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Abstract
Let R be a ring with identity. The comaximal graph of R, denoted by Γ(R), is a simple
graph with vertex set R and two different vertices a and b are adjacent if and only if
aR + bR = R. Let Γ2(R) be a subgraph of Γ(R) induced by R\{U(R) ∪ J(R)}. In this
paper, we investigate the genus of the line graph L(Γ(R)) of Γ(R) and the line graph
L(Γ2(R)) of Γ2(R). All finite commutative rings whose genus of L(Γ(R)) and L(Γ2(R))
are 0, 1, 2 are completely characterized, respectively.
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1. Introduction
The cross research on rings and graphs has attracted lots of attention by many mathe-

maticians. The definition of graph on a ring one based on the special elements of the ring,
for example, zero-divisor graphs[6], unit graphs[3] and total graphs[1] of rings; another
one based on the ideals of the ring, for example, comaximal ideal graph[4,5,20] and zero-
divisor graphs with respect to ideals[10] of rings. The comaximal graphs of rings based
on both elements and ideals of rings seems to be more interesting. Let R be a ring with
identity. The comaximal graph of R, denoted by Γ(R), is a simple graph whose vertices
are elements of the ring R, and two different vertices a and b are adjacent if and only
if aR + bR = R. In 1995, Sharma and Bhatwadekar[16] firstly gave the definition and
studied its basic properties. Maimani et al.[11] conducted research on the connectedness
and diameter of comaximal graphs of rings in 2008. Meanwhile, Wang[20] determined the
finite commutative rings whose comaximal graphs having genus 0 and 1, respectively. In
2011, Moconja and Petrovi[12] investigated the center, radius and girth of the comaximal
graphs of commutative semilocal rings. In 2020, Sinha and Rao[17] discussed the pla-
narity of line graphs of comaximal graphs. More recently, a book [2] on graphs over rings
summaries the research on graph structures over rings. This book gives an overview of
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research on graphs associated with commutative rings. Many other papers are devoted to
the comaximal graphs of rings, see [13,15,19,21,22].

In this paper, all graphs are finite and simple. Let G be a graph with vertex set V
and edge set E. The degree of a vertex of v, denoted by deg(v), is the number of vertices
incident with v. ∆(G) is the maximal degree of G among all vertices in G. For two graphs
H and G, if V (H) ⊆ V (G) and E(H) ⊆ E(G), then we call H a subgraph of G. Let S
be a subset of the vertex set of a graph G. Then the subgraph of G induced by S is a
graph whose vertex set is S and two vertices u and v are adjacent if and only if they are
adjacent in G. Kn stands for the complete graph on n vertices and Km,n is the complete
bipartite graph on size m and n.

This paper concerns with the genus of the line graph of the comaximal graph of a finite
commutative ring. Also, in this paper, surfaces are compact 2-manifolds without boundary.
An orientatable surface Sg is said to be of genus g if it is topologically homeomorphic to
a sphere with g handles. A graph that can be drawn without crossing on a compact
surface of genus g, but not on one of genus g − 1, is called a graph of genus g. In general,
determining the genus of a graph is not an easy task. It is shown by Thomassen in [18]
that the graph genus problem is indeed NP-complete. The genus of a graph G is denoted
by γ(G). It is clear that γ(H) ≤ γ(G) for any subgraph H of G. A graph is said to be
embeddable on a surface if it can be drawn on that surface in such a way that no two
edges cross. Such a drawing is referred to as an embedding. Note that the nonorientable
genus of a planar graph is zero.

The line graph of a graph G, denoted by L(G), is a graph whose vertex set is the edge
set of G and two vertices are adjacent in L(G) if and only if they share a common vertex
in G. In 1978, Bénard[7] studied the genus of line graphs for some class of graphs and
determined the lower bound of genus of line graph of a complete graph. In 2010, Chiang-
Hsieh et al. [8] studied the genus of line graph of zero divisor graphs of rings and classified
all finite commutative rings with genus at most two. In 2014, Eric et al. [9], studied the
girth and clique number of line graphs of total graphs of rings and determined when it is
Eulerian.

There is a lower bound for the genus of a connected simple graph.

Lemma 1.1. ([23, Corollaries 6.14 and 6.15] ). Suppose that a simple graph G is connected
with p(≥ 3) vertices and q edges. Then γ(G) ≥ q

6 − p
2 + 1. Furthermore, if G has no

triangles, then γ(G) ≥ q
4 − p

2 + 1.

