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Abstract. In this paper, we deal with the inverse problems for Dirac operator with rationally eigenvalue dependent boundary 

condition and linearly eigenvalue dependent jump conditions. We prove that when )(xQ  is known on 








,1

2

1  then only 

one spectrum excluding a finite number of eigenvalues is sufficient to determine )(xQ  on the interval  0,1  and the other 

coefficients of the problem. Moreover, it is shown that )(xQ  is uniquely determined by the classical spectral data, i.e., 

eigenvalues and normalising numbers. 

Keywords. Inverse problem, impulsive differential equation, boundary value problem 

Herglotz-Nevanlinna Fonksiyonu İçeren Sınır Koşullarına Sahip Dirac 

Operatörü için Ters Problemler 

Özet. Bu makalede, sınır koşulları spektral parametreye rasyonel, süreksizlik koşulları ise lineer şekilde bağlı olan 

Dirac operatörü için ters problem ele alınmıştır. (½,1) aralığında Q(x) potansiyel fonksiyonu biliniyorken, tek 

spektrumun sonlu sayıda özdeğerlerin dışında (0,1) aralığında Q(x) potansiyel fonksiyonunu ve problemin diğer 

katsayılarını tek olarak belirlediği ispatlanmaktadır. Ayrıca, Q(x) fonksiyonunun klasik spektral veriler, yani 

özdeğerler ve normalleştirici sayılar yardımıyla tek olarak belirlendiği gösterilmektedir. 

Anahtar kelimeler: Ters problem, süreksiz Dirac operatör, sınır-değer problem 

 

1. INTRODUCTION 

 

We consider the boundary value problem ),,,,(= fQLL  generated by the system of Dirac 

differential equation  
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 0=(0):=)( 1yyU  (2) 

 0=(1))((1):=)( 12 yfyyV   (3) 
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and the jump conditions 
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Here )(xp  and )(xq  are real valued functions in (0,1)2L ;   is a spectral parameter;  ,   and   

are real numbers, 0> , 0> ; )(f  is a rational function of Herglotz–Nevanlinna type such that 
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where ,a  ,b  ,kf  kg  are real numbers, 0,>a  0,>kf  .<...<< 21 Nggg  We shall note that if 

=)(f  then the condition (3) will be as the condition 0=(1)1y . 

Inverse problems for Dirac operator have been rather well studied and continued acceleratingly(see [14], 

[15], [18], [24] and references therein) 

When the spectrum of a differential operator and the potential on a half of the interval are known, one 

can recover the differential operator on whole interval. Such problems are known as half-inverse 

problems. The first study on the half-inverse problem for Sturm-Liouville operator was made by 

Hochstadt and Lieberman in 1978 [21]. They proved that if the potential function  xq  of Sturm-

Liouville equation is given over the interval 







,1

2

1
, then one spectrum is enough to determine  xq  on 

the interval 








2

1
0, . After that in 1984, Hald [20] showed that if the potential is known over half the 

interval and if one boundary condition is given, then the eigenvalues uniquely determine the potential 

and the other boundary condition. In 1994, T. N. Arutyunyan [3] proved that the potential )(xQ  is 

uniquely determined by the eigenvalues and normalising coefficients. Later, in [16] and in [25], it is 

provided some results in inverse spectral analysis with partial data on the potential. 

Spectral problems involving eigenvalue dependent boundary conditions arise in various problems of 

mathematics as well as in applications. Firstly, in 1973, Walter [36] was interested in an expansion 

theorem for the this kind of eigenvalue problem. In 1977, Fulton [13] also examined the Sturm-Liouville 

eigenvalue problem. Inverse problems for some classes of differential operators linearly eigenvalue 

dependent are analysed in diverse papers (see  [1, 2, 9, 17, 22]). More general boundary conditions are 

observed in [4-6, 10, 12, 26, 29, 30, 34,35]. On the other hand, when )(f  is a rational function of 

Herglotz–Nevanlinna type, direct and inverse spectral problems for Sturm-Liouville operator were 

investigated in [7, 8, 27]. 

Recently, also some new uniqueness results in inverse spectral analysis with partial information on the 

potential for Sturm-Liouville and Dirac operator have been given (see , [28, 31-33]). 

In the present paper, our research is connected to a Dirac equation with rationally eigenvalue dependent 

boundary conditions and linearly eigenvalue dependent jump conditions. We prove that the potential in 
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(0,1)  and the remaining coefficients of the boundary value problem can be uniquely determined by the 

potential in ,1)
2

1
(  and one spectrum excluding finite eigenvalues. We also show that )(xQ  is uniquely 

determined by the sequences of eigenvalues and normalising numbers. 

