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Abstract: Flettner rotors are wind propulsion systems using the Magnus effect to generate thrust, thereby 

reduce fuel consumption and carbon emissions in the ships. However, rotor unbalance can cause 

excessive vibrations and energy loss, affecting the performance and stability of the system. There 

is a need to have a system onboard, which can predict the vibrations. The paper proposes a deep 

learning approach to predict the vibrations and unbalanced forces of a Flettner rotor based on the 

data of ECO Flettner rotor onboard the vessel MV Fehn pollux. The paper develops two methods 
to estimate the direction and magnitude of the unbalanced forces using the reading values of the 

strain gauges. The work also compares two recurrent neural network models, namely Long-short 

term memory and Gated Recurrent Unit, for vibration prediction and evaluates their performance 

using Mean Absolute Error and Root Mean Squared Error metrics. The results show that Long-

short term memory model outperforms Gated Recurrent Unit model in prediction accuracy and 

can be implemented on the system onboard to monitor and prevent rotor unbalance. The paper 

also suggests some possible solutions for automatic self-balancing of the rotor and identifies some 

areas for future work. 
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1. INTRODUCTION 

Modern shipping poses major challenges, which are to reduce fuel consumption, ocean sustainability 
and reduce the overall cost of travel. Wind propulsion technology promises to reduce consumption of 

fuels in ships, reduction in freight rate and reduction of greenhouse gas emissions [1]. Flettner rotor is 

an active sail with hollow cylindrical body with an end plate mounted to the top and it is installed on 
ships. It rotates with an electrical motor around its axis. It is a wind propulsion technology that makes 

use of the Magnus effect [2]. As per Magnus effect, when air travels across the Flettner rotor, a pressure 

difference is created which produces a thrust force on the ship in the opposite direction of the ship and 
perpendicular to both airstream direction and the rotor axis [3,4]. As per Ref. [5], it was discovered that 

Flettner rotors are able to produce very high lift coefficients and aerodynamic efficiency. Unbalancing 

is a vital issue in a Flettner rotor system. Indeed, it is unequal distribution of mass along a rotational 

axis, which is known as rotating imbalance. When the center of mass (inertia axis) of a rotating mass, 
or rotor, is out of line with the center of rotation, it is said to be out of balance (geometric axis). When 

the rotor rotates, the mass imbalance causes vibration; as the rotor’s speed increases, so does the 

vibration. The vibration can damage the rotor and, in certain situations, cause the system to fail 
completely; it also shortens the life of bearings. Unbalanced forces would be created as a result of the 

incorrect mass distribution, which should be corrected. The rotor should be balanced to achieve this goal 

[6]. 

Several methods have been proposed to analyze and predict the vibration characteristics of Flettner 

rotors by using different techniques. For example, Ref. [7] proposes a method for analyzing the vibration 
of electric motors that considers the rotating structure of the rotor using a coupled analysis of flexible 

multibody dynamics, electromagnetism and structural vibration. The method aims to predict motor 

vibration accurately by incorporating the electromagnetic force characteristics, the rotational motion of 
the flexible rotor, and their interactions at different operating speeds. The paper develops a three-

dimensional finite element model of the motor and validates it with an impact hammer test. The paper 

also contrasts the proposed method with the conventional finite element analysis-based method and 
shows that the former can capture not only the electromagnetic force harmonics but also the sideband 

harmonics caused by rotor eccentricity-induced large vibrations. Ref. [8] uses computational fluid 

dynamics (CFD) to simulate the aerodynamic forces and moments acting on the rotors and the ship hull. 

Ref. [9] presents a method based on the calculation of the natural frequencies and mode shapes of the 
rotor with initial bending using finite element analysis. The authors also proposed a balancing algorithm 

that can adjust the rotor speed and angle to minimize the unbalance force. Ref. [10] proposed a method 

based on the frequency spectrum analysis of the strain gauge signals to detect the unbalanced mass and 
its angular position on the rotor. They also suggested a balancing method that can add or remove masses 

on the rotor to achieve balance. The proposed method is based on the adaptive filtering technique to 

extract the fundamental vibration component of the rotor in the process of start-up and shutdown. They 
also developed a fault diagnosis system that can identify the type and location of the fault based on the 

extracted vibration component. However, most of the existing methods have some limitations or 

challenges in terms of accuracy, robustness, applicability, or convenience. For example, Ref. [9] relied 

on empirical formulas or assumptions that may not be accurate or applicable for different types of 
Flettner rotors. Ref. [10] required manual intervention or additional equipment to perform balancing, 

which may not be feasible or convenient for practical applications. It used a fixed filter order and step 

size that may not be optimal for different operating conditions or noise levels. Therefore, there is a need 
for a more advanced and automated approach to predict and balance the vibrations and unbalanced 

forces of Flettner rotors. 