For the genus of the line graph of a graph, we have

Lemma 1.2 ([14]). Let G be a non-empty graph. Its line graph L(G) is planar if and only
if the following conditions hold:

(1) G is planar;
(2) ∆(G) ≤ 4;
(3) If deg(v) = 4, then v is a cut vertex of G.

Based on the research of Bénard[7], Chiang-Hsieh and Lee et al. [8] obtained the
formulae of genus of line graph of a complete graph or a complete bipartite graph, see the
following lemma.

Lemma 1.3. (1) γ(L(Kn)) ≥ d (n+1)(n−3)(n−4)
12 e, the equality hold if and only if n ≡

0, 3, 4, 7(mod 12);
(2) γ(L(K1,n)) = d (n−3)(n−4)

12 e;
(3) γ(L(K2,n)) ≥ d (n−2)(n−3)

6 e, when n 6= 5, 9(mod 12) the equality hold;
(4) γ(L(K3,3)) = 1, γ(L(K3,4)) = 2, γ(L(K4,4)) ≥ 3.
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Throughout, rings are associative with identity. We use J(R) and U(R) to denote the
Jacobson radical and the group of units of a ring R respectively. We write R = R/J(R)
and ā = a + J(R) ∈ R for a ∈ R. As usual, we write Zn for the ring of integers modulo n
and by Fp the field of p elements. The cardinal of a set X is denoted |X|. dxe is the least
positive integer greater than or equal to x.

2. The genus of L(Γ(R))
In this section, we shall classify all finite commutative rings whose genus of line graph of

comaximal graph is 0, 1, and 2, respectively. As we all known, for any finite commutative
ring R, R can be uniquely expressed as the direct product of several finite local rings,
that is, R ∼= R1 × R2 × · · · × Rs, where R1, R2, . . . , Rs are finite commutative local rings.
According to the value of s, we can complete the task. First, we give a lemma.

Lemma 2.1. Let R ∼= R1 × R2 × · · · × Rs. If s ≥ 3, then γ(L(Γ(R))) ≥ 3.

Proof. If |R| ≥ 10, then deg(1) ≥ 10 in Γ(R), which deduces that L(Γ(R)) contains a
subgraph K9. So we have γ(L(Γ(R))) ≥ γ(K9) = 3. So, we just need to consider the case
of s = 3 as |R| ≥ 16 when s ≥ 4.

When s = 3. Agian by the fact that |R| ≥ 10 implies γ(L(Γ(R))) ≥ γ(K9) = 3, we only
need to consider the case that R = Z2 × Z2 × Z2. Let u1 = (1, 1, 1), u2 = (0, 1, 1), u3 =
(1, 0, 1), u4 = (1, 1, 0), u5 = (1, 0, 0), u6 = (0, 1, 0), u7 = (0, 0, 1), u8 = (0, 0, 0). Then we
know that |V (Γ(R))| = 8, E(Γ(R)) = {u1ui|2 ≤ i ≤ 8}∪{u2u3, u2u4, u3u4, u2u5, u3u6, u4u7},
that is, |E(Γ(R))| = 13. In L(Γ(R)), we mark the point vij corresponding to the edge
ui − uj(i 6= j) in Γ(R), (where vij = vji), and two distinct vertices vij and vkl are ad-
jacent if and only if {i, j} ∩ {k, l} 6= ∅. Thus, it is easy to check that |V (L(Γ(R)))| =
13, |E(L(Γ(R)))| = 42. By Lemma 1.1, we have γ(L(Γ(R))) ≥ d42

6 − 13
2 + 1e = 2. Now

we show that γ(L(Γ(R))) 6= 2 in the following.
Assume on the contrary that γ(L(Γ(R))) = 2. Fix a presentation of L(Γ(R)) on the

surface of S2. Then, by Euler formulae v − e + f = 2 − 2γ, there are 27 faces in the
presentation, say {F1, F2, · · · , F27}. Now, by deleting {v24, v34} and the edges incident
with {v24, v34}, we obtain a presentation of a subgraph of L(Γ(R)), denote it by G. Observe
that the presentation of L(Γ(R)) can be recovered from the presentation of G by inserting
{v24, v34} and the edges incident with {v24, v34}. Observe also that the presentation of G