 

2. PRELIMINARIES  

 

Firstly, we define an operator such that (1)-(4) can be regarded as an eigenvalue problem of it. See [8] 

and [27] for a similar operator associated with the Sturm- Liouville problem. 

Consider the space 
2

22 (0,1)(0,1)=  NLLH C  with the inner product defined by 
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where  22121 ,...,),(),(= NYYYxyxyY ,  22121 ,...,),(),(= NZZZxzxzZ . Define the operator T  

with the domain  
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Theorem 1 Eigenvalues of the operator T  coincide with eigenvalues of the problem L . 
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Proof. The following equalities obtained from YTY =  are enough to see validity of this 

theorem: 

 
11111 =(1) YybYg   
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 ...  

 NNN YybYg =(1)11   
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Let the function  Txxx ),(),(=),( 21   be the solution of (1) under the initial 

conditions 

 
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and under the jump conditions (4). ),(  x  satisfies the following integral equations: 
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2

1
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where ),(),()(),(=),( 21 tqttptt  
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Moreover, it is shown in [14] that, ),(  x  has a representation as follows: 
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   (0,1),. 2LxKij   for each fixed .x  

The following asymptotic relations can be proved easily; 
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It is clear that )(f  can be written as follows: 
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Let the function  Txxx ),(),(=),( 21   be the solution of (1) under the initial 

conditions 
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and under the jump conditions (4). 

Consider the function 
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3. UNIQUENESS THEOREMS 

3.1 According to the mixed given data 

 

The first main result of this work is a generalized of Hochstadt and Lieberman theorem [21]. We prove 

that when )(xQ  is known on 







,1

2

1
 then only one spectrum excluding a finite number of eigenvalues 

is sufficient to determine )(xQ  on the interval  0,1  and the coefficients  ,   and .  Together with 

L , we consider the problem L
~

 of the same form but with a different coefficients 
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~
 and .~  It is assumed in what follows that if a certain symbol s  

denotes an object related to ,L  then the corresponding symbol s~  with tilde denote the analogous object 

related to .
~
L  Let us denote by ),,( nx   the eigenfunction which corresponds to n . 

Let 0Z  be any subset with 1N  elements of .Z  Denote  
0

\
:=

ZZnn  and consider the 

following representation: 
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requires minor modifications). 

 

Theorem 2 If  ~= , )(
~
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Before the proof of theorem, we need to prove the following lemma. 

 

Lemma 1 i) The eigenvalues n  are real numbers. 

ii) 0
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
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Znn  are simple zeros of )( .  
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Proof. i) According to the Theorem 1, it is enough to show that eigenvalues of T  are real. For 

Y  in ),(TD  we calculate that 
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By using the structure of T , we obtain 
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We conclude that YTY ,  are real for each Y  in )(TD . Thus, all eigenvalues of the operator T  (or 

problem L ) are real numbers. 

ii) Assume kn g . If ,= kn g  the proof is similar. 

Write the equation (1) for  nx  ,  and   ,x  respectively. 
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 After some operations, we obtain 
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 Take into account of boundary and discontinuity conditions to get 

  )(1,)(1,)()(0, 211 nn ba     

 )0,
2

()0,
2

()0,
2

()0,
2

( 1
1

1
2

1
2

1
1   nn

  

 )0,
2

()0,
2

()0,
2

()0,
2

( 1
1

1
2

1
2

1
1   nn

  

   .),(),(),(),()(= 2211

1

0

dxxxxx nnn      

 Using (4) and (9) we get  

         )0,
2

()0,
2

1
()()(1, 1

111   nnnn ffb  

   .),(),(),(),()(= 2211

1

0

dxxxxx nnn     

 If we divide both side of this equality by )( n   and take limit for ,n   

    )(=)0,
2

1
()(1,),(),( 2

1

2

1

2

2

2

1

1

0

nnnnnnn fdxxx  







 .  

 Since 0,>  0>  and   0>nf   for all ,n  0.)(  n   

Let us write the equation (1) for   and ~ , 

 ),(=),()(),(  xxxQxB   
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 ),(~=),(~)(
~

),(~  xxxQxB   

Multiply these equalities by ),(~  xT
 and ),(  xT

 respectively from left hand side and subtract then 

we get 

 
 

  .),(~),()(
~

)(=

),(),(~),(~),( 2121





xxxQxQ

xxxx
dx

d




 (10) 

After integrating this equality on  ,0,1  taking into account the hypothesis 

 )(
~

=)( xQxQ  on 







,1

2

1
, we find 

 

