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Abstract
The paper deals with the notion of quasi hemi-slant submersions from Lorentzian para Sasakian manifolds
onto Riemannian manifolds. These submersions are generalization of hemi-slant submersions and semi-slant
submersions. In this paper, we also study the geometry of leaves of distributions which are involved in the
definition of the submersion. Further, we obtain the conditions for such distributions to be integrable and totally
geodesic. Moreover, we also give the characterization theorems for proper quasi hemi-slant submersions and
provide some examples of it.
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1. Introduction
In differential geometry the theory of Riemannian submersions was firstly defined and studied by O’Neill [1] and Gray [2], in
1966 and 1967, respectively. In 1976, Watson [3] studied almost complex type of Riemannian submersions and introduced
almost Hermitian submersions between almost Hermitian manifolds. Latar on, Chinea [4] extended the idea of almost
Hermitian submersion to different sub-classes of almost contact manifolds. There are so many important and interesting
results about Riemannian and almost Hermitian submersion which are studied in ( [5]- [7]). As a natural generalization of
holomorphic submersions and totally real submersions, B. Sahin introduced the notion of slant submersions [8], semi-invariant
submersions [9] and hemi-slant Riemannian submersions from almost Hermitian manifolds onto Riemannian manifolds in 2011,
2013 and 2015 respectively. There are many research articles on Riemannian submersions between Riemannian manifolds
equipped with different structures have been published by several geometers ( [10]- [27]).

Magid and Falcitelli et. al. stablished the theory of Lorentzian submersions in [28] and [29], respectively. In 1989,
Matsumoto [30] introduced the notion of Lorentzian para Sasakian manifolds. Later, Mihai and Rosca studied the same notion
independently in [31]. Recently, Gunduzalp and Sahin studied paracontact and Lorentzian almost paracontact structures in [32]
and [33]. Kumar et. al. in [34] defined and studied conformal semi-slant submersions from Lorentzian para Sasakian manifolds
onto Riemannian manifolds. As a natural generalization of hemi-slant submersions, semi-slant submersions and bi-slant
submersions, Prasad, Shukla and Kumar in [35] introduced the notion of quasi bi-slant submersions from Kaehler manifold
onto a Riemannian manifold.

Beside the introduction this paper contains three sections. In the second section, we present some basic informations related
to quasi hemi-slant Riemannian submersion needed throughout this paper. In the third section, we obtain some results on quasi
hemi-slant Riemannian submersions from Lorentzian para Sasakian manifold onto Riemannian manifold. We also study the
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geometry of leaves of distribution involved in above submersion. Finally, we obtain certain conditions for such submersions to
be totally geodesic. In the last section, we provide some examples for such submersions.

2. Preliminaries
In this section, we recall main definitions and properties of Lorentzian para Sasakian manifolds.

An (2n+1)-dimensional differentiable manifold M1 which admits a (1,1) tensor field φ , a contravariant vector field ξ , a
1-form η is called Lorentzian para Sasakian manifold with Lorentzian metric gM1 ( [31], [36]) which satisfy:

φ
2 = I +η⊗ξ , φ ◦ξ = 0, η ◦φ = 0, (2.1)

η(ξ ) = −1, gM1(Z1,ξ ) = η(Z1), (2.2)
gM1(φZ1,φZ2) = gM1(Z1,Z2)+η(Z1)η(Z2), gM1(φZ1,Z2) = gM1(Z1,φZ2), (2.3)

∇Z1ξ = φZ1, (2.4)
(∇Z1φ)Z2 = gM1(Z1,Z2)ξ +η(Z2)X +2η(Z1)η(Z2)ξ , (2.5)

where ∇ represents the operator of covariant differentiation with respect to the Lorentzian metric gM1 and Z1,Z2 vector fields
on M1.

In a Lorentzian para Sasakian manifold, it is clear that

rank(φ) = 2n. (2.6)

Now, if we put

Φ(Z1,Z2) = Φ(Z2,Z1) = gM1(Z1,φZ2) = gM1(φZ1,Z2) (2.7)

then the tensor field Φ is symmetric (0,2) tensor field, for any vector fields Z1 and Z2 on M1.

Example 2.1 ( [36]). Let R2k+1 = {
(
x1,x2, . . . ,xk,y1,y2, . . . ,yk,z

)
: xi,yi,z ∈ R, i = 1,2, . . . ,k}. Consider R2k+1 with the

following structure:

φ
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1
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2

(
dz−

k
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)
, ξ = 2
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∂ z
.

Then, (R2k+1,φ ,ξ ,η ,gR2k+1) is a Lorentzian para-Sasakian manifold. The vector fields Ei = 2 ∂

∂yi ,Ek+i = 2
(

∂

∂xi + yi ∂

∂ z

)
and ξ

form a φ -basis for the contact metric structure.

