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1. Introduction
The dynamics of processes that are subject to sudden state changes are often studied using differential equations with

impulses as models. There are two commonly used types of impulses: instantaneous and non-instantaneous. The investigation
of impulsive differential equation involving classical derivatives one can refer to [1]-[9]

Due to its importance in numerous related domains, including physics, mechanics, chemistry, engineering, etc., fractional
calculus has received more and more attention in recent years, one can see [10]-[13] and references therein. In [12], Hilfer
investigated applications for an extended fractional operator that has the Riemann-Liouville (RL) and Caputo derivatives
as special cases. In this study, we deal with the existence, uniqueness, and stability of ψ-Hilfer fractional derivative based
fractional differential equations, which Sousa and Oliveira initiated in [14].

Mathematicians have explored fuzzy fractional integrals and differential equations. One can see that RL, Hadamard, and
Katugampola fuzzy fractional integrals are the basis for a lot of research on this area. We recommand the reader to the works
[15, 16] and references listed therein for details about the basic concepts of fuzzy analysis and fuzzy differential equations. By
employing the Caputo-Katugampola fuzzy fractional derivative, Sajedi et al. evaluated the existence, uniqueness, and several
types of Ulam-Hyers stability of solutions of an impulsive coupled system of fractional differentia equations [17]. For more
facts on fuzzy fractional differential equations and its stability concepts, see, for example, [18]-[25].

In this paper, motivated by the research going on in this direction, we study the Ξ-Hilfer fractional fuzzy differential
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equations with impulse of the form:
HD

α,β ,Ξ
0+ z(t) = p(t,z(t)), t ∈ (si, ti+1], i ∈M0 := M∪{0},

z(t) = gi(t,z(t+i )), t ∈ (ti,si], i ∈M,

I
1−γ,Ξ
0+ z(0) = z0, γ = α +β −αβ ,

(1.1)

where M = {1,2, · · · ,m}, z ∈ R, α ∈ (0,1), β ∈ [0,1], p : [0,T ]×Ed → Ed is continuous, and Ed is the space of fuzzy sets
and ti satisfy 0 = t0 = s0 < t1 ≤ s1 ≤ t2 < · · ·< tm ≤ sm < tm+1 = T , gi : [ti,si]×Ed → Ed is continuous for all i = 1,2, · · · ,m,
which is non-instantaneous impulses. Moreover HD

α,β ,Ξ
0+ and I

1−γ,Ξ
0+ are the Ξ-Hilfer fractional derivative and Ξ-RL fractional

integral.

2. Preliminaries
If we take J = [0,T ]. Let Ed be a family of fuzzy numbers, that is., z : R→ [0,1] satisfies normal, convex, upper

semicontinuous and compactly supported.
The s-level set of z ∈ Ed are defined by

[z]s =

{
{t ∈ R|z(t)≥ s}, if s ∈ (0,1],
cl{t ∈ R|z(t)> s}, if s = 0.

So, the s-level set of z ∈ Ed are compact intervals of the form [z]s = [z(s),z(s)]⊂ R.

Definition 2.1. [15] Two fuzzy sets z1 and z2 are defined on Ed and λ ∈ R. According to Zadeh’s extension principle, z1 + z2
and λ z1 are in Ed and defined as

[z1 + z2]
s =[z1]

s +[z2]
s,

[λ z1]
s =λ [z1]

s, for all s ∈ [0,1],

where [z1]
s +[z2]

s represents the usual addition of two intervals of R and λ [z1]
s represents the usual scalar product between λ

and an real interval.

Definition 2.2. [16] The distance D0[z1,z2] between two fuzzy numbers is defined by

D0[z1,z2] = sup
0≤s≤1

H([z1]
s, [z2]

s) for all z1,z2 ∈ Ed , (2.1)

where H([z1]
s, [z2]

s) = max{|z1(s)− z2(s)|, |z1(s)− z2(s)|} is the Hausdroff distance between [z1]
s and [z2]

s.

Definition 2.3. [16] Let z1,z2 ∈ Ed . There exists z3 ∈ Ed such that z1 = z2 + z3, that is., z3 = z1	 z2, where z3 is Hukuhara
difference of z1 and z2.
The generalized Hukuhara difference of two fuzzy numbers z1,z2 ∈ Ed [gH-difference] is defined as

z1	gH z2 = z3⇔ z1 = z2 + z3, or z2 = z1 +(−1)z3, (2.2)

where z1	gH z2 is called as gH-difference of z1 and z2 in Ed .

Definition 2.4. [15] Let z : [a,b]→ Ed be a fuzzy function, then for each s ∈ [0,1], the function t 7→ d([z(t)]s) is nondecreasing
(nonincreasing) on [a,b]. In addition, z is called d-monotone on [a,b], if z is d-increasing or d-decreasing on [a,b].