The main contributions of this paper are as follows: First, we propose a smoothing technique to reduce 

the anomalies in the data and make it suitable for machine learning. Second, we implement and explore 

two methods to identify and predict the rotor unbalance using the reading values of the strain gauges. 
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Third, we suggest different ways to achieve balancing of the Flettner rotor, such as adjusting the rotor 

speed and angle, adding or removing masses on the rotor, or using automatic self-balancing mechanisms. 

The rest of the paper is organized as follows: Section 2 provides a brief overview of Flettner rotors and 
their vibration characteristics. Section 3 describes the data collection and preprocessing steps along with 

the proposed methods for unbalance prediction and balancing. Section 4 reports the experimental results 

and discussions. Section 5 concludes the paper and suggests some directions for future work. 

 

2. BACKGROUND AND THEORY 

Vibrations and rotor unbalance are critical issues for Flettner Rotor. This chapter discusses further 

factors contributing to unbalance and approaches for balancing. 

2.1. Flettner Rotor 

Every rotor, regardless of size or proportions, has some mass imbalance. Several factors contribute to 
this issue, including blow holes in the casting, distortion, eccentricity, deposits built-up, and corrosion. 

The rotor mass unbalance is one of the causes for vibrations. Other sources of vibrations include 

propulsion shafts, main engine, electro drive, and shafts. Balancing may be accomplished in two ways: 
One is by removing mass from the direction of the mass unbalance, and the other is by adding 

counterweights in the opposite direction of the unbalanced mass. To decrease vibrations and 

maintenance costs, while also enhancing the Flettner rotor’s operational frequency range, a high-tech 
rotor balancing mechanism is required. In reality, this approach would save money on wearing and 

expand the Flettner rotor’s applicability in various wind situations at sea, resulting in increased energy 

savings and lower sailing costs. As a result, Flettner rotor balancing saves energy and money by using 

less fossil fuels [11,12,13]. 

2.2. Balancing 

There are two types of rotors, ie. flexible and rigid. Flettner rotor falls in the latter category. When it is 
balanced, it operates at 70% of its critical speed and will stay balanced throughout its operating speed 

range. For balancing the rotor, it is required to first detect and measure the effect of unbalance along the 

length of the rotor. Once detected rotor mass distribution must be modified at the correction planes. The 
balancing steps should be repeated until the minimum unbalance effect which is up-to a certain threshold 

criterion is observed along the length of the rotor [14,15]. The aerodynamic coefficient of Flettner rotor 

is dependent on both functional and geometrical parameters. The main parameters include velocity ratio, 

angular speed, diameter of the rotor, free stream velocity, aspect ratio i.e., the ratio of rotor length to its 
diameter. The end plate also plays a significant role in the Flettner rotor. It has been observed that smaller 

plates offer significantly lower drag at low velocity ratios; bigger plates are preferable for applications 

at mid velocity ratios to prevent the increase in induced drag, while smaller plates are favored for high 
spin ratio applications [2]. 

 

3. APPROACH 

The prediction of rotor vibrations can be affected by many factors like data quality, data preprocessing, 

and machine learning model etc. This section demonstrates the methodology adopted for data modeling 

and the data used in the modeling. 

3.1. Time Series Data from MV Fehn Pollux 

The focus of this research paper is to predict the vibration of Flettner rotor using machine learning and 
deep learning approach. The vibration of the Flettner rotor (amplitude and frequency) can be derived 
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from the force measured using strain gauges installed on the basepipe and body of the Flettner rotor. 

With the advancements in deep learning, it is possible to predict the amplitude and frequency of the 

rotor to determine the unbalance. For implementation, data of ECO- Flettner rotor which is installed on 
board the vessel MV Fehn Pollux is considered [16]. On average, the ECO-Flettner rotor saves 10 - 15% 

of the ship’s energy consumption [17].  

