',x?,... XX y'y%, .. 05 2) i Xy ,z € R, i=1,2,....k}. Consider R*™ with the
following structure:

k ) ) ) L9 &9 &0
¢ <Z (Xi&xi‘FYi&yl) +Z&z> :_;KTM_ IXiTyi‘F;Yiy 22

i=1 =

1 & ; ; ; ; 1 koo d
1 = — - dx' @dx' +dy' @ dy' =—=|dz— 'dx! =2—.
SRk (n®77)+4i;(X® X +dy ®dy'), 1 2<z i;y x>, =25
Then, (R**1,¢ &, 1M, 8raw+1) s a Lorentzian para-Sasakian manifold. The vector fields E; = 28%,.,Ek+,- =2 (% —|—y’b%) and &
form a @-basis for the contact metric structure.

LetIT: (My,8um,) — (M>,8Mm,) be Riemannian submersions between Riemannian manifolds [7]. Define O’Neill’s tensors
J and « [1] by
dgL = IOV g VL+ VYV g L, 2.8)
JgL = HNVypgVL+VVyp L, 2.9)
for any vector fields E,L on M7, where V is the Levi-Civita connection of gy, . It is easy to see that J% and o7 are skew-

symmetric operators on the tangent bundle of M) reversing the vertical and the horizontal distributions.
From equations (2.8) and (2.9), we have

VnYa = Tyt ¥ Vyh, (2.10)
VnZi = HZi+ AT, @2.11)
VoY = g i+V VN, (2.12)
V2,20 = HVyZo+d,7) (2.13)

for Y1,Y> € T'(kerIl,) and Z;,Z, € T'(kerIL,)*, where JEVy, Z1 = 7,11, if Z; is basic. It is not difficult to observe that .7
acts on the fibers as the second fundamental form, while .7 acts on the horizontal distribution and measures the obstruction to
the integrability of this distribution.
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Since 7, is skew-symmetric, we observe that IT has totally geodesic fibres if and only if .7 = 0.
Let (My,¢,&,1m,8um,) be a Lorentzian para Sasakian manifold and (M>, gy, ) be a Riemannian manifold and I1: M; — M,
is smooth map. Then the second fundamental form of IT is given by

(VIL)(U1,Us) = VI ILU, —IL(Vy, Us) for Uy, Us € T(T,My), (2.14)

where we denote conveniently by V the Levi-Civita connections of the matrices gy, and gy, and VI is the pullback connection.
We recall that a differentiable map IT between two Riemannian manifolds is totally geodesic if

(VIL)(Uy,Us) =0 for all Uy, U, € T(TM;). (2.15)

A totally geodesic map is that it maps every geodesic in the total space into a geodesic in the base space in proportion to arc
lengths.
Now, we can easily prove the following lemma as in [12].

Lemma 2.2. Let I1 be a Riemannian submersion from a Lorentzian para Sasakian manifold (My,¢,&, 1M, gum, ) onto Riemannian
manifold (M», 8w, ), then we have

(i) (VIL)(Wi,W2) =0,
(ii) (VIL)(Z1,22) = —11.( 92, Z>) = —11.(Vz, Z2),
(iii) (VIL)(Wi,Z1) = —TL(V, Z1) = —TL.(cy, Z1),

where Wy, W, are horizontal vector fields and Zy,Z, are vertical vector fields.

3. Quasi Hemi-Slant Submersions

In this section, quasi hemi-slant submersions IT from a Lorentzian para Sasakian manifold (M1, ¢,&,n,gu, ) onto a Riemannian
manifold (M>, gu, ) is defined and studied.

Definition 3.1 ( [37]). Let (M1,¢,&,n,8m,) be a Lorentzian para Sasakian manifold and (M>,gu, ) a Riemannian manifold. A
Riemannian submersion I1: (My,¢,5,1,8m,) = (M2, 8m,) is called a quasi hemi-slant submersion if there exist four mutually
orthogonal distribution D,D® D and < & > such that

(i) kerIL, = D @yp D® ®open D @opin < & >,
(ii) (D) =D i.e., D is invariant,

(iii) for any non-zero vector field Z; € (D?),, p € My, the angle 6 between ¢$Z; and (D?),, is constant and independent of
the choice of point p and Z; in (De)p.