Definition 2.5. [15] Let z : (a,b]→ Ed and t ∈ [a,b]. If z is a fuzzy function of gH-differentiable with respect to t then there
exists an element z

′
gH(t) ∈ Ed such that

z
′
gH(t) = lim

h→0

z(t +h)	gH z(t)
h

. (2.3)

Definition 2.6. Let z : J → Ed be a continuous fuzzy mapping. The fuzzy Ξ-type RL fractional integral of z is defined by(
RLIα,Ξ

0+ z
)
(t) =

1
Γ(α)

∫ t

0
Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1z(τ)dτ, for all t ∈J . (2.4)
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Definition 2.7. Let z : J →Ed be a continuous fuzzy mapping. The fuzzy Ξ-type RL fractional derivative of order n−1<α < n
for fuzzy-valued function z is defined by

(RLDα,Ξ
0+ z

)
(t) =

1
Γ(n−α)

(
1

Ξ
′
(t)

d
dt

)n ∫ t

0
Ξ
′
(τ)(Ξ(t)−Ξ(τ))n−α−1z(τ)dτ, for all t ∈J . (2.5)

Definition 2.8. The fuzzy Ξ-Hilfer fractional derivative of order α ∈ (0,1) and type β ∈ [0,1] is defined by

HD
α,β ,Ξ
0+ z(t) = I

α(1−β ),Ξ
0+

(
1

Ξ
′
(t)

d
dt

)
I
(1−α)(1−β ),Ξ
0+ z(t). (2.6)

for a fuzzy function z : J → Ed so that the expression on the right side exists.

Lemma 2.9. Let α ∈ (0,1), β ∈ [0,1] and z ∈A C (J ,Ed) be a d-monotone fuzzy function, then

(
Iα,Ξ

0+
HD

α,β ,Ξ
0+ z

)
(t) =z(t)	gH

(
I

1−γ,Ξ
0+ z

)
(0)

Γ(γ)
(Ξ(t)−Ξ(0))γ−1, t ∈J . (2.7)(HD

α,β ,Ξ
0+ Iα,Ξ

0+ z
)
(t) =z(t), t ∈J . (2.8)

Theorem 2.10. [3] Let (S,D) be a generalized complete metric space. Suppose that the operator T : S→ S is strictly
contractive with Lipschitz constant L < 1. If there exists a non-negative integer k such that D[T k+1,T k]< ∞ for some z ∈ S,
then the following are true:

(i) The sequence {T kz}k≥1 converges to a fixed point z∗ of T ;

(ii) z∗ is the unique fixed point of T ∈ S∗; where S∗ = {v ∈ S|D[T kz,v]< ∞}.

(iii) If v ∈ S∗, then D[v,z∗]≤ 1
1−L

D[T v,v].

3. Existence Theory

In this section, we consider PC (J ,Ed) the family of piecewise continuous fuzzy function, we say that v(t) is continuous
on Ji, i = 0,1, · · · ,m, where Ji = (ti, ti+1] and t0 = 0, tm+1 = T .

We introduce the following hypotheses:
(H1) There exists function m∗,n∗ ∈C(J ,R+) such that

D0[p(t,u(t)), 0̂]≤ m∗(t)D0[u(t), 0̂]+n∗(t),

where M∗ = supt∈J m∗(t) and N∗ = supt∈J n∗(t).
(H2) p ∈C([si, ti+1],Ed) and there exists a positive constants Lp such that

D0[p(t,u1), p(t,u2)]≤ LpD0[u1,u2], t ∈J .

(H3) gi ∈C([ti,si],Ed) and there exists a positive constants Lgi

D0[gi(t,u1),gi(t,u2)]≤ LgiD0[u1,u2].

(H4) There exists function q ∈C(J ,R+) such that

D0[gi(t,u(t+i )), 0̂]≤ q(t)D0[u(t), 0̂].

(H5) Let ϕ ∈C(J ,R+) be a non-decreasing function, then there exists Cϕ > 0 such that

1
Γ(α)

∫ t

0
Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1

ϕ(τ)dτ <Cϕ ϕ(t) for each t ∈J .
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Lemma 3.1. Let p ∈ C(J ,Ed) be a continuous fuzzy function. Then, a d-monotone fuzzy function z ∈PC (J ,Ed) is a
solution of the following problem{

HD
α,β ,Ξ
0+ z(t) = p(t,z(t)), t ∈J ,

I
1−γ,Ξ
0+ z(0) = z0.

if and only if z ∈PC (J ,Ed) satisfies the integral equation provided as follows:

z(t)	gH
(Ξ(t)−Ξ(0))γ−1

Γ(γ)
z0 =

1
Γ(α)

∫ t

0
Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1 p(τ,z(τ))dτ, t ∈J .

