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Research Article

Abstract − The study consists of two parts. The first part shows that if h1(x)h2(y) =
h3(x)h4(y), for all x, y ∈ R, then h1 = h3 and h2 = h4. Here, h1, h2, h3, and h4 are zero-
power valued non-zero homoderivations of a prime ring R. Moreover, this study provide an
explanation related to h1 and h2 satisfying the condition ah1 + h2b = 0. The second part
shows that L ⊆ Z if one of the following conditions is satisfied: i. h(L) = (0), ii. h(L) ⊆ Z,
iii. h(xy) = xy, for all x, y ∈ L, iv. h(xy) = yx, for all x, y ∈ L, or v. h([x, y]) = 0, and for
all x, y ∈ L. Here, R is a prime ring with a characteristic other than 2, h is a homoderivation
of R, and L is a non-zero square closed Lie ideal of R.
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1. Introduction

Throughout this article, unless otherwise specified, R denotes an associative prime ring, i.e., for all
a, b ∈ R, aRb = 0 implies a = 0 or b = 0, with the maximal left ring of quotients Q = Qml(R). It is
well known that R is a subring of Q, Q is a prime ring, and the center C of Q is a field and called
the extended centroid of R [1]. Z denotes the center of R, and the notation Char(R) represents the
characteristic of R. For all a, b ∈ R, let [a, b] := ab − ba, the Lie commutator of a and b. For a subset
A of R, CR(A) means the centralizer of A and defined by CR(A) = {x ∈ R | [x, a] = 0, for all a ∈ A}.
If L is an additive subgroup of R and [x, r] ∈ L, for all x ∈ L and r ∈ R, then L is referred to as a
Lie ideal of R. If L is a Lie ideal of R and x2 ∈ L, for all x ∈ L, then L is called a square closed
Lie ideal. Since (x + y)2 ∈ L and [x, y] ∈ L, for all x, y ∈ L, then 2xy ∈ L. Let ∅ ̸= S ⊆ R. A
mapping f : R → R is called zero-power valued on S, if f(S) ⊆ S, and, for all s ∈ S, there exists a
positive integer n(s) > 1 such that fn(s)(s) = 0. An additive map d : R → R is called derivation if
d(xy) = d(x)y + xd(y), for all x, y ∈ R. Especially, Ia, defined by Ia(x) := [a, x], for all x ∈ R, is an
inner derivation induced by an element a ∈ R.

In [2], El Sofy Aly has introduced a new mapping created by combining the concepts of homomorphisms
and derivations on rings. An additive mapping h : R → R is called a homoderivation if

h(xy) = h(x)h(y) + h(x)y + xh(y)

for all x, y ∈ R. The only additive mapping, both a derivation and a homoderivation on a prime ring,
is the zero map. Some examples of homoderivations are as follows:
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Example 1.1. [2] Let R be a ring and f be an endomorphism of R. Then, the mapping h : R → R

defined by h(x) = f(x) − x is a homoderivation of R.

Example 1.2. [2] Let R be a ring. Then, the additive mapping h : R → R defined by h(x) = −x is
a homoderivation of R.

Example 1.3. [2] Let R = Z
(√

2
)
, a ring of all the real numbers of the form m + n

√
2 such that

m, n ∈ Z, the set of all the integers, under the usual addition and multiplication of real numbers.
Then, the map d : R → R defined by d(m + n

√
2) = −2n

√
2 is a homoderivation of R.

In 2016, Melaibari et al. [3] have proved the commutativity of a prime ring R admitting a non-zero
homoderivation h that satisfies any one of the conditions: i. [x, y] = [h(x), h(y)], for all x, y ∈ U , a
non-zero ideal of R, ii. h([x, y]) = 0, for all x, y ∈ U , a non-zero ideal of R, or iii. h ([x, y]) ∈ Z, for
all x, y ∈ R. Alharfie et al. [4] have shown that the commutativity of a prime ring R if any of the
following conditions is satisfied: for all x, y ∈ I, i. xh(y) ± xy ∈ Z(R), ii. xh(y) ± yx ∈ Z(R), or iii.
xh(y) ± [x, y] ∈ Z(R). Here, I is a non-zero left ideal of R, and h is a homoderivation of R. In 2019,
Al Harfien et al. [5] and Rehman et al. [6] have studied the commutativity of a semiprime (prime) ring
admitting a homoderivation satisfying some identities on a ring. Researchers [7–14] have executed
many noteworthy works concerning various properties of homoderivations during the last decades.

