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Abstract— Meta-heuristics are high-level approaches developed to discover a heuristic that provides a reasonable 

solution to many varieties of optimization problems. The classification problems contain a sort of optimization 

problem. Simply, the objective herein is to reduce the number of misclassified instances. In this paper, the question 

of whether meta-heuristic methods can be used to construct linear models or not is answered. To this end, Particle 

Swarm Optimization (PSO) has been engaged to address linear classification problems. The Particle Swarm 

Classifier (PSC) with a certain objective function has been compared with Support Vector Machine (SVM), 

Perceptron Learning Rule (PLR), and Logistic Regression (LR) applied to fifteen data sets. The experimental 

results point out that PSC can compete with the other classifiers, and it turns out to be superior to other classifiers 

for some binary classification problems. Furthermore, the average classification accuracies of PSC, SVM, LR, 

and PLR are 80.8%, 80.6%, 77.4%, and 57.7%, respectively. In order to enhance the classification performance 

of PSC, more advanced objective functions can be developed. Further, the classification accuracy can be boosted 

more by constructing tighter constraints via another meta-heuristic. The source code of the proposed algorithm 

and the data sets are available at https://github.com/fatihaydin1/PSC for computational reproducibility. 

Keywords: Machine learning, Artificial intelligence, Particle swarm optimization, Meta-heuristic algorithms, 

Supervised learning.  

1. Introduction 

In this section, we present general information regarding artificial intelligence, machine learning, supervised 

learning, linear classifiers, and meta-heuristics. Moreover, we mention the motivation of the work and the 

organization of the paper, as well. 

1.1. Preliminary 

Lots of definitions of intelligence are in question. One of these definitions is that "intelligence is the ability to 

quickly discover, in a search space, a satisfactory solution that appears a priori to observers" (Lenat & Feigenbaum, 

1991). Accordingly, we can define Artificial Intelligence (AI) as a discipline, which aims to make automata attain 

intelligent behaviors by representing intelligence via computational models. There exist four approaches to AI: (i) 

the Turing test approach, (ii) the cognitive modeling approach, (iii) the “laws of thought” approach, and (iv) the 

rational agent approach. In terms of the Turing test approach, learning is thought of as acclimating to new situations 

and discovering and inferring patterns (Aziz & Memon, 2023; Russell & Norvig, 2010). In this respect, Machine 

Learning (ML) is a research domain, in which machines obtain the learning ability to uncover patterns in real-

world data. One of the ML tasks is supervised learning, which is extensively used in many problems. Given a data 

set 𝐷 = {(𝑥1, 𝑦1), … , (𝑥𝑚 , 𝑦𝑚)} ∈ ℝ𝑚×𝑛, which includes 𝑚 instances and is defined by 𝑛 features and 𝑐 classes, 

from input data 𝑋 = {𝑥𝑖}𝑖=1
𝑚 ⇒ 𝑥𝑖 = (𝑥𝑖

(1), 𝑥𝑖
(2), … , 𝑥𝑖

(𝑛)) ∈ ℝ𝑛, 𝑖 = 1, … ,𝑚  and labels 𝑦𝑗 ∈ 𝑌, 𝑗 = 1,… , 𝑐 . A 

supervised learner searches for a function ℎ: 𝑋 → 𝑌 that is a member of the hypothesis space 𝐻 (Aydin, 2023). 

When utilizing supervised learning works, batch learning is largely favored in the industry since it is quick and 

straightforward to apply as compared to online learning, which accepts a real-time stream of data. 

The models used to separate classes are divided into two: linear and non-linear. In the ML area, the objective 

of classification is to employ the features of data points to identify which class they belong to. A linear classifier 

performs the classification task by making a classification decision in accordance with a linear combination of the 
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features. Linear classifiers obtain satisfactory results on linear data sets (Sivrikaya et al., 2021; Yuan et al., 2012). 