Lemma 3.2. Let α ∈ (0,1), β ∈ [0,1] and γ = α +β (1−α). Suppose that p : J ×Ed → Ed be a continuous fuzzy function
and gi : [ti,si]×Ed→ Ed is a continuous for every i∈M. Then a d-monotone continuous function z is a solution of the following
integral equation:

z(t)	gH
(Ξ(t)−Ξ(0))γ−1

Γ(γ) z0 =
1

Γ(α)

∫ t
0 Ξ

′
(τ)(Ξ(t)−Ξ(τ))α−1 p(τ,z(τ))dτ, t ∈ (si, ti+1],

z(t) = gi(t,z(t+i )), t ∈ (ti,si], k ∈M,

z(t)	gH z(si) =
1

Γ(α)

∫ t
si

Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1 p(τ,z(τ))dτ, t ∈ (si, ti+1],

where z(si) = gi(si,z(t+i ))

(3.1)

if and only if z is a d-monotone solution of the fuzzy impulsive of Ξ-Hilfer fractional problem is
HD

α,β ,Ξ
0+ z(t) = p(t,z(t)), t ∈ (si, ti+1], i ∈M0 := M∪{0},

z(t) = gi(t,z(t+i )), t ∈ (ti,si], i ∈M,

I
1−γ,Ξ
0+ z(0) = z0.

(3.2)

Proof. Suppose that z satisfies the problem (1.1), that is, z is a solution of Eqn.(1.1).
Let t ∈ (0, t1], then{

HD
α,β ,Ξ
0+ z(t) = p(t,z(t)), t ∈ (si, ti+1],

I
1−γ,Ξ
0+ z(0) = z0,

is equivalent to the equation

z(t)	gH
(Ξ(t)−Ξ(0))γ−1

Γ(γ)
z0 =

1
Γ(α)

∫ t

0
Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1 p(τ,z(τ))dτ. (3.3)

Now, it follows from Eqn.(3.2) of second equation that when t ∈ (t1,s1], z(t) = gi(t,z(t+i )). If t ∈ (s1, t2] then

HD
α,β ,Ξ
0+ z(t) =p(t,z(t)), t ∈ (s1, t2]

z(s1) =g1(s1,z(t+1 )). (3.4)

Applying an operator I1−γ,Ξ
0+ over (0, t2] on both sides of Eqn.(3.4) , we get

z(t)	gH
(Ξ(t)−Ξ(0))γ−1

Γ(γ)
I

1−γ,Ξ
0+ z(0) =

1
Γ(α)

∫ t

0
Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1 p(τ,z(τ))dτ, (3.5)

which yields

z(s1)	gH
(Ξ(s1)−Ξ(0))γ−1

Γ(γ)
I

1−γ,Ξ
0+ z(0) =

1
Γ(α)

∫ s1

0
Ξ
′
(τ)(Ξ(s1)−Ξ(τ))α−1 p(τ,z(τ))dτ.

From the second equation of problem (3.4), we get
g1(s1,z(t+1 ))	gH

(Ξ(t)−Ξ(0))γ−1

Γ(γ) I
1−γ,Ξ
0+ z(0) = 1

Γ(α)

∫ s1
0 Ξ

′
(τ)(Ξ(s1)−Ξ(τ))α−1 p(τ,z(τ))dτ

I
1−γ,Ξ
0+ z(0)

=
(
g1(s1,z(t+1 )	gH

1
Γ(α)

∫ s1
0 Ξ

′
(τ)(Ξ(s1)−Ξ(τ))α−1 p(τ,z(τ))dτ

)
Γ(γ)(Ξ(t)−Ξ(0))1−γ .

(3.6)
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Substituting Eqn.(3.6) in Eqn.(3.5), we obtainz(t)	gH

(
Ξ(t)−Ξ(0)

Ξ(s1)−Ξ(0)

)γ−1(
g1(s1,u(t+1 ))	gH

1
Γ(α)

∫ s1
0 Ξ

′
(τ)(Ξ(s1)−Ξ(τ))α−1 p(τ,z(τ))dτ

)
= 1

Γ(α)

∫ t
0 Ξ

′
(τ)(Ξ(s1)−Ξ(τ))α−1 p(τ,z(τ))dτ, t ∈ (s1, t2].

Now, it follows from Eqn.(3.2) of second equation that when t ∈ (t2,s2] with z(s2) = g2(s2,u(t+2 )).
Repeating the same process for t ∈ (si, ti+1], we obtain

z(t)	gH z(si) =
1

Γ(α)

∫ t

si

Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1 p(τ,z(τ))dτ, t ∈ (si, ti+1],

where, z(si) = gi(si,z(t+i )).
Conversely, suppose that z satisfies the integral Eqn.(3.1). If t ∈ (0, t1], then I

1−γ,Ξ
0+ z(0) = z0 and applying HD

α,β ,Ξ
0+ fact that,

we obtain

HD
α,β ,Ξ
0+

(
z(t)	gH I

1−γ,Ξ
0+ z(0)

)
=HD

α,β ,Ξ
0+

(
1

Γ(α)

∫ t

0
Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1 p(τ,z(τ))dτ

)
,

=HD
α,β ,Ξ
0+

(
Iα,Ξ

0+ p(t,z(t))
)
.

