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Abstract— Rough set has been commonly taken part in literature to examine inadequate and incomplete  information
systems. The efficiency of rough set with stochastic data observed for developing convenience and scalability. In this study, we
use a ranking approach for attribute reduction in stochastic information systems and generalized this via presenting a
dominance relation. We obtained the rough set approach of attribute reduction in stochastic information systems by
establishing the dominance degrees. Furthermore, attribute reduction methods are studied by considering discernibility matrix
and this approach is applied to explanatory examples to demonstrate its validity. Also this research proposes many research

fields and new application areas show a tendency to concerning rough set approach to stochastic information systems.
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1. INTRODUCTION

As a soft computing technique, rough set theory is proposed
by Pawlak and it is an important theory to deal with
insufficient information [1,2]. The theory is an expanded of
the classical set theory for modelling uncertainty or
imprecision information. It has conceived as a powerful
mathematical tool for knowledge discovery. Particularly it
can be used in evaluation the significance of attributes and
derive decision rules and also to describe the dependencies
among attributes [2,3]. It is useful in many fields such as
machine learning, data mining and pattern recognition [4-8].
The information systems, the basis of rough set based data
analysis; contain data about objects of interest, characterized
by a finite set of attributes [9,10].

The classical rough set theory does not examine the problem
of ordering objects. However, note that indiscernibility-based
rough set model is powerless in many real situations that are
the ordering of objects attributes with preference-ordered
domains. To solve this problem, Greco, Matarazzo, and
Slowinski have given to the literature, the dominance-based
rough set approach (DRSA) which is an extension of rough
set theory [11-14]. DRSA considers the ordering
characteristics of attributes. Many researches have been
studied about DRSA, lately [15-17].

Stochastic data is to define objects with uncertain
judgements. It is also influenced by varied kinds of errors
such as measurement, computation errors etc. Also stochastic
information systems ensures us a powerful tool for data
analyses and they are found almost everywhere in real world
applications. Researchers from all over the world interested
in stochastic data from among so many complex data. So the
stochastic extension of DRSA was generalized as the notion

of lower approximations to the stochastic case by estimating
the class intervals for each object [18].

Nowadays, researchers are proposed approaches using
stochastic dominance (SD) rules [19-28]. Some of these
methods are to rank alternatives by using the determined SD
relations based on rough set theory [26-27]. Moreover, the
approach depends on stochastic dominance degree (SDD)
has been also proposed [28].

The aim of this paper is to future researches rough set in
stochastic information systems based on dominance relation.
Nevertheless, to solve applicable problem, just only one
knowledge granulation may not be fine enough. For this
reason the issues of multi granulation have been absolutely
discussed in many rough set studies [29-34]. From this
aspect, we will propose a new dominance approach into
stochastic information systems. This mechanism is to apply a
parameter a, which checks the size of dominance-based
information granulation.

The remaining of this study is consisted of as follows.
Dominance relation in stochastic information systems are
shortly reminded in Section 2. In Section 3, attribute
reduction in stochastic information systems based on
discernibility matrix is introduced and some important
properties are discussed. In Section4, illustrative examples
for the two more cases are investigated to show the possible
implementation of the proposed approach. And lastly,
Section 5 summarizes and emphasizes the main properties of
this study.
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2. a-DOMINANCE RELATION IN STOCHASTIC
INFORMATION SYSTEMS

In this section we present a dominance relation to a
stochastic information system by using SDD. Stochastic
dominance is a comparing technique for uncertain
alternatives in decision making [36]. And also SDD was
presented as an approach to solve the stochastic multiple
criteria decision making problem, where results of
alternatives according to criteria are demonstrated by random
variables with probability distributions by Liu et. al [35].

In decision making, two kinds of problems are examined: to
obtain ranking based on information aggregation, and to
obtain dominance rules with relations. In this study, we only
work on to rank all objects with the dominance relation in a
stochastic information system. In their study, Zhang and Qiu
describe a dominance degree notion to rank all objects in
classical ordered information systems [37]. Hereinafter, we
define a dominance degree between two objects and a whole
dominance degree of an object.

A stochastic information system (SIS) is a quadruple
S = (U,AT,V,D) where U is a finite non-empty set of
objects and AT is a finite non-empty set of attributes,
V =Ugear V, and V, is a domain of attribute a, D: f; (x) X
f2(x) X AT - V is a total function such that f; (x) and f,(x)
are probability  distributions of  two objects
x; and x, respectively, D(f;(x), f>(x),a) € V, for every
a € AT, x, and x, € U called an information function where
V7, is a set of stochastic data.