The angle 6 is called slant angle of the submersion, where D, D and D' are space like subspaces.
Let IT be quasi hemi-slant submersion from an almost contact metric manifold (M;,¢,&,1n,gum,) onto a Riemannian
manifold (M>, gu, ). Then, we have

TM; =kerIL, @ (kerIT,)" . 3.1
Now, for any vector field V; € I'(kerIL,), we put
Vi =PVi+QVi+RV; —n(V1)§, (3.2)

where P,Q and R are projection morphisms of kerIT, onto D, D? and D, respectively.
For Y € T'(kerIl,), we set

oY) = yY| + ol (3.3)

where yY; € I'(kerIl,) and ®Y; € T'(wD® & wD™).
Using equations (3.2) and (3.3), we have

Vi P (PV1)+¢(QV1) + ¢(RV1),
= Y(PV1)+o(PVi)+y(QV1) + o(OVi) + y(RV1) + @(RV1).
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Since ¢ (D) = D and ¢(D+) C (kerIL,)*, we get @(PV;) =0 and yw(RV;) = 0.
Hence above equation reduces to

OVi = w(PV)) + WOV, + ©QV; + &RV (3.4)
Thus we have the following decomposition

¢ (kerIL,) = D@ wD° © (wD® ® D), (3.5)
where @ denotes orthogonal direct sum. Since ®D® C (kerIL,)*, ®D* C (kerIL. ). So, we can write

(kerIL,)* = ©D® ® @D @ u,

where u is orthogonal complement of (@D © wD") in (kerIT,)*.
Also for any non-zero vector field W; € I'(kerIL,)*, we have

oW = BW; +CWy, 3.6)

where BW, € T'(kerIl,) and CW; € T'(u).
Span{&} = (£) defines time like vector field distribution. If Z; is a space-like vector field and is orthogonal to £, then

gm, (0Z1,02) = gu, (Z1,22) > 0,

so ¢Z; is also space like. Also yZ; is space-like.
For space-like vector fields the Cauchy-Schwartz inequality, gy, (Z1,22) <| Z; || Z | is verified.
Therefore the Wirtinger angle 6 is given by

g, (0Z1,vZy)
|02, || vZ2 |

aM, ‘kerF is non degenerate metric of index 1 at any point of M;. So (kerIL,) o 18 time like subspace of 7;M at any point of M,

cosO =

S0 (kerH*); is space like subspace of T,M; at any point g € M;.
We will denote a quasi hemi-slant submersion from a Lorentzian para Sasakian manifold (M, ¢,&, 1, gum, ) onto a Rieman-
nian manifold (M, gu,) by IL

Lemma 3.2. IfI1 be a quasi hemi-slant submersion then we have
ViU +BoU, =U +n(U))é, oyU;+ColU; =0, oBX,+C*X; =X,, yBX,+BCX; =0,
for all Uy € T(kerIL,) and X; € T'(kerIL,)*.
Proof. Using equations (2.1),(3.3) and (3.5), we have Lemma 3.2. O
Lemma 3.3. IfI1 be a quasi hemi-slant submersion then we have
(i) w*U; = (cos® ),

(i) g, (WU1,WU2) = cos® Bgyy, (Ur, V),

(iii) gu, (OU), ©U,) = sin® Ogy, (U1, U2),
for all Uy, U, € T(D?).

Proof. (i) Let IT be a quasi hemi-slant submersion from a Lorentzian para Sasakian manifold (M;,¢,&,n,8x,) onto a
Riemannian manifold (M>, gu, ) with the quasi hemi-slant angle 6.