HD
α,β ,Ξ
0+

(
Iα,Ξ

0+
HD

α,β ,Ξ
0+ z(t)

)
=HIα,Ξ

0+
HD

α,β ,Ξ
0+ p(t,z(t))

HD
α,β ,Ξ
0+ z(t) =p(t,z(t)).

And, next we can easily prove that z(t) = gi(t,z(t+i )), t ∈ (ti,si].

Theorem 3.3. Assume that (H1)− (H3) hold. Then, the problem (1.1) has at least one solution.

Proof. Define a operator T : PC (J ,Ed)→PC (J ,Ed) is given by

(Tw)(t) =


(

(Ξ(t)−Ξ(0))γ−1

Γ(γ)

)
w0 +

1
Γ(α)

∫ t
0 Ξ

′
(τ)(Ξ(t)−Ξ(τ))α−1 p(τ,w(τ))dτ, t ∈ (0, t1],

gi(t,w(t+i )), t ∈ (ti,si],

gi(si,w(t+i ))+ 1
Γ(α)

∫ t
si

Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1 p(τ,w(τ))dτ.

Clearly the operator T is well-defined and for any w ∈PC (J ,Ed), we have
Case 1: For t ∈ (0, t1].
D0[Tw(t)(Ξ(t)−Ξ(0))1−γ , 0̂]

≤ D0

[
w0

Γ(γ)
+

(Ξ(t)−Ξ(0))1−γ

Γ(α)

∫ t

0
Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1 p(τ,w(τ))dτ, 0̂

]
≤ w0

Γ(γ)
+

(Ξ(t)−Ξ(0))1−γ

Γ(α)

∫ t

0
Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1D0[p(τ,w(τ)), 0̂]dτ

≤ w0

Γ(γ)
+

(Ξ(t)−Ξ(0))1−γ

Γ(α)

∫ t

0
Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1m∗(τ)D0[w(τ), 0̂]dτ

+
(Ξ(t)−Ξ(0))1−γ

Γ(α)

∫ t

0
Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1n∗(τ)dτ

≤ w0

Γ(γ)
+

(Ξ(t)−Ξ(0))1−γ

Γ(α)
B(γ,α)(Ξ(t)−Ξ(0))α+γ−1M∗D0[w(τ), 0̂]

+
(Ξ(t)−Ξ(0))1−γ

Γ(α +1)
(Ξ(t)−Ξ(0))α N∗

≤ w0

Γ(γ)
+

M∗B(γ,α)

Γ(α)
(Ξ(t)−Ξ(0))α D0[w(τ), 0̂]+

N∗

Γ(α +1)
(Ξ(t)−Ξ(0))α+1−γ .



Dynamics and Stability of Ξ-Hilfer Fractional Fuzzy Differential Equations with Impulses — 120/127

Case 2: For t ∈ (ti,si].
D0[Tw(t)(Ξ(t)−Ξ(0))1−γ , 0̂]≤ (Ξ(t)−Ξ(0))1−γ D0[gi(t,w(t+i )), 0̂]

≤ (Ξ(t)−Ξ(ti))1−γ q(t)D0[w(t), 0̂]

≤ QD0[w(t), 0̂],

where Q = (Ξ(t)−Ξ(ti))1−γ q(t).
Case 3: For t ∈ (si, ti+1].
D0[Tw(t)(Ξ(t)−Ξ(si))

1−γ , 0̂]

≤ (Ξ(t)−Ξ(si))
1−γ D0[gi(si,w(s+i )), 0̂]+

(Ξ(t)−Ξ(si))
1−γ

Γ(α)

×
∫ t

si

Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1D0[p(τ,w(τ)), 0̂]dτ

≤ QD0[w(t), 0̂]+
M∗B(γ,α)

Γ(α)
(Ξ(ti)−Ξ(si))

α D0[w(t), 0̂]

+
N∗

Γ(α +1)
(Ξ(ti+1)−Ξ(si))

α+1−γ ,

which gives T transforms the Ball Bη = {w ∈PC (J ,Ed)|D0[w, 0̂]≤ η}, into itself. Next, we have to prove the operator
T : Bη →Bη satisfies all the conditions of Schauder fixed point theorem. The following steps are done by the proof.
Step 1: T is continuous.
Let wn be a sequence such that wn→ w in C(J ,Ed). Then
Case i: For t ∈ (0, t1],
D0[Twn(t)(Ξ(t)−Ξ(0))1−γ ,Tw(t)(Ξ(t)−Ξ(0))1−γ ]

≤ (Ξ(t)−Ξ(0))1−γ

Γ(α)

∫ t

0
Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1D0[p(τ,wn(τ)), p(τ,w(τ))]dτ

≤ B(γ,α)

Γ(α)
(Ξ(t1)−Ξ(0))α D0[p(t,wn(t)), p(t,w(t))]

≤ B(γ,α)

Γ(α)
(Ξ(t1)−Ξ(0))α LpD0[wn,w].