In Theorem 1.4, Bresar [16] has indicated that derivations d, f , g, and h of a prime ring R satisfying
the condition d(x)g(y) = h(x)f(y), for all x, y ∈ R, are C−dependent. In other words, g and f and
h and d are C−dependent. In Teorem 1.5, the author has indicated that derivations g and h of a prime
ring R satisfying the condition ag(x)+h(x)b = 0, for all x, y ∈ R, are C−dependent. That is, g and Ib

and h and Ia are C−dependent. Motivated by the results of Bresar, we create Section 3 of this study.
In the section, we research the results of Bresar by homoderivations. We show that homoderivations
h1, h2, h3, and h4 of a prime ring R satisfying the condition h1(x)h2(y) = h3(x)h4(y), for all x, y ∈ R,
are 1−dependent such that 1 ∈ C. That is, h1 = h3 and h2 = h4 where h1|Z ̸= 0 or h2|Z ̸= 0 such that
h1|Z , h2|Z : Z → R are two mapping defined by h1|Z (x) := h1(x) and h2|Z (x) := h2(x), respectively.
In addition, we prove that a = −b ∈ Z, for homoderivations h1 and h2 of a prime ring R satisfying
the condition ah1(x) + h2(x)b = 0, for all x ∈ R.

Theorem 1.4. [16] Let R be a prime ring, and d, f , g, and h be derivations of R. Suppose that
d(x)g(y) = h(x)f(y), for all x, y ∈ R. If d ̸= 0 and f ̸= 0, then there exists a λ ∈ C such that
g(x) = λf(x) and h(x) = λd(x), for all x ∈ R

Theorem 1.5. [16] Let R be a prime ring, and g and h be derivations of R. Suppose that there exist
a, b ∈ R such that ag(x) + h(x)b = 0, for all x ∈ R. If a /∈ Z and b /∈ Z, then there exists a λ ∈ C

such that g(x) = [λb, x] and h(x) = [λa, x], for all x ∈ R. Moreover, if g ̸= 0, then ab ∈ Z.

The purpose of Section 3 is to prove the following two results:

• Let R be a prime ring and h1, h2, h3, and h4 be zero-power valued non-zero homoderivations on
R. Suppose that h1(x)h2(y) = h3(x)h4(y), for all x, y ∈ R. If h1|Z ̸= 0, then h1 = h3 and h2 = h4.
Moreover, h1|Z = 0 if and only if (iff) h3|Z = 0. Similarly, If h2|Z ̸= 0, then h1 = h3 and h2 = h4.
Moreover, h2|Z = 0 iff h4|Z = 0.

• Let R be a prime ring and h1 and h2 be zero-power valued non-zero homoderivations on R. Suppose
that there are a, b ∈ R such that ah1(x) + h2(x)b = 0, for all x ∈ R. Then, a = −b ∈ Z or
h1|Z = h2|Z = 0.

In Lemma 5 and 6 provided in [15], Bergen et al. have showed that a Lie ideal U of a prime ring R

such that Char(R) ̸= 2 with derivation d satisfying the condition d(U) = 0 or d(U) ⊆ Z is central.
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One of our motivations for Section 4 is this result. In this paper, we investigate the hypothesis of this
result using homoderivations and provide similar results. Another purpose of Section 4 is to generalize
some of the well-known results above using square closed Lie ideals of a prime ring.

The purpose of Section 4 is to prove L ⊆ Z if one of the following conditions is satisfied:

i. h(L) = (0),

ii. h(L) ⊆ Z,

iii. h(xy) = xy, for all x, y ∈ L,

iv. h(xy) = yx, for all x, y ∈ L, or

v. h([x, y]) = 0, for all x, y ∈ L

Here, R is a prime ring with a Char(R) ̸= 2, h is a homoderivation of R and L is a non-zero square
closed Lie ideal of R:

Section 2 of the present study provides some properties on commutativity of prime rings. Section
3 investigates the identity ah1(x) + h2(x)b = 0 on prime rings such that h1 and h2 are two homo-
derivations on R. Section 4 studies commutativity of a prime ring by square closed Lie ideals and
homoderivations. Final section discusses the need for further research.

2. Preliminary

This section uses the following basic identities: [xy, z] = x [y, z]+ [x, z] y and [x, yz] = y [x, z]+ [x, y] z,
for any x, y, z ∈ R.