In comparing two probability distributions, there are two
kinds of random variables, i.e. continuous (probability
density functions) and discrete (probability mass functions)
random variables. So, two probability distributions are
compared with three possible states. i.e., (1) two continuous
probability distributions, (2) two discrete probability
distributions and (3) a continuous probability distribution and
a discrete probability distribution [35]. Dominance degree
between two objects with respect to the dominance relation is
defined as:

Definition 1 (Stochastic Dominance Relation Between
Two Continuous Probability Distribution)

Let X; and X, be two independent continuous random
variables with probability distributions f;(x) and f,(x),
respectively, where [* f,(x)dx = 1and [ fo(x)dx =
1. Then the dominance degree of f;(x) over f,(x) (noted
as Dy, .. r,) is given by

Dy, = f:: ff;f1(x1) f2(xz)dx,dxy, )

and accordingly, the dominance degree of f,(x) over f;(x)
(noted as Dy, . 1, ) is given by
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where Df1>f2 + Df2>f1 = 1,

Dpyop, = 2 12 i) foe) dxdixy. @

Definition 2 (Stochastic Dominance Relation Between
Two Discrete Probability Distribution)

Let ¥; and Y, be two independent discrete random variables
with probability distributions g, (v) and g,(y), respectively,
where Y32 o, g9,(y) = 1and Y32, g,(y) = 1. Then the
dominance degree of g;(y) over g,(y) (noted as D .. 4,) is
given by

Dyyrg, = Tp2mon Xyemoo G171 92(72) = 0.5 X572 o0 91 (71) 92 (1), (3)

and accordingly, the dominance degree of g,(y) over g,(y)
(noted as Dy, 4,) is given by

+ D

where D 90> 91

91>92

=1,

Dy,sg, = ;fi—oo Vo= ylg1(y1)gz(yz)—0-52;['1_0091(3/1)92(%)- (4)
Definition 3 (Stochastic Dominance Relation Between
Continuous Probability Distribution and Discrete
Probability Distribution)

Let X be an independent continuous random variable with
probability distribution f(x), and Y be an independent
discrete random variable with probability distribution g(y),
where f f()dx =1and ¥} ,g(y) =1. Then the
dominance degree of f(x) over g(y) (noted asDy.,) is
given by

Df>g = y——oo [g(y)f f(x)dx] (5)

and accordingly, the dominance degree of g(y) over f(x)
(noted as Dy, () is given by

where D, g+ Dgor =1,

Dysr = 3 wlg () [7,, f(x)dx]. 6)

Definition 4 (Stochastic Dominance Relation Between
Two Normal Probability Distributions)

The normal probability distribution is used extensively in
that it can well model the additive effect of many
independent factors [38-42]. In the following, a case that
continuous probability distributions are normal ones was
analyzed [35].

Let Z; and Z, be two independent normal random variables
with probability distributions hi(2) =
e~(z-1)?/20% gnq hy(2) =

o1V
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1
oV2T
means, and o, and g, are standard deviations. Then the
dominance degree of h,(z) over h,(z) (noted as Dy, p,) is
given by

e~(z=H2)*/20% respectively, where  p, and p, are

—_1 r® -t?p2
Dy, sh, —h—ﬂf_me /2dt, (7)
where ¢ = £2F2
o?+0%

Remark 1. Consider arbitrary two objects A, and A, in
decision analysis. Let f;(x)and f,(x) be probability
distributions on consequences of A, and A,, respectively.
Dy .rcan be also regarded as the dominance degree of
Ay over A, (noted as Dy, s4,), 1.8, Df,»p, < Dy, sa, - The
greater Dy, fis, the greater the dominance degree of object
A, over A, will be.

By Equations (1), (2), (3), (4), (5), (6) and (7), the dominance
degree matrix D; of object pairwise comparisons with respect
to criterion a; can be constructed, i.e.,

[Dllj D121 Dlmj]

D D Dy i

Dj = [Dikj]mxm =[ 2:1] 2:2] 2:m1 ’
Dml] szj Dmmj

where D;;; denotes the dominance degree of x; over x, with
respect to attribute a;, and Dy ; + Dy;; = 1.

First, overall dominance degree matrix D of object pairwise
comparisons is constructed, i.e.,

Dy4 Dyp Dlm
D D ces D

D = [Diylmxm = :21 :22 Z:m )
Dml Dm2 Dmm

where D;;, denotes the overall dominance degree of x; over
x, and is calculated by

n
_ Yj=1Dikj

Dy, = At iLk=12,.. m. (8)

From Eq. (8), it can be seen that D;, + D;; =1 and 0 <
Dik S 1

Let (x;,x,) € U X U, thus a dominance relation matrix with
respect to AT can be constructed with the dominance
relation. Also the whole dominance degree of each object can
be obtained from this matrix with this formula

. 1
D(i) = ——Xizk Dik,

= x;,x; € U. (©)]
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According to these two concepts, a ranking approach for all
objects can also be generated. Through the number of D;,
whole dominance degree of each object on the universe, all
objects can be rank. Therefore larger value indicates that an
object better. This concept can be understood with the next
example.

In the following, we will give an example for the comparing
of two discrete probability distributions.

Example 1.1

This example is adapted from Zaras and Martel (1994) and
Liu et al. (2011) [24,35]. A stochastic information system is
given in Table 1, where U= {x;,x,, ...,x10}L AT =
{a,,a,,a3,a,} and there are 7 decision makers.