Case ii: For t ∈ (ti,si].
D0[Twn(t)(Ξ(t)−Ξ(ti))1−γ ,Tw(t)(Ξ(t)−Ξ(ti))1−γ ]

≤ (Ξ(t)−Ξ(ti))1−γ D0[gi(t,wn(t+i )),gi(t,w(t+i ))]

≤ D0[gi(t,wn(t+i )),gi(t,w(t+i ))]

≤ LgiD0[wn(t+i ),w(t+i )].

Case iii: For t ∈ (si, ti+1].
D0[Twn(t)(Ξ(t)−Ξ(ti))1−γ ,Tw(t)(Ξ(t)−Ξ(ti))1−γ ]

≤ (Ξ(t)−Ξ(si))
1−γ D0[gi(si,wn(t+i )),gi(si,w(t+i ))]

+
(Ξ(t)−Ξ(si))

1−γ

Γ(α)

∫ t

si

Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1D0[p(τ,wn(τ)), p(τ,w(τ))]dτ

≤ D0[gi(t,wn(t+i )),gi(t,w(t+i ))]+
B(γ,α)

Γ(α)
(Ξ(ti+1)−Ξ(si))

α D0[p(t,wn(t)), p(t,w(t))]

≤ LgiD0[wn,w]+
B(γ,α)

Γ(α)
(Ξ(ti+1)−Ξ(si))

α LpD0[wn,w].

Step 2: T (Bη) is uniformly bounded.
It is clear that, T (Bη)⊂Bη is bounded.
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Step 3: We have to prove that T (Bη) is equicontinuous.
If t1, t2 ∈J , t1 > t2 are bounded set of C(J ,Ed) as in step 2. Then
Case i: For t ∈ (0, t1].
D0[(Ξ(t1)−Ξ(0))1−γ Tw(t1),(Ξ(t2)−Ξ(0))1−γ Tw(t2)]

≤ D0[
(Ξ(t1)−Ξ(0))1−γ

Γ(α)

∫ t1

0
Ξ
′
(τ)(Ξ(t1)−Ξ(τ))α−1 p(τ,w(τ))dτ,

(Ξ(t2)−Ξ(0))1−γ

Γ(α)

∫ t2

0
Ξ
′
(τ)(Ξ(t2)−Ξ(τ))α−1 p(τ,w(τ))dτ]

≤ D0[p(t,w(t)), 0̂]
Γ(α)

B(γ,α)[(Ξ(t1)−Ξ(0))α +(Ξ(t2)−Ξ(0))α ].

Case ii: For t ∈ (ti,si].
D0[(Ξ(t1)−Ξ(0))1−γ Tw(t1),(Ξ(t2)−Ξ(0))1−γ Tw(t2)]

≤ D0[(Ξ(t1)−Ξ(0))1−γ gi(t1,w(t+i )),(Ξ(t2)−Ξ(0))1−γ Tw(t2)gi(t2,w(t+i ))],

≤ D0[gi(t1,w(t+i )),gi(t2,w(t+i ))].

Case iii: For t ∈ (si, ti+1].
D0[(Ξ(t1)−Ξ(0))1−γ Tw(t1),(Ξ(t2)−Ξ(0))1−γ Tw(t2)]

≤ D0[
(Ξ(t1)−Ξ(si))

1−γ

Γ(α)

∫ t1

si

Ξ
′
(τ)(Ξ(t1)−Ξ(τ))α−1 p(τ,w(τ))dτ,

(Ξ(t2)−Ξ(si))
1−γ

Γ(α)

∫ t2

si

Ξ
′
(τ)(Ξ(t2)−Ξ(τ))α−1 p(τ,w(τ))dτ],

→ 0 as t2→ t1.

As a sequence of step 1-2 together with the Arzela-Ascoli theorem states that T is continuous and compact on Bη . Schauder’s
theorem states that T has a fixed point of w, which gives w is a solution of (1.1). This completes the proof.

Theorem 3.4. Assume that (H1)-(H2) hold. If

Λ = max
{

LpB(γ,α)

Γ(α)
(Ξ(t1)−Ξ(0))α ,

(
Lgi +

LpB(γ,α)

Γ(α)
(Ξ(ti+1)−Ξ(si))

α

)}
< 1.

Then, the problem (1.1) has unique solution.