The vessel MV Fehn Pollux maintains a SQL database consisting of parameter readings from 57 sensors 

which are installed on the Flettner rotor. These data are real and the parameters include rotor speed, 
wind angle, wind speed, heeling angle of the ship and drag forces. There are 4 contact type sensors and 

4 strain gauges installed on the ECO-Flettner rotor. Two of the sensors are on the basepipe at upper and 

lower bearing respectively. The rest of the sensors are installed radially to the bearing in a similar way. 
The principle behind the positioning of the sensors is that the base pipe will give the overall vibrations 

whereas the bearing will provide vibrations due to rotor imbalance, but both are interrelated. The 

unbalanced rotors impart force and displacement to the support. This force and displacement are 

calculated by the installed sensors. After that the sensor signals are fed through a filtering system to 
retain the required component of the signal. The imbalance effect at the sensor location is measured by 

the filtered signal [14]. The strain gauge records the propulsive force along horizontal and vertical 

direction at all 4 locations. 

3.2. Methodology 

Knowledge discovery database (KDD) has been utilized to implement the proposed implementation 
[18]. KDD is a systematic method for identifying valid, useful, and intelligible patterns in large and 

complicated datasets. The inference of algorithms that explore the data, construct the model, and identify 

previously unknown patterns is at the foundation of the KDD approach. The following flow diagram 

(Fig. 1) illustrates the KDD process. 

 
Figure 1. The implementation process using LSTM and GRU 

Each of the blocks shown in Fig. 1 is implemented in detail in the following subsections. 

3.2.1. Data collection 

The Flettner rotor’s control cabinet’s function is to collect the rotor’s signals and transmits them to the 

bridge’s control panel. The installed system on the MV Fehn pollux receives the signals acquired from 

the installed strain gauges. Apart from these signals, the system also receives real time readings for 
apparent wind speed (AWS), apparent wind angle (AWA), rotor speed. The data is stored in the MySQL 

server running on the PC onboard the ship. The SQL file obtained from the system on board is used on 

a relational database management system i.e., SQL server in laboratory computer. It can be used to 

accomplish tasks like data selection, data retrieval, and data transformation. In this phase, data from 20 

June 2018, 00:00:01 GMT to 31 August 2018, 11:39:54 GMT has been recorded. 

3.2.2. Data selection 

Machine learning is not always possible even if a massive amount of data is available. A certain level 

of data quality is also required. In order to solve this complex problem, it is made sure to choose data 

which is continuous and where wind speed, wind angle, and rotor speed have a broad range of values. 
50000 timestamps are loaded. For the problem even dataset where rotor speed is nonzero is considered 

so that vibrations caused by the rotor only are considered for the model. For machine learning modeling 

the data is divided into 2 categories i.e., train and test data. 80 % as training data and the remaining 20% 

as test data. Since recurrent neural networks retain memory, order is important therefore the split does 
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not perform random shuffle. In this case, the model contains memory and keeps track of previous events 

which means it is mapping a sequence of attributes to the following time steps xT−2, xT −1, xT ... → yT−2, 

yT−1, yT ..., and hence the order is important. For the same reason, a cross validation technique like K 

fold has not been used to split the dataset into train and test data. 

3.2.3. Data preprocessing 

For the anomaly detection process, the sensors installed on the vessel often records anomalies and 

missing data due to noise, vibrations, and sensor errors because of which there is a need to treat such 

records. The missing data is treated with the help of the moving median method. High quality data is 
critical for machine learning models. Machine learning models are designed to comprehend the 

relationship between data points; therefore, anomalies or outliers might affect the quality of this training 

data. With the presence of outliers in the data the model’s accuracy is skewed resulting in changing the 

patterns it learns. While analyzing the data, it was observed that there were some data points which were 
very different from the actual measured data physically in the system on board. Fig. 2 illustrates the 

sudden extreme deviations in data points for each sensor. 

 
Figure 2. Relationship between sensors. 