Theorem 2.1. [17] Let R be a prime ring whose characteristic is not 2 and d1 and d2 derivations of
R such that the iterate d1d2 is also a derivation, then at least one of d1 and d2 is zero.

Lemma 2.2. [15] Let R be a prime ring whose characteristic is not 2. If U ̸⊆ Z is a Lie ideal of R,
then CR(U) = Z.

Lemma 2.3. [15] Let R be a prime ring whose characteristic is not 2. If U ̸⊆ Z is a Lie ideal of R

and aUb = 0, then a = 0 or b = 0.

Lemma 2.4. [18] If a prime ring R contains a commutative non-zero right ideal I, then R is com-
mutative.

Lemma 2.5. [18] Let b and ab be in the center of a prime ring R. If b is not zero, then a ∈ Z.

Lemma 2.6. [3] Let R be a ring and h be a zero-power valued homoderivation on R. Then, h

preserves Z.

Lemma 2.7. Let R be a prime ring. If h is a zero-power valued non-zero homoderivation on R such
that h(x) ∈ Z, for all x ∈ R, then R is commutative or

h|Z = 0 and h(xz) = h(x)z (h(zx) = zh(x)), for all x ∈ R and z ∈ Z

Proof.
Let R be a prime ring and h be a zero-power valued non-zero homoderivation on R such that h(R) ⊆ Z.
By hypothesis, h(x1x2) ∈ Z, for all x1, x2 ∈ R. Since Z is a subring of R and h is homoderivation of
R, then

h(x1)x2 + x1h(x2) ∈ Z (1)

Replacing x2 by x2z such that z ∈ Z, then the following expression is obtained by Expression 1,

x1(h(x2) + x2)h(z) ∈ Z (2)
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Since h is zero-power valued on R, there exists an integer n(x2) > 1 such that hn(x2)(x2) = 0, for all
x2 ∈ R. Replacing x2 by x2 − h(x2) + h2(x2) + · · · + (−1)n(x2)−1hn(x2)−1(x2) in Expression 2, for all
x1, x2 ∈ R and z ∈ Z,

x1x2h(z) ∈ Z

In view of Lemma 2.5, we have x1x2 ∈ Z or h(z) = 0, for all x1, x2 ∈ R and z ∈ Z. Here, there are
two cases:

Case 1: If x1x2 ∈ Z, for all x1, x2 ∈ R, then (x1x2)x3 ∈ Z, for all x3 ∈ R. Hence, [(x1x2)x3, x4] = 0,
for all x4 ∈ R. That is, [(x1x2), x4] x3 + x1x2 [x3, x4] = 0 and thus

x1x2 [x3, x4] = 0, for all x1, x2, x3, x4 ∈ R

It follows from the fact that R is a prime ring that R is commutative.

Case 2: If h(z) = 0, for all z ∈ Z, then h|Z = 0. In this case, for all x1 ∈ R and z ∈ Z,

h(x1z) = h(x1)z (h(zx1) = zh(x1))

is obtained.

3. The Identity ah1(x) + h2(x)b = 0

In this section, unless stated otherwise, let R be a prime ring.

Theorem 3.1. Let h1, h2, h3, and h4 be zero-power valued non-zero homoderivations on R. Suppose
that

h1(x1)h2(x2) = h3(x1)h4(x2), for all x1, x2 ∈ R (3)

i. If h1|Z ̸= 0, then h1 = h3 and h2 = h4.

ii. h1|Z = 0 iff h3|Z = 0

iii. If h2|Z ̸= 0, then h1 = h3 and h2 = h4.

iv. h2|Z = 0 iff h4|Z = 0

Proof.
Let h1, h2, h3, and h4 be zero-power valued non-zero homoderivations on R. Suppose that

h1(x1)h2(x2) = h3(x1)h4(x2), for all x1, x2 ∈ R

i. Let h1|Z ̸= 0. There is at least 0 ̸= z ∈ Z such that h1(z) ̸= 0. By Lemma 2.6, it is clear that
h1(z) ∈ Z. In Expression 3, by replacing x1 by x1z, for x1 ∈ R,

h1(x1z)h2(x2) = h3(x1z)h4(x2)
Thus,
h1(x1)h1(z)h2(x2) + h1(x1)zh2(x2) + x1h1(z)h2(x2) = h3(x1)h3(z)h4(x2) + h3(x1)zh4(x2) + x1h3(z)h4(x2)