Firstly the types of stochastic dominance relations are
defined for each pair of objects according to each attribute.
The larger values of attributes are preferable one than the
smaller ones.

The evaluations of objects with respect to attributes are
defined in the form of probability distributions (Table 1).
For example, three experts in the seven give their
considerations on project x; with respect to criterion a; using
score 2, then the ‘probability’ that the consideration on
project xq is score 2 is regarded as 3/7 (see Table 1). Firstly in
Table 1, the probability distribution of random variable on
each object according to each attribute is obtained. Then, the
dominance degree of one object over another according to
each attribute can be determined using Equation (3) and (4).
So, four dominance degree matrices D,, D, D; and D, are
respectively established, i.e.,

Table 1. The evaluations provided by experts

Attribute Values Objects

X1 X2 X3 X4 X5 Xs X7 Xs Xg X10

0 0 © ur 0o ur 17 17 0 0
g7 y7 0 0O O O O 27 0 u7
7 0 0 O 7 0 0 217
0 27 0 0 O 0 O 7
2m v 37 17 0 O 37 UT 27 117
0 2 17 o0 2/t 0 1/7 O 17 0
U7 o yr 0 2/t uy7r 0 0 3/7 117
0 yr 2/7 17 0 37 17 O ur o

ap

a

0 0 © 7 0 0 r 17 0

210 0 O 7 0 17 0 0 O
0 yr ur 17 27 0 17 O ur o
0 7 0 0 yr 17 o0 0 47 27
r ur 2/ 3/ 2/7 2;7 0 O O 37
7 37 uyr uyr 147 0 O O O O

0 o 0 270 0 O O 0 O 177

O©CONOOOUPRARWNRPPOONODUORWNRPEPRPOONOOODRWNPRE

a3 0 0 7 0 7 0 0 2/7 0 17
o 0 o0 o o0 0 37 1T 0 277
7 0 O 7 0 0 17 47 17 0
3% 0 0 0 O 7 17 o 2/7 0
0 7 0 0 O 7 2/t 0 2/7 0
¥ 0 o0 o o0 0 0 o0 o0 277
0 7 0 7 0 0 0 0 2/7 27
7 2/7 0 2/7r 37 2;7 0 O O O
7 3/7 2/v uyr 17 1/7 0 0 O O
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10 0 0 47 271 27 27 0O 0 0 0
as 1 0 U7 0 7 0 0 O 21 0 0

2 0 0 o o0 o0 o0 ©O 0 17 0

3 37 0 0 0 0 0 17 0 0 0

4 0 0 0 o 0 0 O U7 17 0

5 27 0 0 0 0 7 17 2/7 0 O

6 0 0 0 0 7 U7 o 17 317 307

7 0 0 U7 0 17 17 0 0 0 1/7

8 vr 2/t 47 0 3/7 27 37 UT U7 17

9 0 2/7 0 7 ur ur 17 0 0 17

10 U7 2/7 27 5/7 U7 U7 17 0 17 17

The dominance degree of one object over another with
respect to each attribute is obtained according to Liu et. al
[35]. Thus four dominance degree matrices D,, D, Dsand D,
are const(r)lected.

0.3163 0.1531 0.1837 0.1327 0.1531 0.2857 0.6122 0.1327 0.4286
0.6837 0.5  0.2959 0.2245 0,2449 0,1939 0,4082 0,8265 0,2551 0,6735
0.8469 10,7041 0,5 0,2755 10,3878 0,2551 0,5714 0,9694 0,4694 0,8776
0,8163 0,7755 0,7245 0,5 0,6122 0,5102 10,6633 0.8571 0.7245 0.8265
0,8673 0,7551 0,6122 0,3878 0,5 0,3265 0,6531 0,9388 0,5714 0,8367
0,8469 0,8061 0,7449 0,4898 0,6735 05 07143 10,8673 0,7755 0,8469
0,7143 0,5918 0,4286 03367 0,3469 0,2857 0.5 0.8367 0.3878 0.7449
0,3878 0,1735 0,0306 0,1429 0,0612 0,1327 0,1633 0,5 0,0204 0,2959
0,8673 0,7449 0,5306 0,2755 0,4286 0,2245 0,6122 09796 0,5 0,8878
0,5714 0,3265 0,1224 0,1735 0,1633 0,1531 0,2551 0,7041 0,1122 0,5
0,5 0,2857 0,2551 0,3163 0,2551 0,4694 0,7041 0,8776 0,3776 0,2959
0,7143 05 04184 0,6020 06939 0,7245 0,8571 0,8878 0,7245 0,5204
0,7449 05816 05 0,6530 0,6020 0,7551 0,8571 0,8878 0,7653 0,5918
0,6837 10,3980 03470 0,5 0,4796 0,7143 0,8980 0,9694 0,6633 0,4592
0,7449 10,3061 0,3980 0,5204 05 0,7245 0,9490 1 0,6735 0,4082
0,5306 10,2755 0,2449 0,2857 0,2755 0,5 0,7959 10,9184 0,4286 0,3061
0,2959 10,1429 0,1429 0,1020 0,0510 0,2041 05 07143 10,1020 0,0918
0,1224 10,1122 0,1122 0,0306 0 0,0816 10,2857 0,5 0,0306 0,0510
0,6224 10,2755 0,2347 0,3367 10,3265 0,5714 0,8980 09694 0,5 0,2245
0,7041 0,4796 0,4082 0,5408 0,5918 0,6939 09082 0,9490 0,7755 0,5
0,5 0,1939 10,1633 0,2449 0,2449 0,2245 0,7755 0,9592 0,5204 0,6122
0,8061 0,5 02041 0,4490 0,4184 0,4694 09796 1 0,9184 10,8980
0,8367 0,7959 05 06735 0,6837 06735 0,8571 08776 0,8571 0,8673
0,7551 0,5510 03265 0,5 04796 0,5 0,9286 10,9592 0,8469 0,8980
0,7551 10,5816 0,3163 0,5204 05 0,5204 10,8571 0,8776 0,8571 0,8673
0,7755 10,5306 03265 0,5 04796 0,5 0,9286 1 0,8367 10,8367
0,2245 10,0204 0,1429 0,0714 0,1429 0,0714 05 0,6837 0,2143 0,3673
0,0408 0 0,1224 10,0408 0,1224 0 0,3163 0,5 00408 03061
0,4796 0,0816 0,1429 0,1531 0,1429 0,1633 0,7857 09592 0,5 0,5510
0,3878 10,1020 0,1327 0,1020 0,1327 0,1633 0,6327 0,6939 0,4490 0,5

