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Abstract

After Lovász’s break-through in determining the chromatic number of Kneser graphs
(1978), and after extending this result to the chromatic number of r-uniform Kneser
hypergraphs by Alon, Frankl, and Lovász (1986), some important parameters such as
colorability defect and equitable colorability defect were introduced in order to provide
sharp lower bounds for the chromatic number of general r-uniform Kneser hypergraphs.
As a generalization of many earlier results in this area, Azarpendar and Jafari (2023)
introduced the s-th equitable r-colorability defect ecdr(F, s); a parameter which provides
a lower bound for the chromatic number of generalized Kneser hypergraphs KGr(F, s).
They proved the following nice inequality

χ (KGr(F, s)) ≥
⌈

ecdr (F,
⌊

s
2
⌋)

r − 1

⌉
,

and noted that it is plausible that the above inequality remains true if one replaces
⌊

s
2
⌋

with s.
In this paper, considering the relation ecdr (F, x) ≥ cdr (F, x) which always holds, we show
that even in the weaker inequality

χ (KGr(F, s)) ≥
⌈

cdr (F,
⌊

s
2
⌋)

r − 1

⌉
,

no number x greater than
⌊

s
2
⌋

could be replaced by
⌊

s
2
⌋
.
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1. Introduction
A hypergraph F consists of a finite set V (F), together with a subset of 2V (F) \{∅} which

is denoted by E(F). Any member of V (F) is called a vertex of F, and members of E(F)
are called hyperedges of F. The hypergraph F is called r-uniform whenever |e| = r for
each hyperedge e of F.

Let F be an arbitrary (uniform or nonuniform) hypergraph and r ∈ {2, 3, 4, . . . }. If s
is a nonnegative integer such that s < |e| for each hyperedge e of F, then the general-
ized Kneser hypergraph KGr(F, s) is defined as an r-uniform hypergraph with vertex set
V (KGr(F, s)) := E(F) in such a way that r hyperedges e1, e2, . . . , er of F form a hyperedge
of KGr(F, s) whenever |ei ∩ ej | ≤ s for all distinct indices i and j in {1, 2, . . . , r}. As a
definition, the chromatic number of KGr(F, s), denoted by χ (KGr(F, s)), is the minimum
cardinality of a set C for which a function f : V (KGr(F, s)) −→ C exists in such a way
that |{f (e1) , f (e2) , . . . , f (er)}| ≥ 2 for each hyperedge {e1, e2, . . . , er} of KGr(F, s).

For nonnegative integers n and k, let the symbols [n] and
([n]

k

)
denote the following sets

[n] := {1, 2, . . . , n}; and
([n]

k

)
:= {A : A ⊆ [n] and |A| = k}.

If n is a positive integer and k is a nonnegative integer, then the complete k-uniform
hypergraph Kk

n, is a hypergraph with V
(
Kk

n

)
:= [n] and E

(
Kk

n

)
:=
([n]

k

)
.

One can easily observe that χ
(
KG2

(
Kn

2n+k, 0
))

≤ k + 2 and χ
(
KGr

(
Kk

n, 0
))

≤⌈
n−r(k−1)

r−1

⌉
. In 1955, Kneser [7] conjectured that χ

(
KG2

(
Kn

2n+k, 0
))

= k+2. This conjec-
ture was settled by Lovász [10] in 1978. Later, in 1986, Alon, Frankl, and Lovász [2] proved
a conjecture of Erdős [6] which asserts that if n ≥ r(k − 1) + 1 then χ

(
KGr

(
Kk

n, 0
))

=⌈
n−r(k−1)

r−1

⌉
.

If A and B are two sets and s is a nonnegative integer, then as a notation, we write
A ⊆s B whenever |A \ B| ≤ s.
Let F be a hypergraph, and r and s be nonnegative integers such that r ≥ 2 and s < |e|
for each hyperedge e of F. As a definition, the s-th r-colorability defect of F, denoted
by cdr(F, s), is equal to the minimum size of a subset X0 of V (F) for which a partition
{X1, X2, . . . , Xr} of V (F) \ X0 exists such that :

If e ∈ E(F) and Xi ∈ {X1, X2, . . . , Xr}, then e *s Xi.

We note that in this definition, some of X1, X2, . . . , Xr may be equal to the empty set.
Dolnikov [5] and Kříž [8, 9] proved that for any hypergraph F and each integer r ≥ 2 we
have

χ (KGr(F, 0)) ≥
⌈cdr (F, 0)

r − 1

⌉
.