Then for a non-vanishing vector field U; € T'(D?), we have

cosg = VU1 37

| oU |’



On Quasi Hemi-Slant Submersions — 90/97

and
U, yU
cos@ — S Uyl (38)
| Ut || U |
By using equations (2.1),(3.3) and (3.8) we have
U, yU
cos§ = S (YUL YUY
| UL || U |
Uy, y*U
cosO — M (3.9)
[OU: [yl |
From equations (3.8) and (3.9), we get y?U; = (cos® 8)Uj, for U; € T(DY).
(ii) For all U;,U, € T'(D?), using equations (2.3),(3.3) and Lemma 3.3 (i), we have
s (WULYL) = g, (9U1 — Uy, yl)
= &M (Ula IIIZUZ)
= 0082 Bng (Ul,UQ).
(iii) Using equation (2.3), (3.3) and Lemma 3.3 (i), (ii) we have Lemma 3.3 (iii).
O
Lemma 3.4. If11 be a quasi hemi-slant submersion then we have
VVy, s+ Ty, 0Ys — gy, (Y1,Y2)E —2n(Y1)n(Y2)E —n(Y2)Y1 = y¥'Vy, Yo + By, Ya, (3.10)
'%1 l[/Yz—l—%Vyla)Yz:a)7/Vle2+Ceyle27 (3.11)
V' Vy,BUy + oy, CU> — gu, (CUL, Un)E = waty, Us + BV, Us, (3.12)
JZfUIBUz—F%VUICUQ = a)sszl U, —|—C%VU| Us, (3.13)
A//VYIBUl—‘r:?YICU] ZW%1U1+B%VY1U1, (3.14)
Gy BU| + HVy,CU = 0 Ty, Ui +CHVy, Uy, (3.15)
VVuy, w1 + Ay, oY) = Baty, Y1 +y ¥ Vy 11, (3.16)
ﬂyl vY) —|—%VU1 Y| — T](Y] )U] = Cﬂfylyl + (1)7/le Y, (3.17)
for any Y1,Y, € T(kerIl,) and Uy,U, € T'(kerIL,)*.
Proof. Using equations (2.5), (2.10)-(2.13), (3.3) and (3.5), we get equations (3.10)-(3.17). ]
Now, we define
(VYl II/)Y2:7/VY| WY2_W’7/VY1Y27 (318)
(Vyl (D)Yz = %Vy] wY, — (IJqf/Vy1 Y, (3.19)
(Vx,C) Xy = 5V x,CXs —CHVx, Xa, (3.20)
(Vx,B)Xy = ¥'Vx,BXo — B Vx, X> (3.21)

for any ¥;,Y; € I'(kerIl,) and X1, X, € ['(kerIT,)*.
Lemma 3.5. If11 be a quasi hemi-slant submersion then we have
(Vr9)Y2 = BTy, Yo — Ty, 0Y2 + gu, (Y1, 12)E +2n(Y1)n(Y2)€ +n(Y2)Y1,
(VUI C)U2 = G)JZ{UI U, — JZ%UlBUz,
(Vu,B)U> = yty, Uy — y, CU> + g, (U1, U2)8,

for any vectors Yy, Y, € T'(kerIL,) and Uy, U, € T'(kerIL,)*.
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Proof. Using equations (3.10), (3.11), (3.12), (3.13) and (3.18)-(3.21), we get all equations of Lemma 3.5. O
If the tensors ¢ and @ are parallel with respect to the linear connection V on M| respectively, then
BIy, Yo = Ty, 02 — gy, (Y1,12) —2n(Y1)n(Y2)E —n(Y2)Y1,CF, Y2 = Ty, yYa
for any ¥1,Y» € T(TM,).
Theorem 3.6. Let I1 be a quasi hemi-slant submersion. Then, the invariant distribution D is integrable if and only if
am, (Tx,0X2 — Tx, 0X1, QY1 + ORY) = gu, (V' Vx,0X1 — V' Vx, 9 Xo, wOY1 ),
for X1,X, €T(D) and Y, € T(D® ©D*).
Proof. For X1,X, € (D), and Y; € T'(D® @ D), using equations (2.3), (2.5), (2.10), (3.2) and (3.3), we have