Perceptron Learning Rule (PLR) (Karakurt et al., 2022; Rosenblatt, 1958), non-kernelized Support Vector 

Machine (SVM) (Bumin & Ozcalici, 2023; Cortes & Vapnik, 1995), and Logistic Regression (LR) (Ay et al., 

2023; Berkson, 1944) are some well-known linear classifiers. The common property of these linear classifiers is 

that the models constructed by them are a linear combination of features. In other words, such classifiers have 

inductive bias. The goal is to directly minimize the cost (i.e., error rate) of the classification process by building a 

linear classifier. A way to minimize the cost function is to utilize meta-heuristic algorithms. There are lots of works 

that Meta-heuristics have been used for solving classification problems (Athira Lekshmi et al., 2018; De Falco et 

al., 2007; Lawrence et al., 2021; M. G. Omran et al., 2002; M. G. H. Omran et al., 2006; Sousa et al., 2004; Telikani 

et al., 2022). 

1.2. Meta-heuristics 

The meta-heuristic approaches are high-level systems devised to discover or adjust a heuristic that can deliver 

an adequately satisfactory solution to an optimization problem, particularly with deficient or insufficient 

information or limited computing capacity. Compared to the other optimization algorithms, meta-heuristic 

methods do not guarantee that some problems always approach a global solution. A lot of meta-heuristic methods 

apply a sort of stochastic optimization. In combinatorial optimization, meta-heuristics investigating a broad set of 

possible solutions can frequently find better solutions with less computing than the other approaches. Hence, meta-

heuristic methods are beneficial techniques for optimization problems. Meta-heuristic methods mostly rely on 

empirical results. However, there are some theoretical results on convergence and finding the global optimum, as 

well (Balamurugan et al., 2015; Kotary & Nanda, 2020). Meta-heuristic algorithms are categorized by a variety of 

their properties. In terms of search strategy, meta-heuristics are separated into two: local search and global search. 

In terms of search size, meta-heuristics are separated into two: single-solution and population-based meta-

heuristics. Particle Swarm Optimization (PSO) (Kennedy & Eberhart, 1995), which is the method used in this 

study, is known as a global search and population-based meta-heuristic algorithm (Ahmad et al., 2023). 

In this paper, our motivation is to show that a linear model generated by PSO can usually reach a global solution 

and compete with the well-known linear classifiers. Moreover, we would like to show it can be successfully and 

efficiently applied to real-world problems as well as fulfilling the aforementioned qualities. Briefly, the main 

contribution of the offered approach is that it is straightforward and fast. 

This manuscript is organized in that way: Section 2 provides a short overview of PSO. Section 3 then introduces 

the proposed approach. Section 4 explains the experimental procedure. Section 5 includes the results and 

discussion. Eventually, Section 6 explains the conclusions of the work. 

2. PSO Revisited 

PSO holds a stochastic optimization strategy with population-based and is developed by being socially inspired 

by swarm behavior among the population. PSO explores a global minimum 𝑎 ∈ ℝ𝑛 (i.e., the solution with the 

proper fitness value) by iteratively modifying the velocity and position of each particle in the search space with 

respect to a certain objective function 𝑓:ℝ𝑛 → ℝ. PSO utilizes both the best position in the current neighborhood 

𝑔 and the particle’s best position 𝑝 at iteration 𝑡 (Baygin et al., 2019; Khennak et al., 2023). There exist various 

extensions proposed for the algorithm (Asif et al., 2022; Mezura-Montes & Coello Coello, 2011; Pedersen, 2010). 

In accordance with these modifications, the updated values of each particle’s velocity and position are calculated 

as seen in Equations (1) and (2). 

𝑣𝑖
(𝑡+1) = W𝑣𝑖

(𝑡) + 𝑦1𝑢1(𝑝𝑖 − 𝑥𝑖
(𝑡)) + 𝑦2𝑢2(𝑔𝑖 − 𝑥𝑖

(𝑡)) (1) 

𝑥𝑖
(𝑡+1) = 𝑥𝑖

(𝑡) + 𝑣𝑖
(𝑡+1)

 (2) 

where 𝑣 denotes velocity. 𝑥𝑖
(𝑡)

 denotes the current position of the particle 𝑖 at iteration 𝑡. 𝑊 denotes a vector with 

the same sign values in growing order, delivering the lower and upper bound of the adaptive inertia. 𝑢1 and 𝑢2 are 

uniformly distributed random vectors. 𝑦1 denotes the weighting of each particle’s best position when updating 

velocity. 𝑦2 denotes the weighting of the global best position when updating velocity. 