Let Π : (M1,gM1)→ (M2,gM2) be Riemannian submersions between Riemannian manifolds [7]. Define O’Neill’s tensors
T and A [1] by

AEL = H ∇H EV L+V ∇H EH L, (2.8)
TEL = H ∇V EV L+V ∇V EH L, (2.9)

for any vector fields E,L on M1, where ∇ is the Levi-Civita connection of gM1 . It is easy to see that TE and AE are skew-
symmetric operators on the tangent bundle of M1 reversing the vertical and the horizontal distributions.

From equations (2.8) and (2.9), we have

∇Y1Y2 = TY1Y2 +V ∇Y1Y2, (2.10)
∇Y1Z1 = TY1Z1 +H ∇Y1Z1, (2.11)
∇Z1Y1 = AZ1Y1 +V ∇Z1Y1, (2.12)
∇Z1Z2 = H ∇Z1 Z2 +AZ1Z2 (2.13)

for Y1,Y2 ∈ Γ(kerΠ∗) and Z1,Z2 ∈ Γ(kerΠ∗)
⊥, where H ∇Y1Z1 = AZ1Y1, if Z1 is basic. It is not difficult to observe that T

acts on the fibers as the second fundamental form, while A acts on the horizontal distribution and measures the obstruction to
the integrability of this distribution.
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Since TZ1 is skew-symmetric, we observe that Π has totally geodesic fibres if and only if T ≡ 0.
Let (M1,φ ,ξ ,η ,gM1) be a Lorentzian para Sasakian manifold and (M2,gM2) be a Riemannian manifold and Π : M1→M2

is smooth map. Then the second fundamental form of Π is given by

(∇Π∗)(U1,U2) = ∇
Π
U1

Π∗U2−Π∗(∇U1U2) for U1,U2 ∈ Γ(TpM1), (2.14)

where we denote conveniently by ∇ the Levi-Civita connections of the matrices gM1 and gM2 and ∇Π is the pullback connection.
We recall that a differentiable map Π between two Riemannian manifolds is totally geodesic if

(∇Π∗)(U1,U2) = 0 for all U1,U2 ∈ Γ(T M1). (2.15)

A totally geodesic map is that it maps every geodesic in the total space into a geodesic in the base space in proportion to arc
lengths.

Now, we can easily prove the following lemma as in [12].

Lemma 2.2. Let Π be a Riemannian submersion from a Lorentzian para Sasakian manifold (M1,φ ,ξ ,η ,gM1) onto Riemannian
manifold (M2,gM2), then we have

(i) (∇Π∗)(W1,W2) = 0,

(ii) (∇Π∗)(Z1,Z2) =−Π∗(TZ1Z2) =−Π∗(∇Z1Z2),

(iii) (∇Π∗)(W1,Z1) =−Π∗(∇W1Z1) =−Π∗(AW1Z1),

where W1,W2 are horizontal vector fields and Z1,Z2 are vertical vector fields.

3. Quasi Hemi-Slant Submersions
In this section, quasi hemi-slant submersions Π from a Lorentzian para Sasakian manifold (M1,φ ,ξ ,η ,gM1) onto a Riemannian
manifold (M2,gM2) is defined and studied.

Definition 3.1 ( [37]). Let (M1,φ ,ξ ,η ,gM1) be a Lorentzian para Sasakian manifold and (M2,gM2) a Riemannian manifold. A
Riemannian submersion Π : (M1,φ ,ξ ,η ,gM1)→ (M2,gM2) is called a quasi hemi-slant submersion if there exist four mutually
orthogonal distribution D,Dθ ,D⊥ and < ξ > such that

(i) kerΠ∗ = D⊕orth Dθ ⊕orth D⊥⊕orth < ξ >,

(ii) φ(D) = D i.e., D is invariant,

(iii) for any non-zero vector field Z1 ∈ (Dθ )p, p ∈M1, the angle θ between φZ1 and (Dθ )p is constant and independent of
the choice of point p and Z1 in (Dθ )p.