From the last equation,for all x1, x2 ∈ R, the equation

h1(x1)h1(z)h2(x2) = h3(x1)h3(z)h4(x2)

is obtained. In view of hypothesis, for all x2 ∈ R,

h1(z)h2(x2) = h3(z)h4(x2)

Using the last equation in the equation h1(x1)h1(z)h2(x2) = h3(x1)h3(z)h4(x2),

(h1(x1) − h3(x1))h1(z)h2(x2) = 0, for all x1, x2 ∈ R
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The primeness of R and 0 ̸= h1(z) ∈ Z imply that

(h1(x1) − h3(x1))h2(x2) = 0, for all x1, x2 ∈ R (4)

In Expression 4, replacing x2 by x2x3 such that x3 ∈ R and using Expression 4,

(h1(x1) − h3(x1))x2h2(x3) = 0

for all x1, x2, x3 ∈ R. Since R is a prime ring and h2 is a non-zero homoderivation of R, then
h1(x1) = h3(x1), for all x1 ∈ R. In that case, by hypothesis, h1(x1)h2(x2) = h1(x1)h4(x2) for all
x1, x2 ∈ R. That is,

h1(x1)(h2(x2) − h4(x2)) = 0, for all x1, x2 ∈ R (5)

In Expression 5, replacing x1 by x1x3, x3 ∈ R, and using Expression 5,

h1(x1)x3(h2(x2) − h4(x2)) = 0, for all x1, x2, x3 ∈ R

Since R is a prime ring and h1 is a non-zero homoderivation of R, then h2(x2) = h4(x2), for all x2 ∈ R.

ii. (⇒): Let h1|Z = 0. In Expression 3, replacing x1 by z ∈ Z for and using h1(z) = 0,

h3(z)h4(x2) = 0, for all x2 ∈ R

In this equation, replacing x2 by x3x2 for x3 ∈ R and using the hypothesis,

h3(z)x3h4(x2) = 0, for all x2, x3 ∈ R

The primeness of R implies h3|Z = 0. Thus, if h1|Z = 0, then h3|Z = 0.

(⇐): Let h3|Z = 0. With similar steps above, h1|Z = 0 is obtained. Hence, if h3|Z = 0, then h1|Z = 0.

The proofs of iii. and iv. are similar to i. and ii., respectively.

Example 3.2. Let ℜ be a ring with the unit and no zero divisors. For the subring

℘ = {r11e11 + r12e12 + r22e22 : r11, r12, r22 ∈ ℜ}

of M2(ℜ), the ring of 2 × 2 matrices over ℜ, it is easy to validate that ℘ is not a prime ring. Here,

e11 =
[

1 0
0 0

]
, e12 =

[
0 1
0 0

]
, and e22 =

[
0 0
0 1

]
Moreover, Z℘ = {ze11 + ze22 : z ∈ Zℜ} is the center of ring ℘. Let

h1 : ℘ → ℘

r11e11 + r12e12 + r22e22 → −r11e11 − r12e12

and
h2 : ℘ → ℘

r11e11 + r12e12 + r22e22 → −r12e12 − r22e22

Then, it is easy to check that h1 and h2 are homoderivations of ℘. Let ℑ = ℘×℘. It is easy to validate
that ℑ is not a prime ring. Besides,

Zℑ = {(z11e11 + z22e22, α11e11 + α22e22) : z11, z22, α11, α22 ∈ Zℜ}

is the center of ring ℑ. Let X = (r11e11 + r12e12 + r22e22, s11e11 + s12e12 + s22e22) ∈ ℑ and Y =
(x11e11 + x12e12 + x22e22, y11e11 + y12e12 + y22e22) ∈ ℑ. Define the maps H1, H2, H3, H4 : ℑ → ℑ as
follows:

H1 : ℑ → ℑ
X → (h1(r11e11 + r12e12 + r22e22) , 0ℑ) = (−r11e11 − r12e12, 0ℑ)
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H2 : ℑ → ℑ
X → (0ℑ, h1(s11e11 + s12e12 + s22e22)) = (0ℑ, −s11e11 − s12e12)

H3 : ℑ → ℑ
X → (h2(r11e11 + r12e12 + r22e22) , 0ℑ) = (−r12e12 − r22e22, 0ℑ)

and
H4 : ℑ → ℑ

X → (0ℑ, h2(s11e11 + s12e12 + s22e22)) = (0ℑ, −s12e12 − s22e22)

Then, it is easy to check that H1, H2, H3, and H4 are homoderivations of ℑ. For any two elements
X, Y ∈ ℑ,

H1(X)H2(Y ) = H3(X)H4(Y )

However, neither
H1 = H3 and H2 = H4

nor
H1|Zℑ

= 0, H2|Zℑ
= 0, H3|Zℑ

= 0, and H4|Zℑ
= 0

Hence, this example shows that it is crucial that the considered ring is a prime ring and the selected
homoderivations are zero-power valued, as stated in Theorem 3.1.