has 23 faces, say {F
′
1, F

′
2, · · · , F

′
23}. Let S

F
′
i

be the length of face F
′
i ; then

23∑
i=1

S
F

′
i

= 72.
Suppose that S

F
′
1

≤ S
F

′
2

≤ · · · ≤ S
F

′
23

. Then the following hold:
(1) S

F
′
i

= 3, where 1 ≤ i ≤ 20;
(2) S

F
′
21

≤ 4;
(3) S

F
′
23

≤ 6.
Notice that we need to insert the vertices {v24, v34} and the edges into the same face of

the presentation of G. Since deg(v24) = deg(v34) = 6, there is at least one face F
′
i such

that S
F

′
i

≥ 7, a contradiction. So, we conclude that γ(L(Γ(R))) ≥ 3. �

With the help of previous lemma, we are able to find all finite commutative rings R
whose L(Γ(R)) has genus 0, 1, and 2, respectively.

Theorem 2.2. Let R be a finite commutative ring. Then:
(1) γ(L(Γ(R))) = 0 if and only if R is isomorphic to one of the following rings:

Z2, Z3, Z4, Z2[x]
(x2) ,F4, Z2 × Z2;

(2) γ(L(Γ(R))) 6= 1;
(3) γ(L(Γ(R))) = 2 if and only if R is isomorphic to one of the following rings: Z5, Z2×

Z3.
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Proof. We may write R ∼= R1 × R2 × · · · × Rs with Ri a finite local commutative ring.
By Lemma 2.1, γ(L(Γ(R))) ≥ 3 when s ≥ 3.

Assume that s = 2, that is, R ∼= R1 × R2. If |R| ≥ 10, then the degree of the
unit 1 is great than 8 and thus there is a complete graph K9 in L(Γ(R)). In this case,
γ(L(Γ(R))) ≥ 3. So γ(L(Γ(R))) ≤ 2 implies that |R| ≤ 9. We need only consider the
following rings: Z2 × Z2, Z2 × Z3, Z2 × F4, Z2 × Z4, Z2 × Z2[x]

(x2) , Z3 × Z3.
Since Γ(Z2 × Z2) have only four edges, L(Γ(Z2 × Z2)) have only four vertices, it is

apparently planar. If R = Z2 ×F4, then Γ(R) contains 8 vertices and 21 edges. So L(Γ(R))
contains twenty-one vertices. It is not difficult to check that L(Γ(R)) has 99 edges. Then
by Lemma 1.1, γ(L(Γ(R))) ≥ d99

6 − 21
2 + 1e = 7. Since Γ(Z2 × Z4) and Γ(Z2 × Z2[x]

(x2) )
are isomorphic, we only need to consider the case that R ∼= Z2 × Z4. If R ∼= Z2 × Z4,
then Γ(R) contains 8 vertices and 17 edges. It is easy to check that L(Γ(R)) contains 17
vertices and 68 edges. According to Lemma 1.1, γ(L(Γ(R))) ≥ d68

6 − 17
2 + 1e = 3. Let

R = Z3 ×Z3. Then Γ(R) contains 9 vertices and 30 edges. By direct verification, L(Γ(R))
contains 30 vertices and 178 edges. By the Lemma 1.1, γ(L(Γ(R))) ≥ d178

6 − 30
2 + 1e = 15.

If R = Z2 × Z3, then Γ(R) contains 6 vertices and 11 edges, then L(Γ(R)) contains 11
vertices and 35 edges, which are given by Lemma 1.1, γ(L(Γ(R)) ≥ d35

6 − 11
2 + 1e = 2. In

L(Γ(R)), let the vertex vi correspond to the edge ei in Γ(R) (as shown in the figure 1).
Then L(Γ(R)) can be embedded in the topological plane S2 (as shown in the figure 2), so
γ(L(Γ(R))) = 2.