It is easily seen that cd2
(
Kn

2n+k, 0
)

= k+2. Also, it is evident that if n ≥ r(k−1)+1 then

cdr
(
Kk

n, 0
)

= n−r(k−1). Therefore, the theorem of Dolnikov and Kříž is a generalization
of theorems of Lovász [10] and Alon, Frankl, and Lovász [2].

If F is a hypergraph and r and s are nonnegative integers such that r ≥ 2 and s < |e|
for each hyperedge e of F, then the s-th equitable r-colorability defect of F, denoted by
ecdr(F, s), is defined as the minimum cardinality of a subset X0 of V (F) in such a way
that a partition {X1, X2, . . . , Xr} of V (F) \ X0 with the two following properties exists :

• If 1 ≤ i < j ≤ r then ||Xi| − |Xj || ≤ 1;
• If e ∈ E(F) and Xi ∈ {X1, X2, . . . , Xr}, then e *s Xi.

We note that in this definition, some of X1, X2, . . . , Xr could be equal to the empty set.
Obviously, ecdr(F, s) ≥ cdr(F, s). As a generalization of the theorem of Dolnikov and
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Kříž, it was proved by Abyazi Sani and Alishahi [1] that the relation

χ (KGr(F, 0)) ≥
⌈ecdr (F, 0)

r − 1

⌉
always holds.

Azarpendar and Jafari [4], as a generalization of many earlier results [1–3,5,8–10] proved
the following theorem.

Theorem 1.1 ([4]). Let F be a hypergraph. If r and s are nonnegative integers such that
r ≥ 2 and s < |e| for each hyperedge e of F, then

χ (KGr(F, s)) ≥
⌈

ecdr (F,
⌊

s
2
⌋)

r − 1

⌉
.

Azarpendar and Jafari in [4] noted that it is plausible that the above theorem remains
true if one replaces

⌊
s
2
⌋

with s.
In this paper, as our first result, we show that the inequality

χ (KGr(F, s)) ≥
⌈ecdr (F, s)

r − 1

⌉
does not hold in general.

We know that

ecdr (F, 0) ≤ ecdr (F, 1) ≤ · · · ≤ ecdr
(
F,

⌊
s

2

⌋)
≤ · · · ≤ ecdr (F, s) .

One may ask whether the inequality

χ (KGr(F, s)) ≥
⌈

ecdr (F,
⌊

s
2
⌋)

r − 1

⌉
is still true if we put some other values larger than

⌊
s
2
⌋

instead of
⌊

s
2
⌋
. In order to answer

this natural question, we consider the relation

cdr (F, 0) ≤ cdr (F, 1) ≤ · · · ≤ cdr
(
F,

⌊
s

2

⌋)
≤ · · · ≤ cdr (F, s) ,

and also the relation ecdr (F, x) ≥ cdr (F, x) which always holds. As our second result, we
show that even in the weaker inequality

χ (KGr(F, s)) ≥
⌈

cdr (F,
⌊

s
2
⌋)

r − 1

⌉
,

no number x greater than
⌊

s
2
⌋

could be replaced by
⌊

s
2
⌋
.

2. We cannot replace s instead of
⌊

s
2

⌋
.

In this section, our aim is showing that the inequality

χ (KGr(F, s)) ≥
⌈ecdr (F, s)

r − 1

⌉
is not correct. If we put r = 2, then the expression

⌈
ecdr(F,s)

r−1

⌉
will be equal to ecd2 (F, s).

Hence, in order to disprove χ (KGr(F, s)) ≥
⌈

ecdr(F,s)
r−1

⌉
, it is enough to find a hypergraph

F for which
χ
(
KG2(F, s)

)
< ecd2 (F, s) .

In this regard, we state and prove the following theorem, which is the first result of this
paper.
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Theorem 2.1. For any two positive integers l and s with l ≥ 2, there exists a hypergraph
F such that

χ
(
KG2(F, s)

)
= l and ecd2 (F, s) = l + s.

Proof. Put k := l−2. Let Kn
2n+k be the hypergraph with vertex set [2n+k] and hyperedge

set
([2n+k]

n

)
. So,

χ
(
KG2 (Kn

2n+k, 0
))

= k + 2 = l.

Now, let S := {a1, a2, . . . , as} be a set such that S ∩ [2n + k] = ∅; and then define a new
hypergraph F with vertex set V (F) := S ∪ [2n + k] whose hyperedge set equals

E(F) :=
{
e ∪ S : e ∈ E

(
Kn

2n+k

)}
=
{

e ∪ S : e ∈
(

[2n + k]
n

)}
.