With the initialization of PSO, the initial particles are created, and initial velocities are assigned to them. The 

cost function for each particle's position is then assessed, and the most proper fitness value and the best position 

are planned. The new velocities and positions are respectively and iteratively updated dependent on the current 

velocity, the particles’ best positions, and the best positions of their neighbors. Subsequently, the iterations flow 

until the PSO arrives at a stopping criterion. In PSO, the particles are foremost positioned at random locations in 

the search space and advance in arbitrary directions. The direction of particles is steadily adjusted to shift in the 
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direction of the best-encountered positions of themself and their counterparts, probing their surroundings and 

potentially discovering better positions [3]. The topology of the society specifies the subset of individuals with 

which each particle can transfer information regarding the solution and many topologies to be used in PSO have 

been proposed (Almasi & Khooban, 2018; Bratton & Kennedy, 2007; Elshamy et al., 2007; Lai & Sato, 2021; 

Oliveira et al., 2016; Yin et al., 2011). Further, the choice of PSO input arguments possesses a considerable 

influence on optimization performance (Mason et al., 2018; Taherkhani & Safabakhsh, 2016; Yilmaz & Yolcu, 

2022). 

Even if PSO is partly straightforward to use and its convergence to global optima is high, it can undoubtedly 

fall into local optima and early convergence, as well (Hu et al., 2022). In the past decades, lots of enhanced PSOs 

have been offered to modify the searchability of PSOs and decrease the probability of falling into a local optimum 

(Chamkalani et al., 2014; Eshtay et al., 2021; Ma et al., 2019; Tan et al., 2019). The inertia weight 𝑊, which is an 

influential argument of PSO, can significantly increase the capacity of PSO. A right 𝑊 can allow PSO to establish 

a proper trade-off between global and local probing. A larger 𝑊 is generally more suitable for a global probing, 

and a smaller 𝑊 is preferable for a local probing. 

3. The Proposed Approach 

PSO aims to minimize a given objective function 𝑓:ℝ𝑛 → ℝ. To this end, it is first necessary to define the 

objective function. Given a data set 𝐷 = {(𝑥1, 𝑦1), … , (𝑥𝑚, 𝑦𝑚)} ∈ ℝ𝑚×𝑛 and a classifier with the function ℎ: 𝑋 →
𝑌 that is a member of the hypothesis space 𝐻, the objective function (i.e., cost function) is as seen in Equation 3. 

The hypothesis function is seen in Equation (4). The transfer function is seen in Equation (5). 

𝑓(𝜃) =
1

𝑚
∑𝟏𝑖(ℎ𝜃(𝑥𝑖) ≠ 𝑦𝑖)

𝑚

𝑖=1

 (3) 

ℎ𝜃 = 𝑢(𝑋𝜃) (4) 

𝑢(𝑎) = {
−1, 𝑎 ≤ 0
1, 𝑎 > 0

 (5) 

where 𝜃 = (𝜃0, ⋯ , 𝜃𝑛) is the weight vector and 𝜃0 is bias, which is in the search space for unconstrained problems. 

𝜃∗  be the global minimum such that 𝑓(𝜃∗) ≤ 𝑓(𝜃)  if 𝜃∗ : 𝑓(𝜃∗) = 0 . Accordingly, the best position in the 

particle’s best position 𝑝 at the next iteration 𝑡 + 1 is computed as seen in Equation (6). 

𝑝𝑖 = {
𝑝𝑖 , f(𝜃𝑖

(𝑡+1)) > 𝑝𝑖

(𝜃𝑖
(𝑡+1)), f(𝜃𝑖

(𝑡+1)) ≤ 𝑝𝑖
 (6) 

The best position in the current neighborhood 𝑔  at the next iteration 𝑡 + 1  is calculated as  

𝑔𝑖 = min(𝑝𝑖). Concisely, 𝑝𝑖  is the best position that the individual particle 𝑖 has visited. On the other hand, 𝑔𝑖 is 

the most proper position discovered by any particle in the whole swarm. 

4. Experimental Procedure 

In this part, we clarify the experimental procedure, containing benchmark data sets, the other linear classifiers 

(i.e., PLR, SVM, and LR), implementations, and evaluation metrics. We compare the algorithms used in the 

experiments to quantify their performance over 11 real-world data sets and 1 synthetic binary data set from UCI 

Machine Learning Repository1 and OpenML2. The descriptive information about the data sets is seen in Table 1. 