Proof. Define a operator T : PC (J ,Ed)→PC (J ,Ed) is given by

(Tw)(t) =


(

(Ξ(t)−Ξ(0))γ−1

Γ(γ)

)
w0 +

1
Γ(α)

∫ t
0 Ξ

′
(τ)(Ξ(t)−Ξ(τ))α−1 p(τ,w(τ))dτ, t ∈ (0, t1]

gi(t,w(t+i )), t ∈ (ti,si]

gi(si,w(t+i ))+ 1
Γ(α)

∫ t
si

Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1 p(τ,w(τ))dτ.

It is enough to prove T is a contraction mapping, we consider the following cases are done by the proof.
Case i: For t ∈ (0, t1].
D0[Tw(t)(Ξ(t)−Ξ(0))1−γ ,T w(t)(Ξ(t)−Ξ(0))1−γ ]

≤ (Ξ(t)−Ξ(0))1−γ

Γ(α)

∫ t

0
Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1D0[p(τ,w(τ)), p(τ,w(τ)]dτ

≤ (Ξ(t)−Ξ(0))1−γ

Γ(α)

∫ t

0
Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1LpD0[w,w]dτ

≤
LpB(γ,α)

Γ(α)
(Ξ(t1)−Ξ(0))α D0[w,w].
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Case ii: For t ∈ (ti,si].
D0[Tw(t)(Ξ(t)−Ξ(ti))1−γ ,T w(t)(Ξ(t)−Ξ(ti))1−γ ]

≤ (Ξ(t)−Ξ(0))1−γ D0[gi(t,w(t+i )),gi(t,w(t+i ))]

≤ LgiD0[w,w].

Case iii: For t ∈ (si, ti+1].
D0[Tw(t)(Ξ(t)−Ξ(si))

1−γ ,T w(t)(Ξ(t)−Ξ(si))
1−γ ]

≤ (Ξ(t)−Ξ(si))
1−γ D0[gi(si,w(t+i )),gi(si,w(t+i ))]

+
(Ξ(t)−Ξ(si))

1−γ

Γ(α)

∫ t

si

Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1D0[p(τ,w(τ)), p(τ,w(τ)]dτ

≤
(

Lgi +
LpB(γ,α)

Γ(α)
(Ξ(ti+1)−Ξ(si))

α

)
D0[w,w],

which gives D0[Tw,T w]≤ΛD0[w,w]. Hence T is a contraction and there exists a unique solution. This completes the proof.

4. Stability Results

In this section, we discuss a generalized Ulam-Hyers-Rassias stability (G-U-H-R) concept of Eqn.(1.1).
Let ζ ≥ 0 and ϕ ∈PC (J ,R+) is nondecreasing. Then, we consider the following inequality{

D0[
HD

α,β ,Ξ
0+ u(t), p(t,u(t))]≤ ϕ(t), t ∈ (si, ti+1],

D0[u(t),gi(t,u(t+i ))]≤ ζ , t ∈ (ti,si].
(4.1)

Definition 4.1. The problem (1.1) is G-U-H-R stable with respect to (ϕ,ζ ), if there exists Cp,gi,ϕ > 0 such that
for each solution u ∈PC (J ,Ed) of Eqn.(4.1), there exists a solution z ∈PC (J ,Ed) of Eqn.(1.1) with

D0[u(t),z(t)]≤Cp,gi,ϕ(ϕ(t)+ζ ), t ∈J .

Remark 4.2. A fuzzy function u ∈PC (J ,Ed) is a solution of Eqn.(4.1) if and only if there exists G ∈PC (J ,Ed)
and a sequence Gi, i = 1,2, ...,m (which depends on u) such that

(i) D0[G(t), 0̂]≤ ϕ(t) and D0[Gi, 0̂]< ζ , i = 1,2, ...,m.

(ii) HD
α,β ,Ξ
0+ u(t) = p(t,u(t))+G(t), t ∈ (si, ti+1].

(iii) u(t) = gi(t,u(t+i ))+Gi, t ∈ (ti,si].

Remark 4.3. Let u ∈PC (J ,Ed) be a solution of Eqn.(4.1). Then, u is a solution of the following integral inequality

D0[u(t),gi(t,u(t+i ))]≤ ζ , t ∈ (ti,si], i = 1,2 · · · ,m,

D0

[
u(t),

(
(Ξ(t)−Ξ(0))γ−1

Γ(γ)

)
u0 +

1
Γ(α)

∫ t

0
Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1 p(τ,z(τ))dτ

]
≤ 1

Γ(α)

∫ t

0
Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1

ϕ(τ)dτ,

D0

[
u(t),gi(si,u(t+i ))+

1
Γ(α)

∫ t

si

Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1 p(τ,z(τ))dτ

]
≤ ζ +

1
Γ(α)

∫ t

si

Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1

ϕ(τ)dτ, t ∈ (si, ti+1].