Figure 1. Γ(Z2 × Z3)

Figure 2. The embedding of L(Γ(Z2 × Z3)) in S2
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Assume now that s = 1. R is a finite commutative local ring. From γ(L(Γ(R))) ≤ 2, we
have |R| ≤ 9. Then R may be isomorphic to Z2, Z3, F4, Z4, Z2[x]

(x2) , Z5, Z7, F8, Z8, Z2[x]
(x3) ,

Z2[x,y]
(x,y)2 , Z4[x]

(2x,x2) , Z4[x]
(2x,x2−2) , F9, Z9, Z3[x]

(x2) .
When R = Z2 or Z3, the graph Γ(R) has at most 4 edges, so L(Γ(R)) has at most 4

vertices, which is obviously a planar graph. Γ(F4) is a complete graph with 4 vertices, by
Lemma 1.3(1), γ(L(Γ(F4))) = γ(L(K4)) = 0. Since Γ(Z4) and Γ(Z2[x]

(x2) ) are isomorphic, so
we only need to consider Γ(Z4). By Lemma 1.2, we know L(Γ(Z4)) (L(Γ(Z2[x]

(x2) ))) is planar.
Note that Γ(Z5) is a complete graph with 5 vertices. By Lemma 1.3(1), γ(L(Γ(Z5))) =
γ(L(K5)) > 1. In Figure 3, we mark the edges are e1, e2, · · · , e10. Then in L(Γ(Z5)), we
let the vertex vi be the corresponding point of the edge ei in Γ(Z5). Figure 4 shows that
L(Γ(Z5)) can be embedded in the surface S2. So, γ(L(Γ(Z5))) = 2.

Figure 3. Γ(Z5)

Figure 4. The embedding of L(Γ(Z5)) in S2

Γ(Z7) is a complete graph with 7 vertices. According to Lemma 1.3(1), γ(L(Γ(Z7))) =
γ(L(K7)) = d (7+1)(7−3)(7−4)

12 e = 8. Γ(F8) is a complete graph with 8 vertices. According
to Lemma 1.3(1), γ(L(Γ(F8))) = γ(L(K8)) > d (8+1)(8−3)(8−4)

12 e = 15. Since the comaximal
graphs of Z8, Z2[x]

(x)3 , Z2[x,y]
(x,y)2 , Z4[x]

(2x,x2) , Z4[x]
(2x,x2−2) are isomorphic, we only need to consider the

case of R = Z8. Γ(Z8) contains 8 vertices and 22 edges, by direct computation, L(Γ(Z8))
contains 22 vertices and 108 edges. By Lemma 1.1, γ(L(Γ(Z8))) ≥ d108

6 − 22
2 +1e = 8. Now,

Γ(F9) is a complete graph with 9 vertices, by Lemma 1.3(1), γ(L(Γ(F9))) = γ(L(K9)) >
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d (9+1)(9−3)(9−4)
12 e = 25. Since Γ(Z3[x]

(x)2 ) is isomorphic to Γ(Z9), we only need to consider the
case of R = Z9. Γ(Z9) contains 9 vertices and 33 edges, and L(Γ(Z9)) contains 33 vertices
and 113 edges. By Lemma 1.1, we have γ(L(Γ(Z9))) ≥ d113

6 − 33
2 + 1e = 4.

All cases are considered and determined, so our proof is complete. �

3. The genus of L(Γ2(R))
As we can see, a unit is adjacent to all vertices in Γ(R), next, we consider a subgraph

of Γ(R). Let Γ2(R) be a subgraph of Γ(R) induced by R\{U(R) ∪ J(R)}, where U(R) is
the unit group of R and J(R) is the Jacobson radical of R. In this section, we investigate
the genus of L(Γ2(R)). Our aim is to find all finite commutative rings whose genus of
L(Γ2(R)) is 0,1 and 2, respectively. Before giving the main conclusion of this section, we
give a few lemmas.
Lemma 3.1. Let R ∼= R1 × R2 × · · · × Rs. If s ≥ 4, then γ(L(Γ2(R))) ≥ 3.
Proof. Assume that s = 4. Let a1 = (1, 1, 1, 0), a2 = (1, 1, 0, 1), a3 = (1, 0, 1, 1), a4 =
(0, 1, 1, 1), b1 = (1, 1, 0, 0), b2 = (1, 0, 1, 0), b3 = (1, 0, 0, 1), b4 = (0, 1, 1, 0), b5 =
(0, 1, 0, 1), b6 = (0, 0, 1, 1). Let G be a subgraph of Γ2(R) induced by S = {a1, a2, a3, a4, b1,
b2, b3, b4, b5, b6}. Then E(G) = {aiaj |i 6= j}∪{a1bi|i = 3, 5, 6}∪{a2bi|i = 2, 4, 6}∪{a3bi|i =
1, 4, 5} ∪ {a4bi|i = 123} ∪ {b1b6, b2b5, b3b4}, we have |V (G)| = 10, |E(G)| = 21. Thus
|V (L(G))| = 21, |E(L(G))| = 78. By Lemma 1.1, we have γ(L(G)) ≥ d78

6 − 21
2 + 1e = 4.