Table 1. The binary data sets that are employed in the empirical analysis. 

# Data set Points Features Imbalance rate 

1 Banknote Authentication3 1372 4 1.27 

2 Blood Transfusion4 748 4 3.20 

3 Breast Cancer5 699 9 1.90 

                                                           

1 http://archive.ics.uci.edu/ml 
2 https://www.openml.org/ 
3 https://archive.ics.uci.edu/ml/datasets/banknote+authentication 
4 https://archive.ics.uci.edu/ml/datasets/Blood+Transfusion+Service+Center 
5 https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%29 
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4 Climate Model6 540 18 10.73 

5 Connectionist Bench7 208 60 1.14 

6 Diabetic Retinopathy8 1151 19 1.13 

7 EEG Eye State9 14980 14 1.23 

8 Haberman10 306 3 2.78 

9 HTRU211 17898 8 9.92 

10 Ionosphere12 351 34 1.78 

11 Madelon13 2000 500 1.00 

12 Mozilla414 15545 5 2.04 

13 Parkinson Speech15 1040 26 1.00 

14 QSAR Biodegradation16 1055 41 1.96 

15 Vertebral Column17 310 6 2.10 

 

Table 2 shows the linear classifiers employed in the experiments. The classifiers have been used by default 

parameter values. The parameter values of the Particle Swarm Classifier (PSC) are as seen in Table 2 unless 

otherwise stated. 

Table 2. The linear classifiers used in the experiments. 

# Algorithm Parameter (by default values) 

1 Particle Swarm Classifier (PSC) SwarmSize=10, ObjectiveLimit=0 

2 Support Vector Machine (SVM) Standardize=true, KernelFunction=linear 

3 Logistic Regression (LR) Model=nominal 

4 Perceptron Learning Rule (PLR) 
divideFcn=dividerand, divideMode=sample, trainRatio=90, 

valRatio=0, testRatio=10, epochs=100 

 

We employ the classification accuracy rate (ACC) given by Equation (7) to evaluate the performance of the 

algorithms. 

𝐴𝐶𝐶 =
1

𝑚
∑𝛿(𝑎𝑖 , 𝑝𝑖)

𝑚

𝑖=1

 (7) 

𝛿(𝑥, 𝑦) = {
1, 𝑥 = 𝑦
0, 𝑥 ≠ 𝑦

 (8) 

where 𝑎 denotes the true class labels and 𝑝 denotes the predictions. 

We carry out all the experiments on a CPU at 1.6 GHz with 8 GB of RAM. In addition, we use MATLAB 

R2021a as a programming and numeric computing platform. All the experiments have been performed under 

tenfold cross-validation. 

5. Results and Discussion 

                                                           

6 https://archive.ics.uci.edu/ml/datasets/climate+model+simulation+crashes 
7 http://archive.ics.uci.edu/ml/datasets/connectionist+bench+(sonar,+mines+vs.+rocks) 
8 https://archive.ics.uci.edu/ml/datasets/Diabetic+Retinopathy+Debrecen+Data+Set 
9 https://archive.ics.uci.edu/ml/datasets/EEG+Eye+State 
10 https://archive.ics.uci.edu/ml/datasets/haberman%27s+survival 
11 https://archive.ics.uci.edu/ml/datasets/HTRU2 
12 https://archive.ics.uci.edu/ml/datasets/ionosphere 
13 https://archive.ics.uci.edu/ml/datasets/madelon 
14 https://www.openml.org/search?type=data&sort=runs&id=1046&status=active 
15 

https://archive.ics.uci.edu/ml/datasets/Parkinson+Speech+Dataset+with++Multiple+Types+of+Sound+Recordin

gs 
16 https://archive.ics.uci.edu/ml/datasets/QSAR+biodegradation 
17 http://archive.ics.uci.edu/ml/datasets/vertebral+column 
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In this section, we compare the algorithms with each other with respect to classification accuracy and running 

time. Besides, we analyze the performance of PSC by tuning its hyperparameters. 