The angle θ is called slant angle of the submersion, where D,Dθ and D⊥ are space like subspaces.
Let Π be quasi hemi-slant submersion from an almost contact metric manifold (M1,φ ,ξ ,η ,gM1) onto a Riemannian

manifold (M2,gM2). Then, we have

T M1 = kerΠ∗⊕ (kerΠ∗)
⊥. (3.1)

Now, for any vector field V1 ∈ Γ(kerΠ∗), we put

V1 = PV1 +QV1 +RV1−η(V1)ξ , (3.2)

where P,Q and R are projection morphisms of kerΠ∗ onto D,Dθ and D⊥, respectively.
For Y1 ∈ Γ(kerΠ∗), we set

φY1 = ψY1 +ωY1, (3.3)

where ψY1 ∈ Γ(kerΠ∗) and ωY1 ∈ Γ(ωDθ ⊕ωD⊥).
Using equations (3.2) and (3.3), we have

φV1 = φ(PV1)+φ(QV1)+φ(RV1),

= ψ(PV1)+ω(PV1)+ψ(QV1)+ω(QV1)+ψ(RV1)+ω(RV1).
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Since φ(D) = D and φ(D⊥)⊂ (kerΠ∗)
⊥, we get ω(PV1) = 0 and ψ(RV1) = 0.

Hence above equation reduces to

φV1 = ψ(PV1)+ψQV1 +ωQV1 +ωRV1. (3.4)

Thus we have the following decomposition

φ(kerΠ∗) = D⊕ψDθ ⊕ (ωDθ ⊕ωD⊥), (3.5)

where ⊕ denotes orthogonal direct sum. Since ωDθ ⊆ (kerΠ∗)
⊥, ωD⊥ ⊆ (kerΠ∗)

⊥. So, we can write

(kerΠ∗)
⊥ = ωDθ ⊕ωD⊥⊕µ,

where µ is orthogonal complement of (ωDθ ⊕ωD⊥) in (kerΠ∗)
⊥.

Also for any non-zero vector field W1 ∈ Γ(kerΠ∗)
⊥, we have

φW1 = BW1 +CW1, (3.6)

where BW1 ∈ Γ(kerΠ∗) and CW1 ∈ Γ(µ).
Span{ξ}= 〈ξ 〉 defines time like vector field distribution. If Z1 is a space-like vector field and is orthogonal to ξ , then

gM1 (φZ1,φZ2) = gM1 (Z1,Z2)> 0,

so φZ1 is also space like. Also ψZ1 is space-like.
For space-like vector fields the Cauchy-Schwartz inequality, gM1 (Z1,Z2)≤| Z1 || Z2 | is verified.
Therefore the Wirtinger angle θ is given by

cosθ =
gM1 (φZ1,ψZ2)

| φZ1 || ψZ2 |
.

gM1

∣∣
kerF∗

is non degenerate metric of index 1 at any point of M1. So (kerΠ∗)q is time like subspace of TqM1 at any point of M1,

so (kerΠ∗)
⊥
q is space like subspace of TqM1 at any point q ∈M1.

We will denote a quasi hemi-slant submersion from a Lorentzian para Sasakian manifold (M1,φ ,ξ ,η ,gM1) onto a Rieman-
nian manifold (M2,gM2) by Π.

Lemma 3.2. If Π be a quasi hemi-slant submersion then we have

ψ
2U1 +BωU1 =U1 +η(U1)ξ , ωψU1 +CωU1 = 0, ωBX1 +C2X1 = X1, ψBX1 +BCX1 = 0,

for all U1 ∈ Γ(kerΠ∗) and X1 ∈ Γ(kerΠ∗)
⊥.

Proof. Using equations (2.1),(3.3) and (3.5), we have Lemma 3.2.

Lemma 3.3. If Π be a quasi hemi-slant submersion then we have

(i) ψ2U1 = (cos2 θ)U1,

(ii) gM1(ψU1,ψU2) = cos2 θgM1(U1,U2),

(iii) gM1(ωU1,ωU2) = sin2
θgM1(U1,U2),

for all U1,U2 ∈ Γ(Dθ ).

Proof. (i) Let Π be a quasi hemi-slant submersion from a Lorentzian para Sasakian manifold (M1,φ ,ξ ,η ,gM1) onto a
Riemannian manifold (M2,gM2) with the quasi hemi-slant angle θ .

Then for a non-vanishing vector field U1 ∈ Γ(Dθ ), we have

cosθ =
| ψU1 |
| φU1 |

, (3.7)



On Quasi Hemi-Slant Submersions — 90/97

and

cosθ =
gM1(U1,ψU1)

|U1 || ψU1 |
. (3.8)

By using equations (2.1),(3.3) and (3.8) we have

cosθ =
gM1(ψU1,ψU1)

| φU1 || ψU1 |
,

cosθ =
gM1(U1,ψ

2U1)

|φU1||ψU1|
. (3.9)

From equations (3.8) and (3.9), we get ψ2U1 = (cos2 θ)U1, for U1 ∈ Γ(Dθ ).