So γ(L(Γ2(R))) ≥ γ(L(G)) ≥ 4.
When s ≥ 5, by above discussion, we know that Γ2(R) has a subgraph isomorphic to G,

which is induced by S = {a1, a2, a3, a4, b1, b2, b3, b4, b5, b6}. So γ(L(Γ2(R))) ≥ γ(L(G)) ≥
4. �

Lemma 3.2. Let R ∼= R1 × R2 × R3.
(1) If |U(Ri)| ≥ 3(for some 1 ≤ i ≤ 3), then γ(L(Γ2(R))) ≥ 3;
(2) If |U(Ri)| ≥ 2, |U(Rj)| ≥ 2(for some 1 ≤ i 6= j ≤ 3), then γ(L(Γ2(R))) ≥ 3.

Proof. (1) We may suppose that |U(R3)| ≥ 3 and 1, u, v ∈ U(R3). Let a1 = (1, 1, 0), a2 =
(1, 0, 1), a3 = (1, 0, u), a4 = (1, 0, v), a5 = (0, 1, 1), a6 = (0, 1, u), a7 = (0, 1, v), b1 =
(1, 0, 0), b2 = (0, 1, 0). Let G be a subgraph of Γ2(R) induced by {a1, a2, · · · , a7, b1, b2}.
Then E(G) = {aiaj |i 6= j} ∪ {aib1|i = 5, 6, 7} ∪ {aib2|i = 2, 3, 4}. Then |V (G)| = 9,
|E(G)| = 21. Thus |V (L(G))| = 21, |E(L(G))| = 75. By Lemma 1.1, we have γ(L(G)) ≥
d75

6 − 21
2 + 1e = 3. So γ(L(Γ2(R))) ≥ γ(L(G)) ≥ 3.

(2) We may assume that |U(R2)| ≥ 2, |U(R3)| ≥ 2, and 1, u ∈ U(R2), 1, v ∈ U(R3). Let
a1 = (1, 1, 0), a2 = (1, u, o), a3 = (1, 0, 1), a4 = (1, 0, v), b1 = (0, 1, 1), b2 = (0, 1, v), b3 =
(0, u, 1), b4 = (0, u, v). Let G be a subgraph of Γ2(R) induced by {a1, a2, a3, a4, b1, b2, b3, b4}.
Then E(G) = {aiaj |i 6= j}∪{aibj}, there are |V (G)| = 8, |E(G)| = 20. Thus |V (L(G))| =
20, |E(L(G))| = 84. By Lemma 1.1, we have γ(L(G)) ≥ d84

6 − 20
2 + 1e = 5. Therefore

γ(L(Γ2(R))) ≥ γ(L(G)) ≥ 5. �

Lemma 3.3. Let R ∼= R1 × R2.
(1) If |U(Ri)| ≥ 9(for some 1 ≤ i ≤ 2), then γ(L(Γ2(R))) ≥ 3;
(2) If |U(R1)| ≥ 2, |U(R2)| ≥ 7, then γ(L(Γ2(R))) ≥ 3;
(3) If |U(R1)| ≥ 3, |U(R2)| ≥ 6, then γ(L(Γ2(R))) ≥ 3;
(4) If |U(R1)| ≥ 4, |U(R2)| ≥ 5, then γ(L(Γ2(R))) ≥ 3.

Proof. (1) We may suppose that |U(R2)| ≥ 9, and u1, u2, · · · , u9 ∈ U(R2). Let U =
{(1, 0)}, V = {(0, ui)|1 ≤ i ≤ 9}. Then each element in U is adjacent to every element in
V . Since |U | = 1 and |V | = 9, so K1,9 is a subgraph of Γ2(R). From Lemma 1.3(2), we
have γ(L(Γ2(R))) ≥ γ(L(K1,9)) = 3.