 

  dxxJxxpxp

xxxx

T ),(,),(~)(~)(=

),(),(~),(~),(

2

1

0

1

1/2

1/2

02121












 



 (11) 

where .,.  denotes the classical inner product of 2C  and 








10

01
:=J . Denote 

 ).(1,~)(1,)(1,~)(1,:=)( 2112  H  (12) 

One can calculate from (4) and (11) that 

   dxxJxxpxp T ),(,),(~)(~)(=)(1,~)(1,)(1,~)(1,
2

1

0

2112     (13) 

 )0,
2

1
(~)0,

2

1
(

~
1)0,

2

1
(~)0,

2

1
(~1 1221 



























  

    ).0,
2

1
(~)0,

2

1
(~~~~

11    

It is obtained from )(
~

)(  ff   that 0=)(1,~)(1,)(1,~)(1, 2112 nnnn   . Therefore, 

0=)( nH   for all  n . 

Now, define 
)(

)(
:=)(






R

H
F  which is an entire function on .  From asymptotic relations of 

),(1  x  and ),(2  x , it is valid that .
1

=)(















 OF  Therefore, from Liouville’s Theorem, 
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0)( F  and so 0.)( H  One can calculate that 

     ,1)(~)(
2

1
=),(,),(~)(~)(

2

1

0

2

1

0

odxxpxpdxxJxxpxp T     for ,  R . Therefore 

it can be written the following equality from (13), 

        1sin~

~

2

1
1cos1~~~~

2

1
oo 








 







  

    1=)(~)(
2

1 2

1

0

odxxpxp    for ,  .R  

 We obtain from the last relation that, 















~=~=~=

~
 and so, ,~=   ,~=   

~
= , 

  0.=)(~)(
2

1

0

dxxpxp   As a consequent,  

   0=),(,),(~)(~)(
2

1

0

dxxJxxpxp T   holds on the whole  -plane. 

On the other hand, the following equality is valid, 

 tdttxKtdttxKxxJx

xx

T  2sin),(2cos),(2cos=),(,),(~
2

0

1

0

   

where ),,( txKi  1,2,=i  depend only on x  and .t  It follows from (13) that 

 0=2sin),(2cos),(2cos)( 2

0

1

0

2

1

0

dxtdttxKtdttxKxxP

xx









    (14) 

for all  , where  )(~)(:=)( xpxpxP  . This can be rewritten as 

 dtdxtxKxPP

















  ),()()(2cos 1

2

1

2

1

0 

  

 0=),()(2sin 2

2

1

2

1

0

dxdttxKxPt


  (15) 
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Therefore, we obtain from the completeness of the vector functions  Tt 2sin2cos  in 

)
2

1
(0,)

2

1
(0, 22 LL   that 0=)(xP , i.e. )(~=)( xpxp  for )

2

1
(0,x . This completes the proof.  

3.2 According to the classical spectral data 

In [23], it is proven that the coefficients of the problem L  are uniquely determined by the Weyl 

function. We aim to prove uniqueness of the coefficients according to the eigenvalues and normalising 

numbers, namely spectral data. Consider the problem L
~

 with the coefficient .
)(~)(~

)(~)(~

=)(
~










 xpxq

xqxp
xQ  

For an element  22121 ,...,),(),(= NYYYxyxyY  in ,H  the norm of Y  is defined by 

.,:=
2

YYY  From (5), we get 

  



2

2

2

1

2

1=

2

2

2

1

1

0

2
)()(=


 

NN

k

k
N

k

Y

a

Y

f

Y
dxxyxyY  (16) 

 

Let n  be an eigenvalue of T  (or the problem L ) and )(nY  eigenvector for .n  Then the 

numbers 
2

)(:= nYn  are called as normalizing numbers. 

Lemma 2 The equality  

  dxxx nnn ),(),(= 2

2

2

1

1

0

   

 )0,()(1,)( 1

2

1

2

1 nnn

' df    

is valid.  

Proof. Let kn g . Since kn g=  is equivalent to   0=1,1 kg , this case requires minor 

modification in the following proof. 