D=

D, =

0,5 0,2653 10,1837 0,2143 0,2041 0,2347 0,2959 0,5612 0,3878 10,2245
07347 0,5 05714 0,2959 0,6327 0,6531 0,6327 0,8571 0,7347 0,6735
08163 04286 05 0,2857 10,5816 0,6429 0,5918 0,9388 0,8163 0,7041
0,7857 10,7041 0,7143 0,5 0,7755 0,7755 0,7755 0,8776 0,7857 0,7755
0,7959 10,3673 0,4184 0,2245 05 0,5714 0,5408 0,9184 0,7653 0,6224
0,7653 10,3469 03571 0,2245 0,4286 0,5 05 08673 10,6939 0,5306
0,7041 0,3673 0,4082 0,2245 0,4592 0,5 05 08061 0,6531 05204
0,4388 10,1429 10,0612 0,1224 10,0816 0,1327 0,1939 0,5 02959 0,1224
0,6122 0,2653 0,1837 0,2143 0,2347 0,3061 0,3469 0,7041 0,5 0,3163
0,7755 10,3265 0,2959 0,2245 0,3776 0,4694 04796 08776 06937 0,5

D, =

From the definition of dominance degree, the dominance
relation matrix can be obtained as

The overall dominance degree D matrix of object is obtained.

0.5 0.2653 0.1888 0.2398 0.2092 0.2704 0.5153 0.7526 0.3546 0.3903
10.7347 05 03725 03929 04975 0.5102 0.7194 0.8929 0.6582 0.6914|
|0.8112 0.6276 0.5  0.4719 0.5638 0.5817 0.7194 0.9184 0.770 0.7602 |
0.7602 0.6072 0.5281 0.5 0.5867 0.6250 0.8164 0.9158 0.7551 0.7398
0.7908 0.5025 0.4362 0.4133 0.5 05357 075 0.9337 0.7168 0.6837
0.7296 0.4898 0.4184 0.3750 0.4643 0.5 0.7347 0.9133 0.6837 0.6301
0.4847 0.2806 0.2807 0.1837 0.25 0.2653 0.5 0.7602  0.3393 0.4311
10.2475 0.1072 0.0816 0.0842 0.0663 0.0868 0.2398 0.5  0.0969 0.1939J

0.6454 0.3418 0.2730 0.2449 0.2832 0.3163 0.6607 0.9031 0.5 04949
0.6097 0.3087 0.2398 0.2602 0.3164 0.3699 0.5689 0.8062 0.5051 0.5

D(1)=0.65 D(2)=0.4, D(3)=0.32, D(4)=0.3,
D(5)=0.36,  D(6)=0.4, D(7)=0.64, D(8)=0.87,
D(9)=0.54,  D(10)=0.56.

Afterwards, all objects ranks are constructed with respect to
the number of D(i). An object with larger number shows a
better object.

X3

Xo = Xy 2 Xy 2 Xig = X >y
6

)>X5>X3>X4.