(ii) For all U1,U2 ∈ Γ(Dθ ), using equations (2.3),(3.3) and Lemma 3.3 (i), we have

gM1(ψU1,ψU2) = gM1(φU1−ωU1,ψU2)

= gM1(U1,ψ
2U2)

= cos2
θgM1(U1,U2).

(iii) Using equation (2.3), (3.3) and Lemma 3.3 (i), (ii) we have Lemma 3.3 (iii).

Lemma 3.4. If Π be a quasi hemi-slant submersion then we have

V ∇Y1ψY2 +TY1 ωY2−gM1(Y1,Y2)ξ −2η(Y1)η(Y2)ξ −η(Y2)Y1 = ψV ∇Y1Y2 +BTY1Y2, (3.10)
TY1ψY2 +H ∇Y1ωY2 = ωV ∇Y1Y2 +CTY1Y2, (3.11)
V ∇U1 BU2 +AU1CU2−gM1(CU1,U2)ξ = ψAU1U2 +BH ∇U1U2, (3.12)
AU1BU2 +H ∇U1CU2 = ωAU1U2 +CH ∇U1U2, (3.13)
V ∇Y1 BU1 +TY1CU1 = ψTY1U1 +BH ∇Y1U1, (3.14)
TY1BU1 +H ∇Y1CU1 = ωTY1U1 +CH ∇Y1U1, (3.15)
V ∇U1ψY1 +AU1ωY1 = BAU1Y1 +ψV ∇U1Y1, (3.16)
AU1ψY1 +H ∇U1ωY1−η(Y1)U1 =CAU1Y1 +ωV ∇U1Y1, (3.17)

for any Y1,Y2 ∈ Γ(kerΠ∗) and U1,U2 ∈ Γ(kerΠ∗)
⊥.

Proof. Using equations (2.5), (2.10)-(2.13), (3.3) and (3.5), we get equations (3.10)-(3.17).

Now, we define

(∇Y1ψ)Y2 = V ∇Y1ψY2−ψV ∇Y1Y2, (3.18)
(∇Y1ω)Y2 = H ∇Y1ωY2−ωV ∇Y1Y2, (3.19)
(∇X1C)X2 = H ∇X1CX2−CH ∇X1X2, (3.20)
(∇X1B)X2 = V ∇X1BX2−BH ∇X1X2 (3.21)

for any Y1,Y2 ∈ Γ(kerΠ∗) and X1,X2 ∈ Γ(kerΠ∗)
⊥.

Lemma 3.5. If Π be a quasi hemi-slant submersion then we have

(∇Y1φ)Y2 = BTY1Y2−TY1ωY2 +gM1(Y1,Y2)ξ +2η(Y1)η(Y2)ξ +η(Y2)Y1,

(∇Y1ω)Y2 =CTY1Y2−TY1ψY2,

(∇U1C)U2 = ωAU1U2−AU1BU2,

(∇U1B)U2 = ψAU1U2−AU1CU2 +gM1(U1,U2)ξ ,

for any vectors Y1,Y2 ∈ Γ(kerΠ∗) and U1,U2 ∈ Γ(kerΠ∗)
⊥.
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Proof. Using equations (3.10), (3.11), (3.12), (3.13) and (3.18)-(3.21), we get all equations of Lemma 3.5.

If the tensors φ and ω are parallel with respect to the linear connection ∇ on M1 respectively, then

BTY1Y2 = TY1ωY2−gM1(Y1,Y2)ξ −2η(Y1)η(Y2)ξ −η(Y2)Y1,CTY1Y2 = TY1ψY2

for any Y1,Y2 ∈ Γ(T M1).

Theorem 3.6. Let Π be a quasi hemi-slant submersion. Then, the invariant distribution D is integrable if and only if

gM1(TX1φX2−TX2φX1,ωQY1 +ωRY1) = gM1(V ∇X2φX1−V ∇X1φX2,ψQY1),

for X1,X2 ∈ Γ(D) and Y1 ∈ Γ(Dθ ⊕D⊥).

Proof. For X1,X2 ∈ Γ(D), and Y1 ∈ Γ(Dθ ⊕D⊥), using equations (2.3), (2.5), (2.10), (3.2) and (3.3), we have

gM1([X1,X2],Y1) = gM1(∇X1φX2,φY1)−gM1(∇X2φX1,φY1),

= gM1(TX1φX2−TX2 φX1,ωQY1 +ωRY1)+gM1(V ∇X1φX2−V ∇X2 φX1,ψQY1),

which completes the proof.