Using the structure of T  and the inner product in (5), a direct calculation yields 

  dxxxnY nn ),(),(=)( 2

2

2

1

1

0

2
   




2

2

2

1

2

1=




NN

k

k
N

k

Y

a

Y

f

Y
  



Inverse Problems for Dirac Operator with Boundary 

216 
 

  dxxx nn ),(),(= 2

2

2

1

1

0

   

 
)(1,)(1, 2
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1=

2

1 n

nk

k
N

k

n a
g

f



 


    

  dxxx nn ),(),(= 2

2

2

1

1

0

   

 
)0,

2

1
()(1, 2

12
1=

2

1 n

nk

k
N

k

n
g

f
a 


 










   

  )0,
2

1
()(1,)(),(),(= 2

1

2

1

2

2

2

1

1

0

nnn

'

nn fdxxx     

 

Take into account Lemma 1 and Lemma 2 to get the following relation  

 nnn

'  =)(  (17) 

The Weyl function is defined as follows;  

 .
)(

)(0,
=)( 2







m  (18) 

Theorem 3 [23] If )(~=)(  mm  then ;
~

= LL  i.e. the Weyl function )(m  determines 

uniquely the problem L .  

 

Theorem 4 If    nnnn  ~,
~

=,  then ;
~

= LL  i.e. the spectral data  nn  ,  determine 

uniquely the problem L .  

Proof. Since ,
~

= nn   ).(
~

=)(    Therefore, from (17) nn  ~=  so 

).(0,~=)(0, 22 nn   Hence the function defined as  

 
)(

)(0,~)(0,
:=)( 22









G  

is an entire on .  Moreover, one can obtained that (1)=)( oG   for .  0)( G  and so 

).(0,~)(0, 22    From (18) we have )(~=)(  mm . Consequently, from Theorem 3, LL
~

= . 



GULDU, OZKAN 

217 
 

 

REFERENCES  

[1]. R.Kh. Amirov, A.S. Ozkan and B. Keskin, Inverse problems for impulsive Sturm-Liouville 

operator with spectral parameter linearly contained in boundary conditions, Integral Transforms 

and Special Functions, 20(8)(2009), 607-618. 

[2]. R. Kh. Amirov, B. Keskin, A. S. Ozkan, Direct and inverse problems for the Dirac operator with 

spectral parameter linearly contained in boundary condition, Ukrainian Math. J., 61(91)(2009), 

1155–1166. 

[3]. T. N. Arutyunyan, Isospectral Dirac operators, Izv. Nats. Akad. Nauk Armenii Mat. 29(2)(1994), 

3–14, ; English transl. in J. Contemp. Math. Anal., Armen. Acad. Sci. 29(2)(1994), 1-10. 

[4]. P.A. Binding, P.J. Browne and K. Seddighi, Sturm–Liouville problems with eigenparameter 

dependent boundary conditions, Proc. Edinburgh Math. Soc., 37(2)(1993), 57-72. 

[5]. P.A. Binding, P.J. Browne and B.A. Watson, Inverse spectral problems for Sturm–Liouville 

equations with eigenparameter dependent boundary conditions, J. London Math. Soc., 62(2000), 

161-182. 

[6]. P.A. Binding, P.J. Browne and B.A. Watson,. Equivalence of inverse Sturm–Liouville problems 

with boundary conditions rationally dependent on the eigenparameter, J. Math. Anal. Appl., 

291(2004), 246-261. 

[7]. P.A. Binding, P.J. Browne, B.A. Watson, Sturm–Liouville problems with boundary conditions 

rationally dependent on the eigenparameter, I, Proc.Edinburgh Math.Soc., 45(2002), 631–645. 

[8]. P.A. Binding, P.J. Browne, B.A. Watson, Sturm–Liouville problems with boundary conditions 

rationally dependent on the eigenparameter, II, Journal of Computational and Applied 

Mathematics, 148(2002), 147-168. 

[9]. P.J. Browne and B.D. Sleeman, A uniqueness theorem for inverse eigenparameter dependent 

Sturm-Liouville problems, Inverse Problems, 13(1997), 1453-1462. 

[10]. Chernozhukova and G. Freiling, A uniqueness theorem for the boundary value problems with 

non-linear dependence on the spectral parameter in the boundary conditions, Inverse Problems in 

Science and Engineering, 17(6)(2009), 777-785. 

[11]. G. Freiling and V.A. Yurko, Inverse Sturm–Liouville problems and their applications, Nova 

Science, New York, 2001. 

[12]. G. Freiling and V.A. Yurko, Inverse problems for Sturm–Liouville equations with boundary 

conditions polynomially dependent on the spectral parameter, Inverse Problems, 26(2010) 

055003 (17pp.). 

[13]. C.T. Fulton, Two-point boundary value problems with eigenvalue parameter contained in the 

boundary conditions, Proc. R. Soc. Edinburgh, A77(1977), 293-308. 

[14]. M. G. Gasymov, Inverse problem of the scattering theory for Dirac system of order 2n, Tr. Mosk 

Mat. Obshch., 19(1968), 41-112, Birkhauser, Basel, (1997). 