(2) Let u1, u2 ∈ U(R1) and v1, v2, · · · , v7 ∈ U(R2). Let U = {(u1, 0), (u2, 0)}, V =
{(0, vi)|1 ≤ i ≤ 7}. Then every element in U is adjacent to every element in V . Since
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|U | = 2 and |V | = 7, we know that K2,7 is a subgraph of Γ2(R). By Lemma 1.3(3), we
have γ(L(Γ2(R))) ≥ γ(L(K2,7)) ≥ 4.

(3) Let u1, u2, u3 ∈ U(R1), v1, v2, · · · , v6 ∈ U(R2). Let U = {(u1, 0), (u2, 0), (u3, 0)},
V = {(0, vi)|1 ≤ i ≤ 6}. Then every element in U is adjacent to every element in V .
Since |U | = 3 and |V | = 6, we have that H = K3,6 is a subgraph of Γ2(R). Thus we
have |V (H)| = 9, |E(H)| = 18. So, |V (L(H))| = 18, |E(L(H))| = 63, and by Lemma 1.1,
γ(L(H)) ≥ d63

6 − 18
2 + 1e = 3. Therefore γ(L(Γ2(R))) ≥ γ(L(H)) ≥ 3.

(4) Let u1, u2, u3, u4 ∈ U(R1), v1, v2, · · · , v5 ∈ U(R2). Let U = {(ui, 0)|1 ≤ i ≤ 4},
V = {(0, vi)|1 ≤ i ≤ 5}. Then every element in U is connected to every element in V ,
and |U | = 4, |V | = 5, so H = K4,5 is a subgraph of Γ2(R). Thus we have |V (H)| = 9,
|E(H)| = 20. There are |V (L(H))| = 20, |E(L(H))| = 70, by the Lemma 1.1, γ(L(H)) ≥
d70

6 − 20
2 + 1e = 4. So γ(L(Γ2(R))) ≥ γ(L(H)) ≥ 4. �

The above lemmas give some sufficient conditions for γ(L(Γ2(R))) ≥ 3. Next, we give
the main result in this section for classifying finite commutative rings R whose γ(L(Γ2(R)))
is 0, 1, and 2, respectively.

Theorem 3.4. Let R be a finite commutative ring and Γ2(R) be not an empty graph.
Then:

(1) γ(L(Γ2(R))) = 0 if and only if R is isomorphic to one of the following rings:
Z2 × Z2, Z2 × Z3, Z2 × Z4, Z2 × Z2[x]

(x2) , Z2 × F4, Z3 × Z3, Z3 × F4, Z2 × Z2 × Z2;
(2) γ(L(Γ2(R))) = 1 if and only if R is isomorphic to one of the following rings:

Z2 × Z7, Z2 × F8, Z3 × Z4, Z3 × Z2[x]
(x2) , Z3 × Z5, F4 × F4;

(3) γ(L(Γ2(R))) = 2 if and only if R is isomorphic to one of the following rings:
Z3 × Z7, Z4 × F4, Z2[x]

(x2) × F4, F4 × Z5.

Proof. Let R ∼= R1 × R2 × · · · × Rs. By Lemma 3.1, we have γ(L(Γ2(R))) ≥ 3 when
s ≥ 4. As Γ2(R) is an empty graph if R is not a finite commutative local ring. So, we just
consider the cases that s = 2 and s = 3.

Assume now that s = 3. According to the Lemma 3.2, R may be isomorphic to Z2 ×
Z2 × Z2,Z2 × Z2 × Z3,Z2 × Z2 × Z4,Z2 × Z2 × Z2[x]

(x)2 . In L(Γ2(Z2 × Z2 × Z2)), let the
vertex vi corresponds to the edge ei in Γ2(Z2 × Z2 × Z2) (as shown in the figure 5). So
L(Γ2(Z2 × Z2 × Z2)) can be drawn on a plane (as shown in the figure 6). Therefore
γ(L(Γ2(Z2 × Z2 × Z2))) = 0.