Theorem 3.7. Let Π be a quasi hemi-slant submersion. Then, the slant distribution Dθ is integrable if and only if

gM1(H ∇Z2ωZ1−H ∇Z1ωZ2,φRX1) = gM1(TZ1ωZ2−TZ2ωZ1,φPX1)+gM1(TZ1ωψZ2−TZ2ωψZ1,X1)

for all Z1,Z2 ∈ Γ(Dθ ) and X1 ∈ Γ(D⊕D⊥).

Proof. For all Z1,Z2 ∈ Γ(Dθ ) and X1 ∈ Γ(D⊕D⊥), we have

gM1([Z1,Z2],X1) = gM1(∇Z1Z2,X1)−gM1(∇Z2Z1,X1).

Using equations (2.3), (2.5), (3.2), (3.3) and Lemma 3.3, we have

gM1([Z1,Z2],X1) =gM1(φ∇Z1Z2,φX1)−gM1(φ∇Z2Z1,φX1)

=gM1(∇Z1φZ2,φX1)−gM1(∇Z2φZ1,φX1)

=gM1(∇Z1ψZ2,φX1)+gM1(∇Z1ωZ2,φX1)−gM1(∇Z2ψZ1,φX1)−gM1(∇Z1ωZ2,φX1)

=cos2
θgM1(∇Z1Z2,X1)− cos2

θgM1(∇Z2Z1,X1)+gM1(TZ1ωψZ2−TZ2ωψZ1,X1)

+gM1(H ∇Z1ωZ2 +TZ1ωZ2,φPX1 +φRX1)−gM1(H ∇Z2ωZ1 +TZ2ωZ1,φPX1 +φRX1).

Now, we have

sin2
θgM1([Z1,Z2],X1) =gM1(TZ1ωZ2−TZ2ωZ1,φPX1)+gM1(H ∇Z1ωZ2−H ∇Z2ωZ1,φRX1)

+gM1(TZ1ωψZ2−TZ2ωψZ1,X1),

which completes the proof.

Theorem 3.8. Let Π be a quasi hemi-slant submersion. Then the anti-invariant distribution D⊥ is always integrable.

Proof. The proof of the above theorem is exactly the same as that one for hemi-slant submersions, see Theorems 3.13 of [38].
So we omit it.

Proposition 3.9. Let Π be a quasi hemi-slant submersion. Then the vertical distribution (kerΠ∗) does not defines a totally
geodesic foliation on M1.

Proof. Let Z1 ∈ Γ(kerΠ∗) and Z2 ∈ Γ(kerΠ∗)
⊥, using equation (2.4), we have

gM1(∇Z1ξ ,Z2) = gM1(φZ1,Z2),

since gM1(φZ1,Z2) 6= 0, so gM1(∇Z1ξ ,Z2) 6= 0. Hence, (kerΠ∗) does not defines a totally geodesic foliation on M1.
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Theorem 3.10. Let Π be a proper quasi hemi-slant submersion. Then the distribution (kerΠ∗)− < ξ > defines a totally
geodesic foliation on M1 if and only if

gM1(TZ1PZ2 + cos2
θTZ1 QZ2,V1) =−gM1(H ∇Z1ωψQZ2,V1)−gM1(TZ1ωZ2,BV1)−gM1(H ∇Z1ωZ2,CV1)

for all Z1,Z2 ∈ Γ(kerΠ∗)−< ξ > and V1 ∈ Γ(kerΠ∗)
⊥.

Proof. For all Z1,Z2 ∈ Γ(kerΠ∗)−< ξ > and V1 ∈ Γ(kerΠ∗)
⊥, using equations (2.3), (2.5) and (3.2), we have

gM1(∇Z1Z2,V1) = gM1(∇Z1φPZ2,φV1)+gM1(∇Z1φQZ2,φV1)+gM1(∇Z1φRZ2,φV1).

Now, using equations (2.10), (2.11), (3.3), (3.5) and Lemma 3.3, we have

gM1(∇Z1Z2,V1) =gM1(TZ1PZ2,V1)+ cos2
θgM1(TZ1QZ2,V1)+gM1(H ∇Z1 ωψQZ2,V1)

+gM1(∇Z1(ωPZ2 +ωQZ2 +ωRZ2),φV1).

Now, since ωPZ2 +ωQZ2 +ωRZ2 = ωZ2 and ωPZ2 = 0, we have

gM1(∇Z1Z2,V1) =gM1(TZ1PZ2 + cos2
θTZ1QZ2,V1)+gM1(H ∇Z1ωψQZ2,V1)+gM1(TZ1ωZ2,BV1)

+gM1(H ∇Z1ωZ2,CV1),

which completes the proof.

Theorem 3.11. Let Π be a quasi hemi-slant submersion. Then, the horizontal distribution (kerΠ∗)
⊥ does not defines a totally

geodesic foliation on M1.