There are three categories for anomaly detection, statistical method, neural network method, and nearest 

neighbour method. Statistical methods assumes that the set of data points follow some category of 

known probability distribution, it includes methods like z-score, Interquartile region, box plot and 
histogram. Deep learning process uses neural networks to learn feature representations or anomaly 

scores in order to detect anomalies. Ref. [19] illustrates a number of deep learning approaches all of 

which have demonstrated much superior performance than traditional anomaly detection in a range of 
real-world situations. Ref. [20] demonstrates three different approaches for anomaly detection for the 

Flettner rotor on MV Fehn pollux. The nearest neighbour method assumes that similar data points occur 

in dense clusters, whereas the anomalies are far away from these clusters [21]. DBSCAN (Density based 

spatial clustering of applications with noise) and Gaussian mixture models are well known and used 
approaches for nearest neighbour method for anomaly detection. Fig. 3 shows the anomalies detected in 

sensors. 

 
Figure 3. The anomaly data 
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3.2.4. Data transformation 

For the anomaly treatment, one should choose the suitable data for machine learning, and the anomalies 

must be removed. Since the dataset is a time series data, removing anomalies is not the best idea because 

once the anomaly is removed, the timestamp for that record is also removed thus giving discontinuity in 
the dataset. The better approach is to treat the anomalies by smoothing. It can be a beneficial step for 

the time series data as it reduces random variations and volatility in data. It utilizes data from past time 

period. Moving average method has been utilized in this analysis to smoothen the anomalies. It 
minimizes the random noise while maintaining a clear step response, as a result it is well suited for time 

series data. This method requires selecting the window size and for this model window size 3 was 

chosen. Fig. 4 illustrates the data after smoothing. To have a normal distribution the data was then 
standardized after treating the anomalies. By standardizing the data the features are transformed by 

scaling in the range -1 to 1. 

 
Figure 4. Actual data and smoothed data as time series. 

3.2.5. Model selection and training 

LSTM is a type of Recurrent Neural Network (RNN). To forecast, it is capable of remembering the 

historical values. LSTM is an extension of RNN model since RNN had difficulty to understand long-
term dependencies. The memorizing process in LSTM is governed by a gating mechanism. The data is 

stored in an analog format. Sigmoid function is used for element wise multiplication resulting in values 

between 0-1. The resulting values help the model to update or forget the data. 

 
Figure 5. Structure of LSTM. 
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In LSTM architecture, there are 3 types of gates- forget gate, input gate, and output gate. It also have 

hidden layers also known as short term memory which holds current and previous timestamps. Forget 

gate decides whether to keep the data from the previous timestamp or forget it. The input gate is used to 
measure the significance of new data and how much to store in the memory. The value of the next hidden 

state is determined by the output gate. This state stores data from earlier inputs. The final hidden state 

is utilized for predictions [22]. The elements of the internal state vector Ct-1 in Fig. 5 depend on how it 
interacts with the previous output ht-1 and the current input xt. Here, σ represents the sigmoid activation 

function; i, f, and o denote the input, forget and output gates, respectively. These interactions decide 

which elements should be changed, kept or removed based on the outputs from the past time steps and 

the input from the current time step [23]. The problem is converted into a supervised time series problem 

by providing future output for the input of the current timestamp. Current timestamp and past two 

timestamps are considered for modeling i.e., t, t1, and t2. The deep learning open-source library, Keras 

is used here for model implementation [24]. GRU (Gated Recurrent Unit) is similar to LSTM in the 

sense that both try to extract information to prevent vanishing gradient problem, however, GRU is faster 
and easier to implement. GRU consists of two gates, update gate and reset gate. The update gate is 

responsible for long term memory and determines the amount of data which can be utilized for the 

future. The Reset gate is responsible for short term memory [24]. It is similar to the forget gate of LSTM 
as it determines how much of the past data to be left out and not consider in future. The detailed working 

of GRU can be found here [25]. GRU implementation is also accomplished by Keras library. 

 

4. RESULTS AND EVALUATION 

To make the dataset suitable for machine learning, the dataset was optimized by treating the anomalies 

by smoothing the data using moving average method. Different window sizes were experimented and 

window size 3 was found to give the best results. Each record in the dataset was provided previous two 
timestamps. With experiments, it was found out that adding the extra timestamp in training data helped 

model learn and forecast better. 

The LSTM and GRU models were implemented for the time series forecasting to forecast values of the 

4 sensors. GridsearchCV method helped to choose the best parameters for hypertuning for both the 
models. Table 1 describes the architecture of both the models. The LSTM model has been configured 

with 12 hidden layers and 1 output layer with Adam optimizer and mean absolute error as loss function. 