(4.2)

Theorem 4.4. Suppose that p ∈C([si, ti+1],Ed) and gi ∈C([ti,si],Ed) satisfied (H2)− (H5) and a fuzzy function
w ∈PC (J ,Ed) satisfies Eqn.(3.6), there exists a unique solution u : J → Ed of (3.1) with the initial condition
u(0) = w(0) such that

D0[u(t),w(t)]≤
(1+Cϕ))(ϕ(t)+ζ )

1−Λ
, t ∈J , (4.3)

where Λ = max{Lgi +LpCϕ}.
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Proof. Consider the space of piecewise continuous function

S = {w : J → Ed |w ∈PC (J ,Ed)},

with a generalized metric on S. Now, let us consider

DS[w,w] = inf{C′ +C
′′ ∈ [0,∞)|D0[w(t),w(t)]≤C

′
+C

′′
(ϕ(t)+ζ ), t ∈J },

obviously, (S,DS) is a complete generalized metric space, where

C
′ ∈ {C ∈ [0,+∞)|D0[w(t),w(t)]≤Cϕ(t), for all t ∈ (si, ti+1]},

C
′′ ∈ {C ∈ [0,+∞)|D0[w(t),w(t)]≤Cζ (t), for all t ∈ (ti,si]}.

Define an operator T : S→ S by

(Tw)(t) =


(Ξ(t)−Ξ(0))γ−1

Γ(γ)
w0 +

1
Γ(α)

∫ t

0
Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1 p(τ,w(τ))dτ, t ∈ (0, t1],

gi(t,w(t+i )), t ∈ (ti,si],

gi(si,w(t+i ))+
1

Γ(α)

∫ t

si

Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1 p(τ,w(τ))dτ.

(4.4)

Clearly, the operator T is a well-defined operator. Next, we show that T is strictly contractive on S. From the
definition of the space (S,DS), for any w,w ∈ S, it is possible to find C

′
,C
′′ ∈ [0,∞) such that

D0[w(t),w(t)]≤

{
C
′
ϕ(t), t ∈ (si, ti+1] k = 0,1, ...,m,

C
′′
ζ (t), t ∈ (ti,si], k = 1,2, ...,m,

and from the definition of operator T . By using (H2), (H3), and (H5), we get
Case 1: For t ∈ (0, t1].

D0[Tw(t),T w(t)] = D0

[
1

Γ(α)

∫ t

0
Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1 p(τ,w(τ))dτ

,
1

Γ(α)

∫ t

0
Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1 p(τ,w(τ))dτ

]
≤ 1

Γ(α)

∫ t

0
Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1D0[p(τ,w(τ)), p(τ,w(τ))]dτ

≤
Lp

Γ(α)

∫ t

0
Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1D0[w,w]dτ

≤ LpC
′
Cϕ ϕ(t).

Case 2: For t ∈ (ti,si].
By (H3), we get

D0[Tw(t),T w(t)] = D0[gi(t,w(t+i ))gi(t,w(t+i ))]

≤ LgiD0[w,w]

≤ LgiC
′′
ζ (t).

Case 3: For t ∈ (si, ti+1].
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By (H2)− (H5), we have

D0[Tw(t),T w(t)] = D0

[
gi(si,w(t+i ))+

1
Γ(α)

∫ t

si

Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1 p(τ,w(τ))dτ,

gi(si,w(t+i ))+
1

Γ(α)

∫ t

si

Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1 p(τ,w(τ))dτ

]
≤ D0[gi(si,w(t+i )),gi(si,w(t+i ))]

+D0

[
1

Γ(α)

∫ t

si

Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1(p(τ,w(τ)), p(τ,w(τ)))dτ

]
≤ LgiD0[w,w]+

1
Γ(α)

∫ t

si

Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1

ϕ(τ)dτ

×D0[p(τ,w(τ)), p(τ,w(τ))]

≤ (Lgi +LpCϕ)(C
′
+C

′′
)(ϕ(t)+ζ ))

≤ max
i∈{1,2,··· ,m}

(Lgi +LpCϕ)(C
′
+C

′′
)(ϕ(t)+ζ )

= Λ(C
′
+C

′′
)(ϕ(t)+ζ ), t ∈J ,

where Λ = maxi∈{1,2,··· ,m}(Lgi +LpCϕ). This implies that

DS[Tw,T w]≤ ΛDS[w,w], for any w,w ∈ S.

Hence T is strictly contractive. Now, we take w0 ∈ S and by using the piecewise continuous property of w0 and Tw0, it is
possible to find 0 < Gi < ∞ so that

D0[Tw0(t),w0(t)] =D0

[
(Ξ(t)−Ξ(0))γ−1

Γ(γ)
w0 +

1
Γ(α)

∫ t

0
Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1

× p(τ,w0(τ))dτ,w0(t)
]

≤ G1ϕ(t)≤ G1(ϕ(t)+ζ ), t ∈ [0, t1].