Proof. Let X1,X2 ∈ Γ(kerΠ∗)
⊥, using equation ( 2.4), we have

gM1(∇X1X2,ξ ) =−gM1(X2,∇X1ξ ) =−gM1(X2,φX1),

since gM1(X2,φX1) 6= 0, so gM1(∇X1X2,ξ ) 6= 0. Hence, (kerΠ∗)
⊥ does not defines a totally geodesic foliation on M1.

Proposition 3.12. Let Π be a quasi hemi-slant submersion. Then the distribution D does not defines a totally geodesic foliation
on M1.

Proof. For all Y1,Y2 ∈ Γ(D), using equation (2.4), we have

gM1(∇Y1Y2,ξ ) =−gM1(Y2,φY1),

since gM1(Y2,φY1) 6= 0, so gM1(∇Y1Y2,ξ ) 6= 0. Hence D does not defines a totally geodesic foliation on M1.

Theorem 3.13. Let Π be a quasi hemi-slant submersion. Then the distribution D⊕< ξ > defines a totally geodesic foliation if
and only if

gM1(TX1φPX2,ωQY1 +φRY1) =−gM1(V ∇X1φPX2,ψQY1),

gM1(V ∇X1φPX2,BY2) =−gM1(TX1φPX2,CY2),

for all X1,X2 ∈ Γ(D⊕< ξ >),Y1 = QY1 +RY1 ∈ Γ(Dθ ⊕D⊥) and Y2 ∈ Γ(kerΠ∗)
⊥.

Proof. For all X1,X2 ∈ Γ(D⊕< ξ >),Y1 = QY1 +RY1 ∈ Γ(Dθ ⊕D⊥) and Y2 ∈ Γ(kerΠ∗)
⊥, using equations (2.3), (2.5), (2.10),

(3.2) and (3.3), we have

gM1(∇X1X2,Y1) =gM1(∇X1φX2,φY1)

=gM1(∇X1φPX2,φQY1 +φRY1)

=gM1(TX1φPX2,ωQY1 +φRY1)+gM1(V ∇X1φPX2,ψQY1).

Now, again using equations (2.3), (2.5), (2.10), (3.2) and (3.5), we have

gM1(∇X1X2,Y2) =gM1(∇X1φX2,φY2)

=gM1(∇X1φPX2,BY2 +CY2)

=gM1(V ∇X1φPX2,BY2)+gM1(TX1φPX2,CY2),

which completes the proof.
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Proposition 3.14. Let Π be a quasi hemi-slant submersion. Then the distribution Dθ does not defines a totally geodesic
foliation on M1.

Proof. For all Z1,Z2 ∈ Γ(Dθ ), using equation (2.4), we have

gM1(∇Z1Z2,ξ ) =−gM1(Z2,φZ1),

since gM1(Z2,φZ1) 6= 0, so gM1(∇Z1Z2,ξ ) 6= 0. Hence Dθ does not defines a totally geodesic foliation on M1.

Theorem 3.15. Let Π be a quasi hemi-slant submersion. Then the distribution Dθ⊕< ξ > defines a totally geodesic foliation
on M1 if and only if

gM1(TZ1ωψZ2,X1)+gM1(TZ1ωZ2,φPX1)+gM1(H ∇Z1ωZ2,φRX1) =η(Z2)gM1(Z1,φPX1),

gM1(H ∇Z1ωψZ2,X2)+gM1(H ∇Z1ωZ2,CX2)+gM1(TZ1ωZ2,BX2) =η(Z2)gM1(Z1,BX2),

for all Z1,Z2 ∈ Γ(Dθ⊕< ξ >),X1 ∈ Γ(D⊕D⊥) and X2 ∈ Γ(kerΠ∗)
⊥.

Proof. For all Z1,Z2 ∈ Γ(Dθ⊕< ξ >), X1 ∈ Γ(D⊕D⊥) and X2 ∈ Γ(kerΠ∗)
⊥, using equations (2.3), (2.5), (2.11), (3.2), (3.3)

and Lemma 3.3, we have

gM1(∇Z1Z2,X1) =gM1(∇Z1φZ2,φX1)−η(Z2)gM1(Z1,φX1)

=gM1(∇Z1ψZ2,φX1)+gM1(∇Z1ωZ2,φX1)−η(Z2)gM1(Z1,φPX1)

=cos2
θ1gM1(∇Z1Z2,X1)+gM1(TZ1ωψZ2,X1)+gM1(TZωZ2,φPX1)+gM1(H ∇Z1ωZ2,φRX1)

−η(Z2)gM1(Z1,φPX1).