au, ([X1,X2],Y1) = gur, (Vx, 0X2,0Y1) — gu, (Vx, 0X1,011),
= &M, (%(1 ¢X2 - %(2¢X1 ) (DQY] + wRYl) +ng] (,val ¢X2 - qj/Vqu)Xl ) WQYI)a

which completes the proof. O
Theorem 3.7. Let I1 be a quasi hemi-slant submersion. Then, the slant distribution D is integrable if and only if
em, (FOV 7,0Z) — ANV 7,02, 9RX,) = gm, (T2, 0Zy — T7,0Z1 , 9 PX1) + gm, ( Tz, QY Zy — Tz, OYZ1, X))
forall Z,,Z, e T(D%) and X, € T(D & D).
Proof. Forall Z;,Z, ¢ T(D%) and X; € T(D @ D), we have
em ((21,2:),X1) = gm, (V2,22,X1) — gm, (V2. Z1, X1).
Using equations (2.3), (2.5), (3.2), (3.3) and Lemma 3.3, we have
e, ([Z1,22),X1) =8m, (0V 2,22, 0X1) — gm, (0V 2,21, 0X1)
=8m, (V2,0Z2,0X1) — gm, (V2,0Z1,0X1)
=gm, (Vz, W22, 0X1) + 8m, (Vz, 022, 9X1) — g, (V2, WZ1, 0X1) — guay (Vz, 0Z2, X1)

=cos” Ogur, (Vz,22,X1) — o8’ Ogur, (V2,21,X1) + gm, (T2, 0WZs — Tz, 09 Z1, X1
+8gm (AN 7,02y + T7, 02y, 9 PX1 + ORX1) — gu, (HV 72,021 + Tz, 0Z1, 9 PX1 + PRX ).

Now, we have

sin? 0gu, ([Z1,25],X1) =gm, (T2, 0Zs — Tz, 0Z1, 9PX1) + g, (HV 7, 02 — 7V 7,0Z1 , §RX )
+&m, (T2, OYZy — T7,0YZ1,X1),

which completes the proof. O
Theorem 3.8. Let I1 be a quasi hemi-slant submersion. Then the anti-invariant distribution D is always integrable.

Proof. The proof of the above theorem is exactly the same as that one for hemi-slant submersions, see Theorems 3.13 of [38].
So we omit it. O

Proposition 3.9. Let I1 be a quasi hemi-slant submersion. Then the vertical distribution (kerIl,) does not defines a totally
geodesic foliation on M.

Proof. Let Z; € T'(kerIl,) and Z, € I'(kerI1,)", using equation (2.4), we have

8M, (V21§7Z2) = &M, (¢ZI7Z2)7

since gu, (0Z1,Z>) # 0, s0 gu, (Vz,E,2Z,) # 0. Hence, (kerIL,) does not defines a totally geodesic foliation on M;. O



On Quasi Hemi-Slant Submersions — 92/97

Theorem 3.10. Ler I1 be a proper quasi hemi-slant submersion. Then the distribution (kerIl,)— < & > defines a totally
geodesic foliation on M if and only if

am, (T2, PZy +c0s* 0 7,072, V1) = —gu, (HV 2, 09 0Z2, V1) — gm, (Tz, ©Za, BVy) — gut, (H#V 7, 0Z3,CV7)
forall Z,Z, € T'(kerIl,)— < & > and V; € T'(kerIL,)*.
Proof. Forall Z,Z, € T'(kerIL,)— < & > and V| € I'(kerIL.)", using equations (2.3), (2.5) and (3.2), we have
am; (V2,22 V1) = g, (VZ, 0 P2, 0V1) + gm, (VZ, 0022, 0V ) + gm, (Vz, ORZy, V1 ).
Now, using equations (2.10), (2.11), (3.3), (3.5) and Lemma 3.3, we have
em, (V2,22,V1) =gum, (T3, PZ, V1) + cos® Ogu, (T2, 02, V1) + gu, (Y 7, 09025, V)
+8m, (Vz, (0PZy + 0QZ; + ORZ,), 9 V7).
Now, since WPZ, + ©QZ, + WRZy = wZ; and wPZ; = 0, we have
8, (V2,22,V1) =gu, (T2, PZy + cos® 0 75,025, V1) + g, (HV 2,09 Q2> V1) + g, (Tz, 02, BV )
+8m, (FEV 7, 02,,CVy),
which completes the proof. O