Qian et. al. proposed a ranking approach based on dominance
classes and establish a dominance based rough set approach
to interval information systems [43]. Yang et. al. presented
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lower and upper approximate reducts into o-dominance
based rough set approach to interval-valued decision systems
[44]. The information granulation is the most significant and
initial stage, to rough set data analysis. In this part, the
stochastic dominance degree which is a parameter that
indicates how a stochastic data dominates another one will be
taken in stochastic information systems,

Definition 5 (Stochastic a-Dominance Relation)

Let S = (U,AT,V,D) be a stochastic information system,
Va € AT, a a-dominance relation in terms of a is defined as:

1: i=k
DOME(x;, %) = {1: {(x;, x,)€U?: Dy, = a}, (10)
0: otherwise

where D;;, denotes the dominance degree of x; over x; with
respect to attribute a,

DOMg = {(x;, x,)eU?: Dy = a}, (11)

VA € AT, a a-dominance relation in terms of A is defined
as:

DOMY = {(x;,x,) € U?:Va € A, (x;,x,) € DOMZ},(12)

where a € [0,1] is a given threshold of dominance
degree.

DOME (x;, x;) is a crisp binary relation and a can get
any value in interval [0, 1]. This is mainly because the
value of DOM (x;, x;.) is between 0 and 1. For a given
a, if (x;,x;) € DOMZ (x;, xi), then x; is considered as
dominating x; on attributes a with the at least degree
of a. In this paper, we denoted it by

fxi, @) Zq fxe, a) or f(xe, a) 2o f(x,a) (13)

Example 1.2 (Continued from Example 1.1) If we consider
threshold of dominance degree 0.6 and the stochastic
information system dedicated in Table 1, then a Boolean
matrix DOM_S;® can be established:

DOMSF =

R RO OR R R, R R
OO0 0O ORR RO
o0 oCcOoOOoOOoORr OO
co0oOoCOoOORrROOO
coooCcOoOROOOO
cCoOOoOOoORrROROOO
OCRORRRRLRRL RO
I N N S g N
OCROOR R RR RO
R OOORr R RPLR, Lo
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Take for instance x,, under the given dominance degree
a = 0.6, objects xy,x,,x;,xg,Xg and x;, are regarded as
dominated by x, with respect to set of attributes AT.

3. ATTRIBUTE REDUCTION IN STOCHASTIC
INFORMATION SYSTEMS BASED ON
DISCERNIBILITY MATRIX

Searching significant subsets of attributes which ensure the
identical or more meaning for the whole set of attributes, is
one of the main research subject. These subsets are named
reducts. Nowadays, many attribute reduction approaches
have been studied in literature for different dominance
relations. For instance, Shao and Zhang proposed an
expansion of reduct dominance relation for incomplete
information systems [45]. Yang et al. proposed a similarity
dominance relation to form all reducts [46].

In this this part, a framework of attribute reduction with
respect to a-dominance relation in stochastic information
systems is established and an example is employed to
demonstrate its effectiveness.

Definition 6. Let S = (U,AT,V,D) be a stochastic
information system, VA € AT and « € [0,1],

1. if DOMY = DOMS;,, then A is referred to as a a-
dominance consistent set in S;

2. if A is a a-dominance consistent set in S and A — {a} is
not a a¢-dominance consistent set for each a € A4, i.e.,

DOMj_(q; # DOM7, then A is referred to as a a-dominance
reduct in S;

3. the set of all a-dominance reducts inS is denoted by
Red®*(S);

4. the intersection of all a-dominance reducts in S is referred
to as the a-dominance core.

A a-dominance consistent set in S is a subset of full
attributes which preserves a-dominance relation DOMS, |
while a-dominance reduct in S is a minimal a-dominance
consistent set which preserves a-dominance relation DOM ;.

In the following, the discernibility matrix based approach to
compute all a-dominance reducts in S is presented.

Vx;,x; € U, letus denote

(x;,x) € DOMS;

{a € AT: (xi,xk) [°3 DOMg}
) other wise

D/‘QZT (xir xk) = {

D (x;, x;) is showed to as the a-discernibility set for
objects pair (x;,x;) for the given dominance degree a.
Describe, furthermore, the @-dominance matrix such that
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M* = {DF (x;, x;.): Vx;, x3, € U}, (14)
and let
Mg = (D% (x;, x1): VD& (x;, xi) € M%, D (x;, %) # 0}, (15)

then to obtain a a-dominance consistent set according to a-
dominance matrix, the following theorem can be used

Theorem 1. Let S be a stochastic information system,
VA € AT, we have

DOMS = DOMS; & AN D (x;, xi) # @, VDS (x;, x,) € M§.

Theorem 1 ensures that adequate and essential conditions to
evaluate whether a subset of attributes is a a-dominance
consistent setin S.

Definition 7. Let S be a stochastic information system, let us
define

A= ADzT(Xi,Xk)EMg V DXT (xi' xk)* (16)

A is referred to as the a-dominance discernibility function
inS.

Theorem 2. Let S be a stochastic information system,
VA € AT, A is a a-dominance reduct in S if and only if V A
is a prime implicant of A.

According to those described above, we can see that it
ensures a practical framework for attribute reduction, which
can be expressed with the following example.