5.1. The Comparison of the Algorithms 

First, we compare the algorithms with each other concerning classification accuracy and execution time. The 

comparisons of accuracy rates of the classifiers on the data sets are seen in Figure 1. All the algorithms are run by 

their default values. From a statistical viewpoint, the average accuracy rates of the methods point out comparative 

performance well. Accordingly, PSC, SVM, LR, and PLR correspond to 77.8%, 80.6%, 77.4%, and 57.7%, 

respectively. In respect of the number of the highest accuracy rate on the data sets, SVM ranks first in 7 data sets. 

LR ranks second by 5 data sets and PSC ranks third by 3 data sets. PLR gives a much worse result than the other 

algorithms on only the Ionosphere data set. PSC, LR and SVM have a good performance on average on all the 

data sets. PLR has low performance on 7 data sets in comparison to the other algorithms. While somewhat 

increasing the value of the epochs hyperparameter of PLR, its performance first rises and then levels off. But even 

though PLR catches up with the others’ performance, a large value of the epochs hyperparameter causes high 

execution time. Figure 2 shows the comparisons of execution times of the classifiers on the data sets. Statistically, 

the average execution times of the methods point out comparative performance well. Accordingly, PSC, SVM, 

LR, and PLR correspond to 0.08, 3.53, 3.15, and 241.40, respectively. Accordingly, PSC is the fastest algorithm 

on all the data sets. The performance of SVM and LR in the context of running time are near each other. The 

running time of PLR is the highest over all the data sets. Consequently, SVM, PLR, and LR exhibit low 

performance on massive sample sizes and high-dimensional data sets. 

 

Figure 1. The comparative results of the algorithms relating to the classification accuracy. 
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Figure 2. The comparative results of the classifiers with respect to the execution time 

5.2. Adjusting the Hyperparameters of PSC 

We first investigate the effects of the hyperparameters that can affect the performance of PSC. The 

hyperparameters that we detect are the swarm size, self-adjustment weight, social adjustment weight, and 

minimum neighbors’ fraction. Figure 3 shows the change in the accuracy rate in terms of the swarm size. We first 

examine the influence of the swarm size hyperparameter on all the data sets. The lowest accuracy rate on the data 

set Banknote Authentication is approximately 93.9% with a swarm size of 10. The highest classification accuracy 

is approximately 99.0% by 70 particles. Accordingly, there is an important effect of the hyperparameter swarm 

size on the data set Banknote Authentication. Besides, the classification accuracy also rises as the swarm size 

increases. The lowest accuracy rate on the data set Blood Transfusion is approximately 76.5% with a swarm size 

of 80. The highest classification accuracy is approximately 78.2% by 40 particles. Accordingly, we can state that 

there exists a bit effect of the swarm size hyperparameter on the data set Blood Transfusion. Moreover, there is no 

proportional relationship between classification accuracy and swarm size. In other words, the classification 

accuracy does not rise as the swarm size increases. The lowest accuracy rate on the data set Breast Cancer is 

approximately 96.0% by swarm size of 20 and 100. The highest classification accuracy is approximately 97.6% 

by 90 particles. Accordingly, there exists little effect of the swarm size hyperparameter on the data set Breast 

Cancer. Further, there is no proportional relationship between classification accuracy and swarm size. The lowest 

classification accuracy on the data set Climate Model is approximately 90.6% with a swarm size of 50. The highest 

classification accuracy is approximately 93.7% by 70 particles. Accordingly, there exists the influence of the 

swarm size hyperparameter on the data set Climate Model. Furthermore, while swarm size increases, the 

classification accuracy first increases and then decreases after reaching the highest point. The lowest accuracy rate 

on the data set Connectionist Bench is approximately 69.7% with a swarm size of 20. The highest classification 

accuracy is approximately 79.8% by 90 particles. Accordingly, there is a significant effect of the hyperparameter 

swarm size on the data set Connectionist Bench. Furthermore, while swarm size increases, the classification 

accuracy generally increases. The lowest accuracy rate on the Diabetic Retinopathy data set is approximately 

61.7% with a swarm size of 10. The highest classification accuracy is approximately 68.7% by 90 particles. As a 

result, there is a remarkable effect of the swarm size hyperparameter on the data set Diabetic Retinopathy. 