Note 3.3. From Theorem 3.1, it can be observed that the statements “If h3|Z ̸= 0, then h1 = h3 and
h2 = h4” and “If h4|Z ̸= 0, then h1 = h3 and h2 = h4” are valid.

From Theorem 3.1, the following corollaries are obtained.

Corollary 3.4. Let h1 and h2 be zero-power valued non-zero homoderivations on R satisfying the
condition

h1(x)h1(y) = h2(x)h2(y), for all x, y ∈ R

Then, h1 = h2 or h1|Z = h2|Z = 0.

Corollary 3.5. Let h1 and h2 be zero-power valued non-zero homoderivations on R. Suppose that

h1(x)h2(y) = h2(x)h1(y), for all x, y ∈ R

Then, h1 = h2 or h1|Z = h2|Z = 0.

Theorem 3.6. Let h1 and h2 be zero-power valued non-zero homoderivations on R. Suppose that
there are a, b ∈ R such that

ah1(x) + h2(x)b = 0, for all x ∈ R (6)

Then, a = −b ∈ Z or h1|Z = h2|Z = 0.

Proof.
Let h1 and h2 be zero-power valued non-zero homoderivations on R. Suppose that there are a, b ∈ R

such that
ah1(x) + h2(x)b = 0, for all x ∈ R

If a = b = 0, then the proof is clear. From now on, a ̸= 0 and b ̸= 0. Suppose that h1|Z = 0. In
Expression 6, replacing x by z for z ∈ Z,

ah1(z) + h2(z)b = 0

Since h1|Z = 0, then h2(z)b = 0. This means that h2(z) = 0, for all z ∈ Z, by the primeness of
R. With the same arguments above, it can be shown that if h2|Z = 0, then h1|Z = 0. Assume that
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h1|Z ̸= 0. In light of Lemma 2.6 and h1|Z ̸= 0, there is at least 0 ̸= z1 ∈ Z such that 0 ̸= h1(z1) ∈ Z

and h2(z1) ∈ Z. Replacing x by xz1 in Expression 6,

0 = ah1(x)h1(z1) + ah1(x)z1 + axh1(z1) + h2(x)h2(z1)b + h2(x)z1b + xh2(z1)b

Using z1, h1(z1), h2(z1) ∈ Z and Expression 6 in the last equation,

(a(h1(x) + x) − (h2(x) + x)a)h1(z1) = 0

Since R is a prime ring and h1(z1) ̸= 0, for all x ∈ R,

a(h1(x) + x) − (h2(x) + x)a = 0 (7)

Since h2|Z ̸= 0, there is at least 0 ̸= z2 ∈ Z such that 0 ̸= h2(z2) ∈ Z. In Expression 7, replacing x by
z2,

ah1(z2) + h2(z2)(−a) = 0

Combining the last equations and Expression 6,

h2(z2)(b + a) = 0

The primeness of R and h2(z2) ̸= 0 implies a = −b. In that case, for any x ∈ R,

ah1(x) − h2(x)a = 0 (8)

In Expression 8, replacing x by xz1,

0 = ah1(x)h1(z1) + axh1(z1) − h2(x)h2(z1)a − xh2(z1)a

According to the last equation and Expression 8,

ah1(x)h1(z1) + axh1(z1) − ah1(x)h1(z1) − xah1(z1) = 0

This implies [a, x] h1(z1) = 0, for all x ∈ R. The primeness of R and h1(z1) ̸= 0 implies a ∈ Z.