Table 2 0.6-discernibility set for pairs of objects given in
Table 1.

U X1 X2 X3 Xa Xs Xs X7 Xg Xg X10

X1 a3 a1@r8ds 188084 128084 128084 aa a  a@@sa e
X2 Q1828384 A18zau ads ads ap ap a

X3 Qs aas ads a Qds ar a

Xa a3 a3 &8s ads a

Xs Q838 Q838 18,8384 s a ap ay

Xg az Q28384 Q28384 Q122832 Q88 as a Q84

X7 aas a1@r8ds a8 188084 128084 128084 ajaras Aazdu
Xg A8 188 a8 182838 A1zd adoau 1828584 Q182858 @8
Xo Qzas Q838 1828384 A18.83a8 A1dxa3a A1dx83a as 283
Xi0 183 1828384 1828384 218,838 218,838 Q1838 18 183

Example 1.3 (Continued from Example 1.2) For stochastic
information system given in Table 1, following Example 1.2,
the 0.6-discernibility sets for all pairs of objects are shown in
Table 2. By the definition of discernibility matrix, one can
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obtain the discernibility sets for all pairs of objects are shown
in Table 2.

By Theorems 1 and 2, it is not difficult to obtain that
Red®(S) = {{a,, ay,a,}}, 8., {a;,a,,a,} is the only one
0.6-dominance reduct in Table 1.

4. ILLUSTRATIVE EXAMPLES

In this part, illustrative examples for the three cases are
evaluated to express the potential implementation of the
proposed approach.

Example 2

This is a modified example of selecting the most desirable
strategy for an electricity retailer, which considered [35, 41].
In the example, there are nine objects (44,4,,...,44) and
four attribute: long-term profit (C;), shortterm profit (C,),
market share (C3) and green market share (C,). Assume that
the result of object A;with respect to criterion C; is a random
variable with normal probability distribution f;;(x) =
—Jijf/ﬁe_("‘“if)z/z"izf, in Table 3. To
determine the attribute reduct(s), computation processes and
results using the proposed method are summarized as follows

which is given

Table 3 Means and standard deviations for consequences of
objects with respect to attribute.

Objects (Wi, 03))
G, C, Cs Cy

A (439,143) (163,36) (12.1,05) (9.3,6.5)
A, (426,125) (159,31) (12.1,0.5) (14.8,6.5)
A (264,135) (10432) (13.1,0.5) (9.3,6.5)
A (444125) (16331) (12.1,0.5) (9.3,6.5)
A (605,115) (220,31) (11.0,0.5) (9.3, 6.5)
A (449,126) (166,32) (12.1,05) (4.3,6.5)
A (449,107) (16427) (12.1,05) (9.3,6.5)
Ag (457,126) (16532) (12.1,0.5) (9.3,6.5)
A (453,107) (16327) (12.1,0.5) (14.8,6.5)

Firstly, using Eg. (7), four dominance degree matrices
D;, Dy, D5 and D, are built as follows:

0.5 0.5273 0.8132 0.4895 0.1828 0.4791 04777 0.4624 0.4688
0.4727 0.5 0.8107 0.4594 0.1460 0.4484 0.4444 0.4307 0.4348
|10.1868 0.1893 0.5 0.1640 0.0273 0.1582 0.1414 0.1480 0.1363]
10.5105 0.5406 0.8360 0.5 0.1716 0.4888 0.4879 0.4708 0.4782|
D, =10.8172 0.8540 09728 0.8284 0.5 0.8198 0.8397 0.8072 0.8334l,
0.5209 0.5516 0.8418 0.5112 0.1802 0.5 0.5 0.4821 0.4903
0.5223 0.5556 0.8586 0.5121 0.1603 0.5 0.5 0.4807 0.4895
l0.5376 0.5693 0.8520 0.5292 0.1928 0.5179 0.5193 0.5 0.5097
0.5312 0.5652 0.8637 0.5218 0.1666 0.5097 0.5105 0.4903 0.5
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0.5 0.5336 0.8897 0.5 0.1151 0.4752 0.4911 0.4834 0.5
0.4665 0.5 0.8915 0.4637 0.0821 04376 0.4516 0.4464 0.4612
0.1103 0.1085 0.5 0.0927 0.0046 0.0853 0.0759 0.0888 0.0794

0.5 0.5363 0.9073 0.5 0.0968 0.4732 0.4903 0.4821 0.5
D, =10.8849 0.9179 0.9954 0.9032 0.5 0.8873 0.9134 0.8915 0.91721},
0.5248 0.5624 09147 0.5268 0.1128 0.5 0.5191 0.5088 0.5286
0.5089 0.5484 0.9241 0.5097 0.0866 0.4810 0.5 0.4905 0.5104
0.5166 0.5536 0.9112 0.5179 0.1085 0.4912 0.5095 0.5 0.5191