Any two vertices e1 and e2 from KG2
(
Kn

2n+k, 0
)

are adjacent iff their corresponding

vertices in KG2 (F, s) are adjacent; that is, {e1, e2} ∈ E
(
KG2

(
Kn

2n+k, 0
))

if and only if

{e1 ∪ S, e2 ∪ S} ∈ E
(
KG2 (F, s)

)
. So, we observe that

χ
(
KG2(F, s)

)
= χ

(
KG2 (Kn

2n+k, 0
))

= k + 2 = l.

Now, we show that ecd2 (F, s) = k + 2 + s = l + s. In this regard, our first objective is
showing that ecd2 (F, s) ≤ k + 2 + s. Put

• Y1 := [n − 1] = {1, 2, . . . , n − 1};
• Y2 := [2n − 2] \ [n − 1] = {n, n + 1, . . . , 2n − 2};
• Y0 := {2n − 1, 2n, 2n + 1, . . . , 2n + k} ∪ S.

Obviously, {Y0, Y1, Y2} is a partition of V (F) such that |Y1| = |Y2| = n − 1. Also, if
e ∈ E(F) and i ∈ {1, 2} then :

|e \ Yi| = |e \ (e ∩ Yi)| = |e| − |e ∩ Yi| ≥ |e| − |Yi| = (s + n) − (n − 1) = s + 1 > s;

and therefore, e *s Yi. We conclude that ecd2 (F, s) ≤ |Y0| = k + 2 + s.

As our next task, we aim to prove that ecd2 (F, s) ≥ k +2+s. Suppose, on the contrary,
that ecd2 (F, s) ≤ k + 1 + s. So, one can regard a partition {X0, X1, X2} of V (F) with
|X0| = ecd2 (F, s) ≤ k + 1 + s and |X1| ≥ |X2| in such a way that e *s X1 and e *s X2
for each hyperedge e in E(F). Hence,

2 |X1| ≥ |X1| + |X2| = |V (F)| − |X0| ≥ (2n + k + s) − (k + 1 + s) = 2n − 1;

and therefore,

|X1| ≥
⌈2n − 1

2

⌉
= n.

Choose a subset X ′
1 of X1 such that |X ′

1| = n. Define

A := X ′
1 ∩ [2n + k] and B := X ′

1 ∩ S.

So, |A| + |B| = |X ′
1| = n. Also, suppose that

[2n + k] \ X ′
1 =

{
i1, i2, . . . , i2n+k−|A|

}
and i1 < i2 < · · · < i2n+k−|A|.
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Now, e := X ′
1 ∪

{
i1, i2, . . . , in−|A|

}
∪ (S \ X ′

1) is a hyperedge of F that satisfies

|e \ X1| ≤ |e \ X ′
1| =

∣∣∣{i1, i2, . . . , in−|A|
}

∪ (S \ X ′
1)
∣∣∣

=
∣∣∣{i1, i2, . . . , in−|A|

}∣∣∣+ |S \ X ′
1|

= n − |A| + |S \ (S ∩ X ′
1)|

= n − |A| + |S| − |S ∩ X ′
1|

= n − |A| + |S| − |B|

= |S| + n − (|A| + |B|) = |S| = s.

We conclude that |e \ X1| ≤ s, a contradiction to the fact that e *s X1. It follows that
ecd2 (F, s) ≥ k + 2 + s. Therefore, ecd2 (F, s) ≥ k + 2 + s and ecd2 (F, s) ≤ k + 2 + s imply
ecd2 (F, s) = k + 2 + s = l + s; as desired. �

3. A stronger result
This section concerns with determining the set of values which can be replaced by

⌊
s
2
⌋

in the general inequality χ (KGr(F, s)) ≥
⌈

ecdr
(
F,
⌊

s
2

⌋)
r−1

⌉
. Since

ecdr (F, 0) ≤ ecdr (F, 1) ≤ · · · ≤ ecdr
(
F,

⌊
s

2

⌋)
≤ · · · ≤ ecdr (F, s) ,

one observes that each nonnegative integer which is less than or equal to
⌊

s
2
⌋
, could be

replaced by
⌊

s
2
⌋
. The aim of this section is showing that no number x greater than

⌊
s
2
⌋

could be replaced by
⌊

s
2
⌋
. In this regard, we consider the relation ecdr (F, x) ≥ cdr (F, x)

which always holds; and we show that even in the weaker inequality

χ (KGr(F, s)) ≥
⌈

cdr (F,
⌊

s
2
⌋)

r − 1

⌉
,

no number x greater than
⌊

s
2
⌋

could be replaced by
⌊

s
2
⌋
. We restrict our attention just to

the case where r = 2 and s is an even positive integer.