Now, we have

sin2
θ1gM1(∇Z1Z2,X1) =gM1(TZ1ωψZ2,X1)+gM1(TZ1ωZ2,φPX1)+gM1(H ∇Z1ωZ2,φRX1)−η(Z2)gM1(Z1,φPX1)

Next, from equations (2.3), (2.5), (2.11), (3.2), (3.3), (3.5) and Lemma 3.3, we have

gM1(∇Z1Z2,X2) =gM1(∇Z1φZ2,φX2)−η(Z2)gM1(Z1,φX2),

=gM1(∇Z1ψZ2,φX2)+gM1(∇Z1ωZ2,φX2)−η(Z2)gM1(Z1,φX2),

=cos2
θ1gM1(∇Z1Z2,X2)+gM1(H ∇Z1ωψZ2,X2)+gM1(H ∇Z1ωZ2,CX2)+gM1(TZ1ωZ2,BX2)

−η(Z2)gM1(Z1,BX2).

Now, we have

sin2
θ1gM1(∇Z1Z2,X2) =gM1(H ∇Z1ωψZ2,X2)+gM1(H ∇Z1 ωZ2,CX2)+gM1(TZ1ωZ2,BX2)−η(Z2)gM1(Z1,BX2),

which completes the proof.

Theorem 3.16. Let Π be a quasi hemi-slant submersion. Then the distribution D⊥ defines a totally geodesic foliation on M1 if
and only if

gM1(TX1X2,ωψQY1) =−gM1(H ∇X1ωRX2,ωY1),

gM1(TX1ωRX2,BY2) = gM1(∇ωRX2φCY2,ωRX1),

for all X1,X2 ∈ Γ(D⊥),Y1 ∈ Γ(D⊕Dθ ), and Y2 ∈ Γ(kerπ∗)
⊥.

Proof. For all X1,X2 ∈ Γ(D⊥),Y1 ∈ Γ(D⊕Dθ ), and Y2 ∈ Γ(kerπ∗)
⊥. Using equation (2.4), we have

gM1(∇X1X2,ξ ) = 0.

Next, using equations (2.3), (2.5), (3.2), (3.3) and Lemma 3.3, we have

gM1(∇X1X2,Y1) =gM1(φ∇X1X2,φPY1 +ψQY1)+gM1(∇X1φX2,ωQY1),

gM1(∇X1X2,PY1 +QY1) =gM1(∇X1X2,PY1)+ cos2
θgM1(∇X1X2,QY1)+gM1(∇X1X2,ωψQY1)+gM1(∇X1φX2,ωQY1).
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Now, using equations (2.10) and (2.11), we have

sin2
θgM1(∇X1X2,QY1) = gM1(TX1X2,ωψQY1)+gM1(H ∇X1ωRX2,ωY1).

Next, using equations (2.3), (2.5), (2.11), (2.13), (3.3) and (3.5), we have

gM1(∇X1 X2,Y2) =gM1(∇X1ωRX2,BY2)+gM1(∇X1ωRX2,CY2),

=gM1(TX1ωRX2,BY2)−gM1(H ∇ωRX2φCY2,ωRX1),

which is complete proof.

Using Proposition 3.9 and Theorem 3.11, one can give the following theorem:

Theorem 3.17. Let Π be a quasi hemi-slant submersion. Then the map Π is not a totally geodesic map.

4. Examples

Example 4.1. Consider the Euclidean space R11 with coordinates (x1, ...,x5, ,y1.....,y5,z) and base field {Ei, E5+i,ξ} where

Ei = 2 ∂

∂yi , E5+i = 2
(

∂

∂xi + yi ∂

∂ z

)
, i = 1, . . . ,5 and contravariant vector field ξ = 2 ∂

∂ z . Define Lorentzian almost para contact

structure on R11 as follows:

φ

(
5

∑
i=1

(
Xi

∂

∂xi +Yi
∂

∂yi

)
+Z

∂

∂ z

)
=−

5

∑
i=1

Yi
∂

∂xi −
5

∑
i=1

Xi
∂

∂yi +
5

∑
i=1

Yiyi ∂

∂ z
,

ξ = 2
∂

∂ z
, η =−1

2

(
dz−

5

∑
i=1

yidxi

)
, gR11 =−(η⊗η)+

1
4

(
5

∑
i=1

dxi⊗dxi +
5

∑
i=1

dyi⊗dyi

)
.