0.5 0.5388 0.9206 0.5 0.0828 0.4714 0.4896 0.4810 0.5

0.5000 0.5000 0.0787 0.5000 0.9401 0.5000 0.5000 0.5000 0.5000
0.5000 0.5000 0.0787 0.5000 0.9401 0.5000 0.5000 0.5000 0.5000
09214 0.9214 0.5000 0.9214 0.9985 0.9214 0.9214 0.9214 09214
0.5000 0.5000 0.0787 0.5000 0.9401 0.5000 0.5000 0.5000 0.5000
D; =10.0599 0.0599 0.0015 0.0599 0.5000 0.0599 0.0599 0.0599 0.05991l,
0.5000 0.5000 0.0787 0.5000 0.9401 0.5000 0.5000 0.5000 0.5000
0.5000 0.5000 0.0787 0.5000 0.9401 0.5000 0.5000 0.5000 0.5000
0.5000 0.5000 0.0787 0.5000 0.9401 0.5000 0.5000 0.5000 0.5000
0.5000 0.5000 0.0787 0.5000 0.9401 0.5000 0.5000 0.5000 0.5000

0.5000 0.2748 0.5000 0.5000 0.5000 0.7068 0.5000 0.5000 0.2748
0.7252 0.5000 0.7252 0.7252 0.7252 0.8733 0.7252 0.7252 0.5000
0.5000 0.2748 0.5000 0.5000 0.5000 0.7068 0.5000 0.5000 0.2748
0.5000 0.2748 0.5000 0.5000 0.5000 0.7068 0.5000 0.5000 0.2748
D, =10.5000 0.2748 0.5000 0.5000 0.5000 0.7068 0.5000 0.5000 0.2748].
0.2932 0.1267 0.2932 0.2932 0.2932 0.5000 0.2932 0.2932 0.1267
0.5000 0.2748 0.5000 0.5000 0.5000 0.7068 0.5000 0.5000 0.2748
0.5000 0.2748 0.5000 0.5000 0.5000 0.7068 0.5000 0.5000 0.2748
0.7252 0.5000 0.7252 0.7252 0.7252 0.8733 0.7252 0.7252 0.5000

Then, using Eq. (8), overall dominance degree matrix D can
be obtained, i.e.,

0.5000 0.4589 0.5704 0.4974 0.4345 0.5403 0.4922 0.4856 0.4359
]0.5411 0.5000 0.6265 0.5371 0.4734 0.5648 0.5303 0.5256 0.4740]
10.4296 0.3735 0.5000 0.4195 0.3826 0.4679 0.4097 0.4146 0.3530]
10.5026 0.4629 0.5805 0.5000 0.4271 0.5422 0.4946 0.4882 0.4383]

D =]0.5655 05267 0.6174 05729 05000 0.6185 05783 0.5647 0.5213].

0.4597 0.4352 0.5321 0.4478 0.3816 0.5000 0.4531 0.4460 0.4114

0.5078 0.4697 0.5904 0.5055 0.4218 0.5470 0.5000 0.4928 0.4437
|0.5136 0.4744 0.5855 0.5118 0.4354 0.5540 0.5072 0.5000 0.4509I
l0.564-1 0.5260 0.6471 0.5618 0.4787 0.5886 0.5563 0.5491 O.SOOOJ

D,=0.52, D,=0.47, D3=0.60, D,=0.51, Ds=0.43, D¢=0.56,
D,=0.51, Dg=0.50, Dy=0.45,

In the following, we rank all objects according to the number
of D(i).

X
X3>X6>X1>(X4)>X8>X2>X9>X5.
7

If we consider the stochastic information system given in
Table 3 and assume that a threshold of dominance degree
0.6, then we can obtain a Boolean matrix, which is
corresponding to D2;¢ such that:

r

2

o

Il
OO OO O OO O M
OO OO O OO = O
_ O OO R O = O
OO oo O RO OO
OO OO R OO OO
OO OR R OO OO
OO RO O OO OO
OR OO O OO OO
DT‘OOOOOOOO

Take for instance x,, under the given dominance degree
a = 0.6, objects x, and x5 are regarded as dominated by x,
with respect to set of attributes AT. By the definition of
discernibility matrix, one can obtain the discernibility sets
for all pairs of objects are shown in Table 4.
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Table 4 0.6-discernibility set for pairs of objects given in
Table 3.

U
X1 X2 X3 Xa X5 X6 X7 X8 X9
qidpdz aAzd aidxdz aAidp aiay qidpdz adjdpxdz Aidxas
X1 as 4 as as az a4 as as
aidy a13,a3
X2  aidas az di@dz; aid as iddz  didaz A
aiay
X3 aidxaz aidxas @y A aid; aiddy a1@ddy  a@ag
Qpda;  ai1da3  asa NQd @  Nda8;  A@az  A1da3
Xs a4 as 4 as az a4 as as
asza
X5 azds azdy 4 azas as azdy azay azay
1383 @183 azd a1da3  A1d 21a83  A1da3 A3
Xe a4 as 4 as as as as as
didxdz Apdpdz adsad a;ay aiay aidxdz  Aijdpas
X7 a4 as 4 ad3d4 a4 az as as
aiapaz aApdpdz asza aiadxadz ajdp aiay aiaas a;aas
Xg aa vt 4 s s as s g
aiaas aiay
Xg ai@d; s az a3 1y az 1883  a1das

By Theorems 1 and 2, it is not difficult to obtain that
Red®®(S) = {{ay, a3}, {ay, as}},ie., {as, a3} and {a, as}
are the 0.6-dominance reduct and {as}is the core in Table 3.