Theorem 3.11. Let I1 be a quasi hemi-slant submersion. Then, the horizontal distribution (kerIL)L does not defines a totally
geodesic foliation on M.

Proof. Let X1,X; € I'(kerIl, )", using equation ( 2.4), we have
e, (Vx, X2,8) = —gum, (X2, Vx, §) = —gum, (X2, 0X1),
since g, (X2, 0X1) # 0, so gu, (Vx, X2,&) # 0. Hence, (kerTI,)* does not defines a totally geodesic foliation on Mj. O

Proposition 3.12. Let I1 be a quasi hemi-slant submersion. Then the distribution D does not defines a totally geodesic foliation
on M.

Proof. For all Y,Y, € I'(D), using equation (2.4), we have
M, (VYlYZaé) = —8M; (Y27¢Y1)>
since gy, (Y2, 9Y1) # 0, s0 gu, (Vy, Y2, &) # 0. Hence D does not defines a totally geodesic foliation on M. O

Theorem 3.13. Let I1 be a quasi hemi-slant submersion. Then the distribution D® < & > defines a totally geodesic foliation if
and only if

gm, (Tx, 9PX2, 0QY1 + ORY1) = —gum, (V' Vx, 9 PXa, y QY1 ),
ng (7/VX1 ¢PX2vBY2) = _ng (%{1 ¢PX23CY2)7
forall X,,X, € (DD < & >),Y; = QY; +RY; € T(D? © D) and ¥ € T'(kerIl, )"+,
Proof. Forall X;,X, e T(D® < & >),Y; = QY +RY; € T(D? © D+) and Y5 € T'(kerIL, )", using equations (2.3), (2.5), (2.10),
(3.2) and (3.3), we have
g, (Vx, X2,Y1) =gum, (Vx, X2, 0Y1)
:ng (VXI ¢PX27 ¢QY1 + ¢RY1)
=8m, (Ix,9PX2, 0OY1 + ORY1) + gm, (V' Vx, 9 PX2, W OY1 ).
Now, again using equations (2.3), (2.5), (2.10), (3.2) and (3.5), we have
gm, (Vx, X2,Y2) =gm, (Vx, X2, 0Y2)
=gm, (Vx, §PX3,BY, +CY>)
=gm, (V' Vx,9PX2,BY2) + gm, (T, 9 PX2,CY>),

which completes the proof. O
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Proposition 3.14. Let I1 be a quasi hemi-slant submersion. Then the distribution D® does not defines a totally geodesic
foliation on M.

Proof. For all Z,Z, € T(D?), using equation (2.4), we have
em (Vz2,22,8) = —gm, (Z2,9Z1),
since gy, (Z2,9Z1) # 0, s0 gu, (Vz,Z2,&) # 0. Hence DP does not defines a totally geodesic foliation on M. O

Theorem 3.15. Let I1 be a quasi hemi-slant submersion. Then the distribution D®@® < & > defines a totally geodesic foliation
on My if and only if

gm, (T2, 092y, Xy) + g, ( Tz, 0Za, 9PX1) + gp, (HV 7, 0Zo, 9RX1) =1(Z2)gm, (Z1, 9 PX1),
gm, (FEV 7,0WZy, X5) + g, (FEV 7, 0Z>,CX2) + gum, (7, 0Zo,BX>) =1 (Z2)8m, (Z1,BX2),

forallZ,,Z, e T(D°® < & >),X; e (D@ D) and X, € T'(kerIT,)*.