Example 3.7. Consider the ring ℘ provided in Example 3.2. Let

h1 : ℘ → ℘

r11e11 + r12e12 + r22e22 → −r11e11 − r12e12 − r22e22

and
h2 : ℘ → ℘

r11e11 + r12e12 + r22e22 → −r11e12 − r12e12

Then, it is easy to check that h1 and h2 are homoderivations of ℘. Let α = −1ℜe11 and β =
1ℜe11 + 1ℜe22 be fixed elements. For any element X = r11e11 + r12e12 + r22e22 ∈ ℘,

αh1(X) + h2(X)β = 0℘

However, neither α = −β nor h1|Z℘
= h2|Z℘

= 0. Hence, this examples show that it is crucial that the
considered ring is a prime ring and the selected homoderivations are zero-power valued, as stated in
Theorem 3.6.

4. Central Lie Ideals of Prime Rings with Homoderivations

In this section, unless stated otherwise, R is a prime ring with Char(R) ̸= 2.

Lemma 4.1. Let L be a non-zero Lie ideal of R and h be a non-zero homoderivation of R such that
h(x) = 0, for all x ∈ L. Then, L ⊆ Z.
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Proof.
Let L be a non-zero Lie ideal of R and h be a non-zero homoderivation of R such that h(x) = 0, for
all x ∈ L. Since h is a homoderivations of R,

h([x1, r1]) = [h(x1), h(r1)] + [h(x1), r1] + [x1, h(r1)] , for all x1 ∈ L, r1 ∈ R

By hypothesis, [x1, h(r1)] = 0, for all x1 ∈ L and r1 ∈ R. By taking r1 = r1x2, for any x2 ∈ L, in the
last equation,

h(r1) [x1, x2] = 0, for all x1, x2 ∈ L, r1 ∈ R (9)

In Expression 9, replacing r1 by r1r2, r2 ∈ R,

h(r1)r2 [x1, x2] = 0

Hence, [x1, x2] = 0, for all x1, x2 ∈ L, by the primeness of R. By replacing x2 by [x2, r1] in the last
equation,

[x1, [x2, r1]] = 0, for all x1, x2 ∈ L, r1 ∈ R (10)

Consider two inner derivations of R, Ix1 : R → R and Ix2 : R → R defined by Ix1(s) = [x1, s] and
Ix2(s) = [x2, s], respectively. Thus, Ix1Ix2(r1) = 0, for all r1 ∈ R, by Expression 10. In view of
Theorem 2.1, Ix1 = 0 or Ix2 = 0. That is, x1 ∈ Z or x2 ∈ Z. This prove that L ⊆ Z.

Lemma 4.2. Let L be a non-zero square closed Lie ideal of R and h be a non-zero homoderivation
of R such that h(x) ∈ Z, for all x ∈ L. Then, L ⊆ Z.

Proof.
Let L be a non-zero square closed Lie ideal of R and h be a non-zero homoderivation of R such that
h(x) ∈ Z, for all x ∈ L. By hypothesis for all x1 ∈ L and r1 ∈ R,

[h(x1), r1] = 0 (11)

In Expression 11, by replacing x1 by x2
1,

[
h(x2

1), r1
]

= 0. From the last equation, since h(x1) ∈ Z and
using Char(R) ̸= 2,

h(x1) [x1, r1] = 0 (12)

In Expression 12, substituting r1r2 instead of r1, r2 ∈ R,

h(x1)r1 [x1, r2] = 0

The primeness of R implies h(x1) = 0 or x1 ∈ Z, for all x1 ∈ L. Define

A = {x ∈ L : h(x) = 0}

and
B = {x ∈ L : x ∈ Z}

Note that both are additive subgroups of L, and their union equals L. Thus, either A = L or B = L.
Suppose first that A = L. Then, h(L) = 0. In view of Lemma 4.1, L ⊆ Z. In other case, x1 ∈ Z, for
all x1 ∈ L. That is L ⊆ Z.

The following example shows that the above result is not true in the types of some other rings. In the
example, it is emphasized that the hypothesis primeness of the result provided above is all-important.

Example 4.3. Let R1 be a non-commutative ring with the unit, no zero divisors, and Char(R1) ̸= 2,
and R2 be a non-commutative ring with the unit, no zero divisors, and Char(R2) ̸= 2. For a fixed
(1R1 , 0R2) , (0R1,1R2) ̸= (0R1 , 0R2) ∈ R∗ = R1 × R2, it holds that (1R1 , 0R2) R∗ (0R1,1R2) = (0R1 , 0R2).
Thus, R∗ is not a prime ring. Let L = ZR1 × R2 such that ZR1 is a the center of R1. It is easy to
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verify that L is a subgroup of R∗. For (z, s1) ∈ L and (r, s2) ∈ R∗,

[(z, s1) , (r, s2)] = (zr − rz, s1s2 − s2s1)
z∈ZR1= (0R1 , s1s2 − s2s1) ∈ L

and
(z, s1) (z, s1) =

(
z2, s1s2

)
∈ L

Thus, L is a square closed Lie ideal of R∗ and L ̸⊆ ZR∗ . Let

h : R∗ → R∗

(r, s) → (−r, 0R2)

Then, it is easy to check that h is a homoderivation of R∗. For any element (z, s1) ∈ L, h (z, s1) ∈ ZR∗ .
However, L is not a central square closed Lie ideal of R∗.