Then (R11,φ ,ξ ,η ,gR11) is Lorentzian para Sasakian manifold. Let the Riemannian metric tensor field gR4 is defined by

gR4 =
1
4

4

∑
i=1

(dvi⊗dvi).

on R4, where {v1,v2,v3,v4} is local coordinate system on R4.
Let Π : R11→ R4 be a map defined by

Π(x1, ...,x5,y1....,y5,z) = (x2,sinαx3− cosαx4,y1,y4).

which is quasi hemi-slant submersion map such that

X1 = 2
(

∂

∂x1
+ y1

∂

∂ z

)
, X2 = 2cosα

(
∂

∂x3
+ y3

∂

∂ z

)
+2sinα

(
∂

∂x4
+ y4

∂

∂ z

)
, X3 = 2

(
∂

∂x5
+ y5

∂

∂ z

)
,

X4 = 2
∂

∂y2
, X5 = 2

∂

∂y3
, X6 = 2

∂

∂y5
, X7 = ξ = 2

∂

∂ z
,

(kerΠ∗) = (D⊕Dθ ⊕D⊥⊕< ξ >),

D =

〈
X3 = 2

(
∂

∂x5
+ y5

∂

∂ z

)
,X6 = 2

∂

∂y5

〉
,

Dθ =

〈
X2 = 2cosα

(
∂

∂x3
+ y3

∂

∂ z

)
+2sinα

(
∂

∂x4
+ y1

∂

∂ z

)
,X5 = 2

∂

∂y3

〉
,

D⊥ =

〈
X1 = 2

(
∂

∂x1
+ y1

∂

∂ z

)
,X4 = 2

∂

∂y2

〉
, 〈ξ 〉=

〈
X7 = 2

∂

∂ z

〉
,

(kerΠ∗)
⊥ =

〈
V1 = 2

(
∂

∂x2
+ y2

∂

∂ z

)
,V2 = 2sinα

(
∂

∂x3
+ y2

∂

∂ z

)
−2cosα

(
∂

∂x4
+ y1

∂

∂ z

)
,V3 = 2

∂

∂y1
,V4 = 2

∂

∂y4

〉
,

with quasi hemi-slant angle α . Also by direct computations, we obtain

Π∗V1 = 2
∂

∂v1
, Π∗V2 = 2

∂

∂v2
, Π∗V3 = 2

∂

∂v3
, Π∗V4 = 2

∂

∂v4
.
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Example 4.2. Consider R11 and R4 has same structure as in Example 4.1. Let Π : R11→ R4 be a map defined by

Π(x1, . . . ,x5,y1, . . . ,y5,z) =

(√
3x1 + x2

2
,x4,y1,y3

)
.

which is quasi hemi-slant submersion map such that

X1 =2
(

∂

∂x1
+ y1

∂

∂ z

)
−2
√

3
(

∂

∂x2
+ y2

∂

∂ z

)
, X2 = 2

(
∂

∂x3
+ y3

∂

∂ z

)
, X3 = 2

(
∂

∂x5
+ y5

∂

∂ z

)
,

X4 =2
∂

∂y2
, X5 = 2

∂

∂y4
, X6 = 2

∂

∂y5
, X7 = 2

∂

∂ z
,

(kerΠ∗) = (D⊕Dθ ⊕D⊥⊕< ξ >),

D =

〈
X3 = 2

(
∂

∂x5
+ y5

∂

∂ z

)
,X6 = 2

∂

∂y5

〉
,

Dθ =

〈
X1 = 2

(
∂

∂x1
+ y1

∂

∂ z

)
−2
√

3
(

∂

∂x2
+ y1

∂

∂ z

)
,X4 = 2

∂

∂y2

〉
,

D⊥ =

〈
X5 = 2

(
∂

∂x3
+ y3

∂

∂ z

)
,X2 = 2

∂

∂y4

〉
,〈ξ 〉=< X7 = 2

∂

∂ z
>,

(kerΠ∗)
⊥ =

〈
V1 = 2

√
3
(

∂

∂x1
+ y1

∂

∂ z

)
+2
(

∂

∂x2
+ y2

∂

∂ z

)
,V2 = 2

(
∂

∂x4
+ y4

∂

∂ z

)
,V3 = 2

∂

∂y1
,V4 = 2

∂

∂y3

〉
,

with quasi hemi-slant angle θ = π

6 . Also by direct computations, we obtain

Π∗V1 = 2
∂

∂v1
, Π∗V2 = 2

∂

∂v2
, Π∗V3 = 2

∂

∂v3
, Π∗V4 = 2

∂

∂v4
.

5. Conclusion
In this paper, integrability conditions and conditions for defining a totally geodesic foliation by certain distributions were found.
Then, by applying the notion of quasi hemi-slant submersions from Lorentzian para Sasakian manifolds onto Riemannian
manifolds.
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[32] Y. Gündüzalp, Slant submersions from Lorentzian almost para- contact manifold, Gulf J. Math., 3(1) (2015), 18-28.
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