Furthermore, while swarm size increases, the classification accuracy mostly increases. The lowest classification 

accuracy on the data set EEG Eye State is approximately 55.7% with a swarm size of 10. The highest classification 

accuracy is approximately 58.2% by 90 particles. Consequently, there exists a bit effect of the swarm size 

hyperparameter on the data set EEG Eye State. Additionally, while swarm size increases, the classification 

accuracy slightly increases. The lowest accuracy rate on the data set Haberman is approximately 74.0% with a 



42 

 

 

 

 

swarm size of 30. The highest classification accuracy is approximately 76.1% by 80 particles. Consequently, there 

is an effect of the swarm size hyperparameter on the data set Haberman. In addition, while swarm size increases, 

the classification accuracy slightly increases. The lowest accuracy rate on the data set HTRU2 is approximately 

97.6% with a swarm size of 10. The highest classification accuracy is approximately 97.9% by 100 particles. In 

consequence, there exists no effect of the hyperparameter swarm size on the data set HTRU2. In addition, while 

swarm size increases, there is no apparent change in the classification accuracy. The lowest accuracy rate on the 

data set Ionosphere is approximately 80.5% by swarm size of 10. The highest classification accuracy is 

approximately 87.6% by 100 particles. Accordingly, there is an apparent effect of the swarm size hyperparameter 

on the data set Ionosphere. Besides, while swarm size increases, the classification accuracy increases. The lowest 

accuracy rate on the data set Madelon is approximately 53.8% with a swarm size of 10. The highest classification 

accuracy is approximately 58.2% by 80 particles. Accordingly, there exists an effect of the hyperparameter swarm 

size on the data set Madelon. Besides, while swarm size increases, the classification accuracy first increases and 

then slightly levels off. The lowest accuracy rate on the data set Mozilla4 is approximately 92.5% with a swarm  

 

Figure 3. The change in the accuracy rate according to the swarm size 

size of 10. The highest classification accuracy is approximately 93.4% by 80 particles. Accordingly, there is a 

low effect of the swarm size hyperparameter on the data set Mozilla4. Further, while swarm size increases, the 

classification accuracy first increases and then almost levels out. The lowest accuracy rate on the data set Parkinson 

Speech is approximately 61.5% by swarm size of 80 and 90. The highest classification accuracy is approximately 

63.7% by 40 and 60 particles. Accordingly, there exists little effect of the swarm size hyperparameter on the data 

set Parkinson Speech. Besides, while swarm size increases, the change in the classification accuracy is not 

statistically significant. The lowest accuracy rate on the data set QSAR Bio Degradation is approximately 78.2% 

with a swarm size of 10. The highest classification accuracy is approximately 85.4% by 80 particles. Accordingly, 

there is a certain effect of the swarm size hyperparameter on the data set QSAR Bio Degradation. Besides, while 



43 

 

 

 

 

swarm size increases, the classification accuracy instantly increases after 10 particles and then levels out. The 

lowest accuracy rate on the data set Vertebral Column is approximately 79.2% by swarm size of 10. The highest 

classification accuracy is approximately 85.8% by 40 particles. Accordingly, there is a clear effect of the swarm 

size hyperparameter on the data set Vertebral Column. Besides, while swarm size increases, the classification 

accuracy instantly increases after 10 particles and then almost levels out. To sum up, there is an effect of the swarm 

size hyperparameter on some data sets. The swarm size effect on these data sets ranges from small to substantial. 

Overall speaking, the classification accuracy generally increases along with the many numbers of particles. 

Figure 4 shows the change in the running time with respect to the swarm size. According to the results, it is 

obvious that the execution time increases as the swarm size grows unless considering a few ups and downs due to 

the experimental deviation (software and hardware-originated). 