[15]. M. G. Gasymov and T. T. Dzhabiev, Determination of a system of Dirac differential equations 

using two spectra, Proceeding of School-Seminar on the Spectral Theory of Operators and 

Representations of Group Theory [in Russian], Elm, Baku, (1975), 46-71. 

[16]. F. Gesztesy and B. Simon . Inverse spectral analysis with partial information on the potential II: 

The case of discrete spectrum. Trans. Amer. Math. Soc. 352(6)(2000), 2765–2787. 

[17]. N.J. Guliyev, Inverse eigenvalue problems for Sturm-Liouville equations with spectral parameter 

linearly contained in one of the boundary condition, Inverse Problems, 21(2005), 1315-1330. 

[18]. M. Guseinov, On the representation of Jost solutions of a system of Dirac differential equations 

with discontinuous coefficients, Izv. Akad. Nauk Azerb. SSR, 5(1999), 41-45. 



Inverse Problems for Dirac Operator with Boundary 

218 
 

[19]. Y. Güldü, A Half-Inverse Problem for Impulsive Dirac Operator with Discontinuous Coefficient, 

Abstract and Applied Analysis, Volume 2013, Article ID 181809. 

[20]. O.H. Hald, Discontiuous inverse eigenvalue problems, Comm. Pure Appl. Math., 37(1984), 539-

577. 

[21]. H. Hochstadt and B. Lieberman, An inverse Sturm-Liouville problem with mixed given data, 

SIAM J. Appl. Math. 34(1978), 676–680. 

[22]. B. Keskin and A.S. Ozkan, Inverse spectral problems for Dirac operator with eigenvalue 

dependent boundary and jump conditions, Acta Math. Hungar., 130(4)(2011), 309-320. 

[23]. B. Keskin, Inverse spectral problems for impulsive Dirac operators with spectral parameters 

contained in the boundary and discontinuity conditions polynomially, Neural Computing and 

Applications, 23(5)(2013), 1329-1333. 

[24]. B.M. Levitan, and I. S. Sargsyan, Sturm-Liouville and Dirac operators [in Russian], Nauka, 

Moscow, 1988. 

[25]. M.M. Malamud, Uniqueness questions in inverse problems for systems of differential equations 

on a finite interval, Trans. Moscow Math. Soc. 60(1999), 204–262. 

[26]. R. Mennicken, H. Schmid and A.A. Shkalikov, On the eigenvalue accumulation of Sturm-

Liouville problems depending nonlinearly on the spectral parameter, Math. Nachr., 189(1998), 

157-170. 

[27]. A.S. Ozkan, Half-inverse Sturm-Liouville problem with boundary and discontinuity conditions 

dependent on the spectral parameter, Inverse Problems in Science and Engineering 22(5)(2014), 

848-859. 

[28]. L. Sakhnovich, Half inverse problems on the finite interval. Inverse Problems 17(2001), 527–532. 

[29]. H. Schmid and C. Tretter, Singular Dirac systems and Sturm–Liouville problems nonlinear in the 

spectral parameter, Journal of Differential Equations, 181(2)(2002), 511-542. 

[30]. A.A. Shkalikov, Boundary value problems for ordinary differential equations with a parameter in 

the boundary conditions. J. Sov. Math. 33(1986), 1311-1342. Translation from Tr. Semin. Im. 

I.G. Petrovskogo 9(1983), 190-229. 

[31]. C-Fu Yang and Z-You Huang, A half-inverse problem with eigenparameter dependent boundary 

conditions, Numerical Functional Analysis and Optimization, 31(6)(2010), 754-762. 

[32]. C-Fu Yang, Hochstadt-Lieberman theorem for Dirac operator with eigenparameter dependent 

boundary conditions, Nonlinear Analysis Series A: Theory, Methods and Applications, 74(2011), 

2475-2484. 

[33]. C-Fu Yang, Determination of Dirac operator with eigenparameter dependent boundary conditions 

from interior spectral data, Inverse Problems in Science and Engineering, 20(3)(2012), 351–369. 

[34]. V.A. Yurko, Boundary value problems with a parameter in the boundary conditions, Izv. Akad. 

Nauk Armyan. SSR, Ser. Mat., 19(5)(1984), 398–409. English translation in Soviet J. 

Contemporary Math. Anal., 19(5)(1984), 62-73. 

[35]. V.A. Yurko, An inverse problem for pencils of differential operators, Mat Sbornik,191(10) 

(2000), 137-158 (Russian). English translation in Sbornik Mathematics, 191(2000), 1561-1586. 

[36]. J. Walter, Regular eigenvalue problems with eigenvalue parameter in the boundary conditions. 

Math. Z. 133(1973), 301-312.  