Theorem 3.1. Let k ∈ N and s be an even positive integer. Then, there exists a hypergraph
F with χ

(
KG2(F, s)

)
= k in such a way that

cd2 (F, l) = ecd2 (F, l) = k(2l − s + 1)

for each l in
{

s
2 + 1, s

2 + 2, . . . , s
}
.

Proof. Let us regard some pairwise disjoint sets A1, A2, . . . , Ak with

|A1| = |A2| = · · · = |Ak| = s + 1.

Now, define a hypergraph F with

V (F) := A1 ∪ A2 ∪ · · · ∪ Ak and E(F) := {A1, A2, . . . , Ak} .

Let {X0, X1, X2} be a partition of V (F) that satisfies the following two properties :
• |X0| = cd2 (F, l) ,
• If Ai ∈ {A1, A2, . . . , Ak} and Xj ∈ {X1, X2} , then Ai *l Xj .
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We aim to show that |X0| ≥ k(2l − s + 1).
Let i ∈ {1, 2, . . . , k} and j ∈ {1, 2}. Since Ai *l Xj , we must have

|Ai \ Xj | ≥ l + 1.

Hence,

|Ai ∩ Xj | = |Ai| − |Ai \ Xj | = (s + 1) − |Ai \ Xj | ≤ (s + 1) − (l + 1) = s − l.

Thus, |Ai ∩ Xj | ≤ s − l for each i in {1, 2, . . . , k} and each j in {1, 2}. Hence,

|X1| = |X1 ∩ V (F)| =
∣∣∣∣∣X1

⋂(
k⋃

i=1
Ai

)∣∣∣∣∣ ≤
k∑

i=1
|X1 ∩ Ai| ≤

k∑
i=1

(s − l) = k(s − l).

Similarly, |X2| ≤ k(s − l). We conclude that

|X1 ∪ X2| = |X1| + |X2| ≤ 2k(s − l).

Therefore,

|X0| = |V (F)| − |X1 ∪ X2| = k(s + 1) − |X1 ∪ X2| ≥ k(s + 1) − 2k(s − l) = k(2l − s + 1).

We conclude that
cd2 (F, l) ≥ k(2l − s + 1).

Now, we claim that ecd2 (F, l) ≤ k(2l − s + 1). In this regard, for each i in {1, . . . , k}, let
Ai1 and Ai2 be two disjoint subsets of Ai, each of size s − l. More precisely,

Ai1 ∪ Ai2 ⊆ Ai and Ai1 ∩ Ai2 = ∅, and also, |Ai1 | = |Ai2 | = s − l.

Now, define a partition {Y0, Y1, Y2} of V (F) as follows :

Y1 :=
k⋃

i=1
Ai1 and Y2 :=

k⋃
i=1

Ai2 and Y0 := V (F) \ (Y1 ∪ Y2) .

We have Y1 ∩ Y2 = ∅ and |Y1| = |Y2| = k(s − l). Also,

|Y0| = |V (F)| − |Y1 ∪ Y2| = k(s + 1) − 2k(s − l) = k(2l − s + 1).

Also, if Ai ∈ {A1, A2, . . . , Ak}, then because of Ai ∩ Y1 = Ai1 , we have

|Ai \ Y1| = |Ai \ (Ai ∩ Y1)| = |Ai| − |Ai1 | = (s + 1) − (s − l) = l + 1.

Thus, |Ai \ Y1| = l + 1. Hence, |Ai \ Y1| � l; and therefore, Ai *l Y1. Similarly, we have
Ai *l Y2.
It follows that {Y0, Y1, Y2} is a partition of V (F) that satisfies the following three properties

• |Y0| = k(2l − s + 1);
• |Y1| = |Y2|;
• e *l Y1 and e *l Y2 for each hyperedge e of V (F).

So, ecd2 (F, l) ≤ |Y0| = k(2l − s + 1); and therefore, ecd2 (F, l) ≤ k(2l − s + 1); as claimed.
We conclude that k(2l − s + 1) ≤ cd2 (F, l) ≤ ecd2 (F, l) ≤ k(2l − s + 1); which implies

cd2 (F, l) = ecd2 (F, l) = k(2l − s + 1);

which is desired. �
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