Table 5. Discrete probability distributions and normal
probability distributions for consequences of objects with
respect to attribute.

Scores
Attribute  Objects

(wij» 0i)
1 2 3 4 5 6 7 8 9 10

C; Ar 0 01 01 03 02 02 01 0 0 O
A, 0 0 01 03 02 02 01 01 0 O
Az 01 0 02 02 03 01 01 0 0 O

Ay 0 0 0 02 03 0401 0 0 O

C. Ay (5.5,1.3)
A (5,1.1)
As (6,1.5)
A (45,1)
Cs A, 0 01 01 01 01 03 01 01 0 O
A (451.2)
A, 0 0 02 03020201 0 0 0
A (4.6,1.1)
Cs A (6,1.2)
A, 0 0 0 01 02 030202 0 0
As (6.3,1)

Ay 0 0 O O 01 02 03 03 01 ©0

Example 3

This is a modified example of (Lui et al.) choosing the most
desirable  vendor(s). There are four alternatives
(A1,A,, A5 and A,) and four attribute: responsiveness to
customer needs (C,), price (C,), on-time delivery (C5) and
product quality (C,). Considerations of the alternatives
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according to the attribute are shown in Table 5. To determine
the attribute reduct(s), computation processes and results
using the proposed method are summarized as follows

Firstly, using Equations (3), (4), (5), (6) and (7), four
dominance degree matrices D;, D,, D; and D, are built as
follows:

[ 05 0405 0545 0335
p, = [0595 05 0635 0435
0455 0365 05 029 [
0.665 0565 071 0.5
0.5  0.6155 0.4006 0.7290]
p,=|03845 05 02954 0.6317
0.5994 07046 05  0.7973[
0.2710 03683 02027 05
0.5 06125 0575 0.5989 ]
p,=|03875 05 04680 04755
0425 05320 05  0.5090]
04011 0.5245 04910 0.5
0.5 04548 042386 0.2554
p, = [05452 05 04778 031
05762 05222 05 03002 [
0.7446  0.69  0.6998 0.5

Then, using Eq. (8), overall dominance degree matrix D can
be set up, i.e.

0.5000 0.5220 0.4861 0.4796
D= 0.4781 0.5000 0.4691 0.4631
0.5139 0.5310 0.5000 0.4741]
0.5204 0.5370 0.5259 0.5000
D1:0.51, D2:O.53, D3:O.50, D4:O48

In the following, we rank all objects according to the number
of D(i).

X, = X, 7 X3 = X,

If we consider the stochastic information system given in
Table 5 and assume that a threshold of dominance degree
0.6, then we can obtain a Boolean matrix, which is
corresponding to D%? such that:

[N )
(=N N el w)
_ OO0 O

Take for instance x,, under the given dominance degree
a = 0.6, objects x, is regarded as dominated by x, with
respect to set of attributes AT.
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By the definition of discernibility matrix, one can obtain the
discernibility sets for all pairs of objects are shown in Table
6.

Table 6 0.6-discernibility set for pairs of objects given in
Table 5.

U xq Xo X3 X4

X1 a;dy djdrazd,s a;dszdy
X aidxazady dazds  A1dzdy
X3 88,838, 88324 a,833,
Xy ayas Q3,83 Ard3

By Theorems 1 and 2, it is not difficult to obtain that
Red®¢(S) =

{a1, a2}, {a1,a3},{az, a4}, {as,a4}}, ie.,
{ai,a,},{a;,a3},{a,,a,} and {as,a,}are the
dominance reduct in Table 5.

0.6-

5. CONCLUSIONS

In this study, a general method is proposed to model the
dominance relation in stochastic information systems. To
check the dominance degree between two stochastic data, a
threshold is utilized such o-dominance relation. This is
useful in adapting information granulation according to
varied levels.

In the framework, firstly, the dominance degree matrix of
objects according to each attribute is established based on
comparisons of probability distributions. The dominance
degree provides that identifying process of stochastic
dominance relations to compare objects. According to
dominance relation, a rough set approach in stochastic
information system is established as a substitution of the
indiscernibility relation. Also we have discussed stochastic
information systems in order to extract attribute reduct(s)
based on the discernibility matrices. The proposed approach
can be computed basic and easy procedures, beside the
method provides to find much simpler attribute reduct(s) in a
simple stochastic information system.

In terms of future study, the proposed model can be extended
with multiple information forms such as crisp numbers,
interval numbers, and stochastic information and so on.
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