Theorem 4.4. Let L be a non-zero square closed Lie ideal of R and h be a non-zero homoderivation
of R such that

h(xy) = xy (or h(xy) = yx), for all x, y ∈ L

Then, L ⊆ Z.

Proof.
Let L be a non-zero square closed Lie ideal of R and h be a non-zero homoderivation of R such that

h(xy) = xy, for all x, y ∈ L

Suppose that L ̸⊆ Z. Since h is homoderivation of R, for all x1, x2, x3 ∈ L,

x12 (x2x3) = h(x12(x2x3)) = 2h(x1(x2x3))
= 2 (h(x1)h(x2x3) + h(x1)x2x3 + x1h(x2x3))
= 2 (h(x1)x2x3 + h(x1)x2x3 + x1x2x3)

This implies 4h(x1)x2x3 = 0. Since Char(R) ̸= 2,

h(x1)x2x3 = 0, for all x1, x2, x3 ∈ L (13)

In Expression 13, replacing x2 by 2x4x2 such that x4 ∈ L and using Char(R) ̸= 2,

h(x1)x4x2x3 = 0 (14)

Multiplying Expression 13 by x4 from the left,

x4h(x1)x2x3 = 0 (15)

Combining Expression 14 and Expression 15,

[h(x1), x4] x2x3 = 0

for all x1, x2, x3, x4 ∈ L. In view of Lemma 2.3 and L ̸= (0), for all x1, x4 ∈ L,

[h(x1), x4] = 0

We have proved h(L) ⊆ CR(L). In this case, h(L) ⊆ Z by Lemma 2.2. In view of Lemma 4.2, L ⊆ Z.
This is a contradiction. That proves that L ⊆ Z.

For the condition h(xy) = yx, for all x, y ∈ L, the proof is similar.

Since every ideal is a square closed Lie ideal, an ideal can be considered instead of a square closed Lie
ideal in Theorem 4.4. Thus, Corollary 4.5 is obtained by Lemma 2.4.
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Corollary 4.5. Let R be a prime ring with Char(R) ̸= 2, I be a non-zero ideal of R, and h be a
non-zero homoderivation of R. If one of the following conditions is satisfied, for all x, y ∈ I,

i. h(xy) = xy

ii. h(xy) = yx

then R is commutative.

Here, it can be observed that Corollary 4.5 without hypothesis “zero-power valued homoderivation on
the ideal” is a more general version of Theorem 3 provided in [4].

Theorem 4.6. Let L be a non-zero square closed Lie ideal of R and h be a non-zero homoderivation
of R such that

h([x, y]) = 0, for all x, y ∈ L (16)

Then, L ⊆ Z.

Proof.
Let L be a non-zero square closed Lie ideal of R and h be a non-zero homoderivation of R such that

h([x, y]) = 0, for all x, y ∈ L

Suppose that L ̸⊆ Z. Let x1, x2 ∈ L. By taking x = 2x2x1 and y = x2 in Expression 16 and using
Char(R) ̸= 2,

h(x2) [x1, x2] = 0 (17)

and then replacing x1 with 2x1x3 such that x3 ∈ L in Expression 17 and using Char(R) ̸= 2,

h(x2)x1 [x3, x2] = 0 (18)

Let x4 ∈ L. In Expression 18, replacing x1 by 2x4x1 and using Char(R) ̸= 2,

h(x2)x4x1 [x3, x2] = 0 (19)

Multiplying Expression 18 by x4 from the left,

x4h(x2)x1 [x3, x2] = 0 (20)

By comparing Expression 19 and Expression 20,

[h(x2), x4] x1 [x3, x2] = 0, for all x1, x2, x3, x4 ∈ L

In view of Lemma 2.3,
[h(x2), x4] = 0 or [x3, x2] = 0

for all x2, x3, x4 ∈ L. This proves that h(x2) ∈ CR(L) or [x3, x2] = 0, for all x2, x3 ∈ L. Define