Figure 5. Γ2(Z2 × Z2 × Z2)

Let R = Z2 × Z2 × Z3. We have |V (Γ2(R))| = 9. Let a = (1, 1, 0), b1 = (1, 0, 1), b2 =
(1, 0, 2), c1 = (0, 1, 1), c2 = (0, 1, 2), d1 = (0, 0, 1), d2 = (0, 0, 2), d3 = (0, 1, 0), d4 =
(1, 0, 0). Then E(Γ2(R)) = {abi, acj , bicj} ∪ {ad1, ad2, b1d3, b2d3, c1d4, c2d4}, i.e.
|E(Γ2(R))| = 16. Thus |V (L(Γ2(R)))| = 16. It is easy to check that |E(L(Γ2(R)))| = 57.
By Lemma 1.1, we get γ(L(Γ2(R))) ≥ d57

6 − 16
2 + 1e = 3. When R ∼= Z2 × Z2 × Z4, let

a1 = (1, 1, 0), a2 = (1, 1, 2), b1 = (1, 0, 1), b2 = (1, 0, 3), c1 = (0, 1, 1), c2 = (0, 1, 3), d1 =
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Figure 6. L(Γ2(Z2 × Z2 × Z2))

(0, 0, 1), d2 = (0, 0, 3), d3 = (0, 1, 0), d4 = (1, 0, 0). Let G be a subgraph of Γ2(R) induced
by {aibj , ckdl}. Then E(G) = {aibj , aick, bjck} ∪ {aidj |j = 1, 2} ∪ {bjd3, ckd4}. Thus
|V (L(G))| = 20, |E(L(G))| = 74, by Lemma 1.1, we have γ(L(G)) ≥ d74

6 − 20
2 + 1e = 4.

So γ(L(Γ2(R))) ≥ γ(L(G)) ≥ 4.
Assume now that s = 2. According to the Lemma 3.3, R may be isomorphic to Z2 ×

Z2, Z2 ×Z3, Z2 ×S1, Z2 ×F4, Z2 ×Z5, Z2 ×Z7, Z2 ×S2, Z2 ×F8, Z3 ×Z3, Z3 ×S1, Z3 ×
F4, Z3 ×Z5, Z3 ×Z7, Z3 ×S2, S1 ×S1, S1 ×F4, S1 ×Z5, S1 ×Z7, S1 ×S2, F4 ×F4, F4 ×
Z5, Z5 × Z5, where S1 is a commutative local ring of order 4 but not a field, and S2 is a
commutative local ring of order 8 but not a field.

If R ∼= R1 × R2, where R1, R2 are finite commutative local rings. Denote Mi the unique
maximal ideal of Ri (i = 1, 2). Let U = U(R1) × M2 and V = M1 × U(R2). Then every
element in U is adjacent to every element in V in Γ2(R). If |U | = m and |V | = n, then
Γ2(R) = Km,n.

So, we have Γ2(Z2 ×Z2) = K2; Γ2(Z2 ×Z3) = K1,2; Γ2(Z2 ×F4) = K1,3; Γ2(Z2 ×Z5) =
K1,4; Γ2(Z2 × S1) = Γ2(Z3 × Z3) = K2,2; Γ2(Z3 × F4) = K2,3. By Lemma 1.3(2)(3), we
know the line graphs of these graphs are all planar.

We know that Γ2(Z2×Z7) = K1,6; Γ2(Z2×F8) = K1,7; Γ2(Z3×S1) = Γ2(Z3×Z5) = K2,4;
Γ2(F4 ×F4) = K3,3. By Lemma 1.3(2)(3)(4), we know that their line graphs all have genus
one.

We know that Γ2(Z3 × Z7) = Γ2(S1 × F4) = K2,6; Γ2(F4 × Z5) = K3,4. By Lemma
1.3(3)(4), we know their line graphs have genus 2.

Note that Γ2(S1 ×Z5) = K2,8. Then by Lemma 1.3(3), we have γ(L(Γ2(S1 ×Z5))) = 5.
Γ2(S1 × Z7) = K2,12. By Lemma 1.3(3), we have γ(L(Γ2(S1 × Z7))) ≥ 15.
If R ∼= Z2 × S2 or S1 × S1 or Z5 × Z5, then Γ2(R) = K4,4. By Lemma 1.3(4), we have

γ(L(Γ2(R))) = γ(L(K4,4)) ≥ 3.
If R ∼= Z3 × S2, then Γ2(R) = K4,8. By Lemma 1.3(4), we have γ(L(Γ2(R))) =

γ(L(K4,8)) ≥ γ(L(K4,4)) ≥ 3. If R ∼= S1 × S2, then Γ2(R) = K8,8. By Lemma 1.3(4), we
have γ(L(Γ2(R))) = γ(L(K8,8)) ≥ γ(L(K4,4)) ≥ 3. �
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