Proof. Forall Zy,Z, c T(D%® < £ >), X; € [(D®D*) and X, € I'(kerI1,)*, using equations (2.3), (2.5), (2.11), (3.2), (3.3)
and Lemma 3.3, we have

gm (V2,22 X1) =gm, (V2,92Z2,9X1) — 1(Z2)gm, (Z1, X1 )
=8M, (VZI V7, (PXl) +8m, (VZI WZ, (PXI) - n(Z2)gM1 (Zl,¢PX1)
=cos” 018m, (Vz,Z2,X1) + 8m, (T2, OWZ2, X1) + g, (T20Z2, 9 PX) + gua, (HV 72,025, 9RX, )
—N(Z2)gm, (Z1,0PXy).

Now, we have
sin® 01gu, (V2. 22,X1) =gm, (T2, 0WZ2, X)) + gm, (T, 022, 9 PX1) + g, (Y 7, 0Z2, RXy) — 1(Z2)gma, (Z1, 9 PX) )
Next, from equations (2.3), (2.5), (2.11), (3.2), (3.3), (3.5) and Lemma 3.3, we have

e, (V2,22,X2) =g, (Vz,922,9X2) — 1 (Z2)gm, (Z1,9X2),
=gm, (V2. W22, 0X2) + 8m, (Vz, 02,9 X>) — 1(Z2)8m, (21, $X2),
=cos’ 018m, (Vzl 75,X7) +&m, (%Vzl 0oYZ,,X;) +&m, (%Vzl 0Z,,CX>) +8&m (%1 ®Z,,BX)
—N(22)gm, (Z1,BX,).

Now, we have
Sil’l2 Glng (VZ] ZQ,XQ) =8M, (%Vzl (OIIIZQ,XQ) +gM1 (%Vzl (J)Zz,CXQ) —|—ng (%] (I)ZQ,BXZ) — T](Zg)gM] (Z] ,BXz),
which completes the proof. O

Theorem 3.16. Let I1 be a quasi hemi-slant submersion. Then the distribution D defines a totally geodesic foliation on M if
and only if

gm, (%, X2, 0Y QY1) = —gm, (H'Vx, ORX>, 0Y1),
ng (’%(1 wRX27BY2) = ng (V(DRXZ ¢CY27 wRXl)a

forall X,,X, € T(DY),Y, e T(D@ D), and > € T'(kerm,)*.

Proof. For all X,X, € T(D*),Y; € (D@ D?), and > € T'(kerm,)*. Using equation (2.4), we have
am, (Vx, X2,8) = 0.

Next, using equations (2.3), (2.5), (3.2), (3.3) and Lemma 3.3, we have

gm, (Vx, X2, Y1) =gum, (9Vx, X2, 9PY) + wOY1) + gum, (Vx, X2, 0QY1),
am, (Vx, Xo, PY1 + QY1) =g, (Vx, X2, PY1) + cos® Ogar, (Vx, X2, OY1) + gm, (Vx, X2, @WOY1) + gur, (Vx, 9 X2, 0OV ).
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Now, using equations (2.10) and (2.11), we have
sin? Ogur, (Vx, X2, 0V1) = g, (Fx, X2, WOV ) + gu, (H'Vx, ORX,, ©Y1 ).
Next, using equations (2.3), (2.5), (2.11), (2.13), (3.3) and (3.5), we have
em, (Vx, X2,Y2) =gu, (Vx, ORX2,BY>) + g, (Vx, ORX>,CY>),
=gm, (Fx, ORX>,BY>) — gum, (FEV orx, CY>, ®RX1),
which is complete proof. 0
Using Proposition 3.9 and Theorem 3.11, one can give the following theorem:

Theorem 3.17. Let I1 be a quasi hemi-slant submersion. Then the map I1 is not a totally geodesic map.