A = {x ∈ L : h(x) ∈ CR(L)}

and
B = {x ∈ L : [y, x] = 0, for all y ∈ L}

Note that both are additive subgroups of L and their union equals L. Thus either A = L or B = L.
Suppose first that A = L. Then, h(x2) ∈ CR(L), for all x2 ∈ L. Moreover, by Lemma 2.2, h(x2) ∈ Z,
for all x2 ∈ L. In view of Lemma 4.2, L ⊆ Z, a contradiction. Suppose that B = L. Then, [x3, x2] = 0,
for all x2, x3 ∈ L. Let r ∈ R and fix x2, x3 ∈ L. By replacing x2 by [x2, r] in [x3, x2] = 0,

[x3, [x2, r]] = 0

Using similar techniques after Expression 10, L ⊆ Z, a contradiction. That proves that L ⊆ Z.
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5. Conclusion

In this paper, Section 3 discussed algebraic identities including homoderivations on a prime ring.
Section 4 also investigated algebraic identities involving homoderivations on a square closed Lie ideal
of a prime ring. It proved that a square closed Lie ideal, satisfying the identities discussed in the
section, is contained in the center of a prime ring. The obtained results extended several well-known
results in the literature. In future studies, the hypotheses in this study can be studied using a
semiprime ring and an ideal of a semiprime ring.

Author Contributions

All the authors equally contributed to this work. This paper is derived from the first author’s doctoral
dissertation supervised by the second author. They all read and approved the final version of the paper.

Conflicts of Interest

All the authors declare no conflict of interest.

References

[1] I. N. Herstein, Rings with Involution, University of Chicago Press, Chicago, 1976.

[2] M. M. El Sofy Aly, Rings with Some Kinds of Mappings, Master’s Thesis Cairo University (2000)
Cairo.

[3] A. Melaibari, N. Muthana, A. Al-Kenani, Homoderivations on Rings, General Mathematics Notes
35 (1) (2016) 1–8.

[4] E. F. Alharfie, N. M. Mthana, The Commutativity of Prime Rings with Homoderivations, Inter-
national Journal of Advanced and Applied Sciences 5 (5) (2018) 79–81.

[5] E. F. Alharfie, N. M. Mthana, On Homoderivations and Commutativity of Rings, Bulletin of the
International Mathematical Virtual Institute 9 (2019) 301–304.

[6] N. Rehman, M. R. Mozumder, A. Abbasi, Homoderivations on Ideals of Prime and Semiprime
Rings, The Aligarh Bulletin of Mathematics 38 (1-2) (2019) 77–87.

[7] A. Al-Kenani, A. Melaibari, N. Muthana, Homoderivations and Commutativity of ∗−Prime Rings,
East-West Journal of Mathematics 17 (2) (2015) 117–126.

[8] A. Melaibari, N. Muthana, A. Al-Kenani, Centrally-Extended Homoderivations on Rings, Gulf
Journal of Mathematics 4 (2) (2016) 62–70.

[9] E. F. Alharfie, N. M. Mthana, Homoderivation of Prime Rings with Involution, Bulletin of the
International Mathematical Virtual Institute 9 (2019) 305–318.

[10] E. Gselmann, G. Kiss, Remarks on the Notion of Homo-Derivations, Annales Universitatis Scien-
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[14] A. Boua, E. K. Söğütçü, Semiprime Rings with Generalized Homoderivations, Boletim da So-
ciedade Paranaense de Matematica 41 (2023) 8 pages.

[15] J. Bergen, I. N.Herstein, J. W. Kerr, Lie Ideals and Derivations of Prime Rings, Journal of
Algebra 71 (1) (1981) 259–267.

[16] M. Bresar, Centralizing Mappings and Derivations in Prime Rings, Journal of Algebra 156 (1993)
385–394.

[17] E. C. Posner, Derivations in Prime Rings, Proceedings of the American Mathematical Society 8
(6) (1957) 1093–1100.

[18] J. H. Mayne, Centralizing Mappings of Prime Rings, Canadian Mathematical Bulletin 27 (1)
(1984) 122–126.


	Introduction
	Preliminary
	The Identity ah1(x)+h2(x)b=0
	Central Lie Ideals of Prime Rings with Homoderivations
	Conclusion