Also,

D0[Tw0(t),w0(t)] = D0[gi(si,w(t+i )),w0(t)]

≤ G2ζ ≤ G2(ϕ(t)+ζ ), t ∈ (ti,si],

and

D0[Tw0(t),w0(t)] = D0[gi(t,w(t+i ))+
1

Γ(α)

∫ t

si

Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1 p(τ,w0(τ))dτ,w0(t)]

≤ G3(ϕ(t)+ζ ), t ∈ (si, ti+1].

Since p, gi and w0 are bounded on J and ϕ(t)+ζ > 0, it follows that DS[Tw0,w0]≤maxi=1,2,..,m{G1,G2,G3}< ∞.
According to Banach fixed point theorem, there exists a fixed point of fuzzy continuous function S : J → Ed
such that T nw0→ w0 ∈ (S,DS) as n→ ∞ and Tw0 = w0, that is., w0 satisfies Eqn.(3.1) for all t ∈J . For finally,
we check that Cw ∈ (0,∞) so that D0[w0(t),w(t)]≤Cw(ϕ(t)+ζ ), for any t ∈J . Since w,w0 are bounded on J ,
which gives, mint∈J (ϕ(t)+ζ )> 0. Thus DS[w0,w]< ∞, w ∈ S, which gives S = {w ∈ S|DS(w0,w)< ∞}, we get
u is the unique solution continuous function.
In this same process, we prove Eqn.(4.3) holds. A function w ∈PC (J ,Ed) is a solution of Eqn. (4.1) on J , then there
exists a function G ∈PC (J ,Ed) and a sequence Gi (which depends on w) such that

D0[G(t), 0̂]≤ ϕ(t), and
D0[Gi, 0̂]≤ ζ , i = 1,2, ..m
HD

α,β ,Ξ
0+ w(t) = p(t,w(t))+G(t), t ∈ (si, ti+1]

w(t) = gi(t,w(t+i ))+Gi, t ∈ (ti,si].

(4.5)
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It follows from Lemma 3.2, one has

w(t) = (Ξ(t)−Ξ(0))γ−1

Γ(γ) w0 +
1

Γ(α)

∫ t
0 Ξ

′
(τ)(Ξ(t)−Ξ(τ))α−1

×[p(τ,w(τ))+G(t)]dτ, t ∈ (0, t1]
w(t) = gi(t,w(t+i ))+Gi, t ∈ (ti,si],

w(t) = [gi(si,w(t+i ))+Gi]+
1

Γ(α)

∫ t
si

Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1

×[p(τ,w(τ))+G(t)]dτ, t ∈ (si, ti+1].

(4.6)

Thus, by (H5) and from the first inequalities of Eqn. (4.5), we get
D0[w(t),

(Ξ(t)−Ξ(0))γ−1

Γ(γ) w0 +
1

Γ(α)

∫ t
0 Ξ

′
(τ)(Ξ(t)−Ξ(τ))α−1 p(τ,w(τ))dτ]≤Cϕ ϕ(t),

D0[w(t),gi(t,w(t+i ))]≤ ζ , t ∈ (ti,si]

D0[w(t),gi(t,w(t+i ))+ 1
Γ(α)

∫ t
si

Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1 p(τ,w(τ))dτ]≤ ζ +Cϕ ϕ(t),

t ∈ (si, ti+1].

(4.7)

By (H5), Remark 4.2 and Eqn. (4.7), one derives
Case 1: For t ∈ (0, t1].

D0[w(t),
(Ξ(t)−Ξ(0))γ−1

Γ(γ)
w0 +

1
Γ(α)

∫ t

0
Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1 p(τ,w(τ))dτ]

≤ 1
Γ(α)

∫ t

0
Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1D0[G(t), 0̂]dτ

≤ εCϕ ϕ(t).

Case 2: For t ∈ (ti,si].
D0[w(t),gi(t,w(t+i ))] = D0[gi(t,w(t+i ))+Gi,gi(t,w(t+i ))]

≤ D0[Gi, 0̂]
≤ ζ .

Case 3: For t ∈ (si, ti+1].

D0

[
w(t),gi(si,w(t+i ))+

1
Γ(α)

∫ t

si

Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1 p(τ,w(τ))dτ

]

≤ D0[Gi, 0̂]+D0

[
1

Γ(α)

∫ t

si

Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1G(τ)dτ

]
≤ D0[Gi, 0̂]+D0[G(t), 0̂]
≤ εζ +Cϕ ϕ(t))

≤ (1+Cϕ)(ϕ(t)+ζ ).

Thus, DS[w,Tw]≤ (1+Cϕ), it follows that DS[w,u]≤
DS[Tw,w]

1−Λ
≤

(1+Cϕ)

1−Λ
.

Because, Eqn.(4.3) is true for all t ∈J . Hence Eqn.(1.1) is G-U-H-R stable.
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