Loss functions are used to determine how close a predicted value is to the true value. Mean absolute 

error is a robust loss function and is an ideal option if the dataset contains outliers. The model was 
trained for 50 epochs and with batch size 50. Here GRU is implemented with 10 hidden layers and 1 

output layer. Similar to LSTM model mean absolute error and adam were used for loss function and 

optimizer respectively.  

Table 1. The Selected LSTM and GRU Models. 

 LSTM GRU 

Input Layer 10 Inputs No Bias 10 Inputs no bias 

Hidden Layer 12 Hidden layers 10 Hidden layers 

Output Layer 1 Output layer 1 Output layer 
Optimizer Adam Adam 

Loss Function Mean Absolute Error Mean Absolute Error 

Data Separation 80% for training and 20% for testing 80% for training and 20% for testing 

MAE 0.056 0.155 

RMSE 0.098 0.228 

The predicted values were evaluated against the test dataset. The model results were evaluated by the 

metrics Mean absolute error (MAE) and Root mean square error (RMSE). Both RMSE and MAE are 

good metrics for model evaluation [26]. In all the cases LSTM has outperformed GRU and has given 
better results. GRU has shown much higher RMSE and MAE, which is not a desirable trait for 
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predictions whereas the LSTM model has shown much less RMSE and MAE and its results are very 

close to the actual values from the test data. The values for LSTM predicted values and actual values 

are plotted in Fig. 6. 

  

  
Figure 6. Prediction results. 

 

5. ABOUT MECHANICAL BALANCING 

As we already discussed, balancing can be achieved by compensating for the missing mass in a rotating 

body by adding counterweights in the opposite direction of surplus unbalanced mass, we call it the 

mechanical process of balancing. The main challenge in this approach is to find the correct position and 

amount of the counterweight. The analysis of the data gathered by the strain gauges using machine 
learning approaches can help to localize the position and the amount of the missing mass. To achieve 

this information, the position of the strain gauges should be known. Also, it is better that the strain 

gauge’s data are calibrated, then we can relate the measurements with the physical parameters more 
easily. The mechanical process of balancing can be performed automatically or manually. Fig. 7 depicts 

a concept for manual balancing. 

 
Figure 7. Manual balancing concept: Bolts around a disc. 

This disc can be placed inside the Flettner rotor, or it can also be an inbuilt part of the Flettner rotor. 

There are 12 threaded holes round this disc where they are separated by 30 degrees. Two discs can be 

used and be placed at the two respective sensor positions as shown in Fig. 8. 
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Figure 8. Disk and bearing positions. 

In this concept, the weights (bolts) can be placed in each hole to balance the Flettner body. These moving 
weights can move along the diameter of Flettner rotor by tightening and untightening the bolts. If the 

offset angle between any two holes is 0-30 degrees, you can achieve balance by installing screws in the 

two holes and adjusting their length in the holes. The angular position may still not work; for this, screws 

with different material densities should be used. A practical solution to this problem is to drill multiple 
holes in the disc, as this reduces the space to a 30-degree angle and provides greater flexibility for the 

operator. Currently, a computer program called Innoanalyzer is used for identifying the position and 

value of the unbalanced weight for rotor balancing. It analyzes the frequency of vibrations and then use 
Fast Fourier Transform (FFT) to breakdown into further frequency components to identify the direction 

and the magnitude of unbalance in the rotor. 

 

6. CONCLUSION 

Flettner rotor is used to save energy and improve the efficiency of the vessel. Balancing is a critical 

concern in a Flettner rotor. The work utilizes a deep learning approach and proposes two methods of 

predicting rotor vibrations. For prediction, LSTM model has shown better prediction accuracy than GRU 
model as validated by RMSE and MAE. Due to the model’s lower size and efficient framework, the 

implemented model can be saved and be easily deployed on the system onboard and can be utilized to 

predict the vibration, unbalanced forces, and direction of unbalance in the rotor. Automated self-
balancing approach can be an alternative for manual balancing and can be an interesting topic for future 

work. In this approach the balancing process can be performed dynamically during the operation of the 

Flettner rotor. The automatic balancing can be enabled when the vibration exceeds the pre-determined 

limitations. The model can be best utilized to prevent rotor unbalance. 
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