4. Examples

Example 4.1. Consider the Euclidean space R'! with coordinates (xi,...,Xs,,Y1.....,ys,z) and base field {E;, Es.;,&} where
= 2 EE Esii=2 (% —|—y’b%>, i=1,...,5 and contravariant vector field & = 29%. Define Lorentzian almost para contact

structure on R'" as follows:

S99 9 S N N B N
¢ <; (Xla)C’+Yla)ﬂ> +Zaz> ——;Yig_zixia*yi +i:ZIYiy 7’

i=

d 1 S 1
§=24-. n=—3 (dz—Zy’dX’), g =—(Men)+ (de ®dx' +Zdy ®dy>
=1

i=1
Then (R, ¢,&, n,8g11 ) is Lorentzian para Sasakian manifold. Let the Riemannian metric tensor field gga is defined by

4

1
8rt = Z Z(dv,-@dv,-).
fay

on R*, where {v1,v2,v3,v4} is local coordinate system on R*.
LetT1: R'"' — R* be a map defined by

H(XI, ---7x57y1----7y57Z) = (-x27Sinax3 _Cosax47y17y4)'

which is quasi hemi-slant submersion map such that

X—28+a X, =2 ai+i+2aa+a X—Zi—ki

1 = ax YIa ) 2 = zCOS (9X3 y38Z s a y4az 3= axs ySaZ 5
0 0 0 0

x, = 22, x5=22 x =22 x—¢-22,

! dy> > oy © " %y 1=6= 2z

(kerIL,) = (DeD? @D @ < & >),

P 9 J
D= <x3 _2(8x5+y5(9Z) X6 —2(9y5>’
9 9 9 9 o
97 _ o v . - PR— = I
DY = <X2 =2coso <8x3 +y38Z) +2sina (3)64 ) 92) , X5 28y3>’

d 0 0 0
1 _ o . — — ) __
b ‘<X1‘2(ax1 ”‘az> X = ay> (©) <X7 28z>’

0 d 0 0 0 d d 0
L —_— _— — 1 — —_— —_— — —_— = — p— —_—
(kerIl,) —<V1—2(8x2+yzaz>,V2 251na<ax3 +yzaz> ZCosa<ax4+y1 aZ),x@ 2ay1,v4 2ay4>’

with quasi hemi-slant angle a. Also by direct computations, we obtain

d P P
MLV, =2—1, ILV3=2—1 ILVi=2

d
H*V =2 5 ) a,,
! &Vz aV3 81/4

8v1 ’
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Example 4.2. Consider R'' and R* has same structure as in Example 4.1. Let T1: R'' — R* be a map defined by

V3x1 +x2
H(xla"'ax5ay1a"'7y5vz): fv)&h)’l»% .

which is quasi hemi-slant submersion map such that

0 0 0 0 0 0
X1=2<a +y18> 2\f< +yza) X2:2<8x3+y38z) X3:2<8x5+y58z)’

d d d d

Xy =2—, Xs=2— X¢=2—! X;=2-.
dy2 dy4 dys 9z

(kerIL,) = (D& D & D @ < € >),

p={xi=2( 2L 4yl xs=2-2L
- 3= ax5 y5az A6 — ays 5
0 J 0
o s —n__
D —<X] Z(a)q +yi= ) 2\[< +yla ),X4 Zay2>,

d d d d
l_ — J— = ) — = = L—
D _<X5_2(ax3 +y3az>aX2 28y4>,<§> <X7 zaz >a

0 0 0 d 0 0 d
(kerH*) <V1_2\/7( +yla)+2<ax2+yzaz)7V2:2(ax4+}748Z>,V3:28ylyv4:28y3>7

with quasi hemi-slant angle 0 = %. Also by direct computations, we obtain

d d d
IV, =2—, ILVz=2-—, ILW=2

d
IV, =2 s ) 5
! 8\12 3V3 aV4

v’

5. Conclusion

In this paper, integrability conditions and conditions for defining a totally geodesic foliation by certain distributions were found.
Then, by applying the notion of quasi hemi-slant submersions from Lorentzian para Sasakian manifolds onto Riemannian
manifolds.
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