 

Figure 4. The change in the execution time according to the swarm size 

Figure 5 shows the change in the classification accuracy according to the adjustment weight. We have obtained 

the results by changing the self-adjustment weight and social adjustment weight hyperparameters in the range 0.1 

and 3 independently of each other. From a statistical point of view, the accuracy rates of the self-adjustment weight 

and social adjustment weight hyperparameters can better indicate comparative performance. Accordingly, the 

highest classification accuracy on the Banknote Authentication data set is approximately 97.0% when the value of 

the self-adjustment weight hyperparameter is 2. The highest classification accuracy is approximately 97.5% when 

the value of the social adjustment weight hyperparameter is 1.4. The highest classification accuracy on the Blood 

Transfusion data set is approximately 78.3% when the values of the self-adjustment weight hyperparameter are 

0.2 and 1.7. The highest classification accuracy is approximately 78.5% when the values of the social adjustment 

weight hyperparameter are 1.9 and 2.1. The highest classification accuracy on the Breast Cancer data set is 

approximately 97.1% when the value of the self-adjustment weight hyperparameter is 1.5. The highest 

classification accuracy is approximately 97.1% when the value of the social adjustment weight hyperparameter is 
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2.8. The highest classification accuracy on the Climate Model data set is approximately 91.6% when the values of 

the self-adjustment weight hyperparameter are 1.5 and 2.1. The highest classification accuracy is approximately 

91.6% when the value of the social adjustment weight hyperparameter is 1.6. The highest classification accuracy 

on the Connectionist Bench data set is approximately 73.1% when the value of the self-adjustment weight 

hyperparameter is 0.2. The highest classification accuracy is approximately 74.5% when the value of the social 

adjustment weight hyperparameter is 1.8. The highest classification accuracy on the Diabetic Retinopathy data set 

is approximately 64.0% when the value of the self-adjustment weight hyperparameter is 2.4. The highest 

classification accuracy is approximately 64.7% when the value of the social adjustment weight hyperparameter is 

2.3. The highest classification accuracy on the EEG Eye State data set is approximately 57.6% when the value of 

the self-adjustment weight hyperparameter is 1.6. The highest classification accuracy is approximately 57.4% 

when the value of the social adjustment weight hyperparameter is 1.7. In terms of the self-adjustment weight 

hyperparameter, the accuracy rates and corresponding parameter values of the Haberman, HTRU2, Ionosphere, 

Madelon, Mozilla4, Parkinson Speech, QSAR Biodegradation, Vertebral Column data sets are approximately 

76.0%, 97.8%, 81.9%, 56.1%, 93.4%, 63.1%, 82.7%, and 84.8% by 1.4, 1.1, 1.8, 1.9, 2.5, 1.7, 2.1, and 2.8, 

respectively. In terms of the social adjustment weight hyperparameter, the accuracy rates and corresponding 

parameter values of the Haberman, HTRU2, Ionosphere, Madelon, Mozilla4, Parkinson Speech, QSAR 

Biodegradation, Vertebral Column data sets are approximately 75.3%, 97.8%, 82.2%, 56.4%, 93.4%, 63.1%, 

82.7%, and 84.4% by 1.6, 0.3, 1.5, 1.9, 2.4, 2, 1.9, and 1.9, respectively. Consequently, we observe that the 

classification accuracy varies along with the change in the self-adjustment weight and social adjustment weight 

hyperparameters. The classification accuracies are seen to be higher as compared to the results obtained from the 

default parameter values of PSC. Further, the classification accuracy fluctuates instead of regularly increasing 

while the self-adjustment weight and social adjustment weight hyperparameters increase. 

 

Figure 5. The change in the classification accuracy according to the adjustment weight 
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Table 3 shows the change in the maximum accuracy rates on the data sets according to the minimum neighbors’ 

fraction hyperparameter. Accordingly, the minimum neighbors’ fraction hyperparameter also influences the 

classification accuracy. 

Table 3. The change of the maximum accuracy rates on the data sets according to the minimum neighbors’ fraction 

hyperparameter. 

Data set Accuracy rate Parameter value 

Banknote Authentication 95.1% 0.8 

Blood Transfusion 78.4% 0.6 

Breast Cancer 96.6% 0.2, 1.0 

Climate Model 91.5% 0.1, 0.2, 0.3, 0.5, 0.8, 1.0 

Connectionist Bench 73.6% 0.3 

Diabetic Retinopathy 64.9% 0.7 

EEG Eye State 57.5% 0.8 

Haberman 75.8% 0.9 

HTRU2 97.8% 0.8 

Ionosphere 82.2% 0.2 

Madelon 54.9% 0.6 

Mozilla4 92.9% 0.3 

Parkinson Speech 62.7% 0.5 

QSAR Biodegradation 80.7% 0.6 

Vertebral Column 82.6% 0.8 

 
Figure 6 shows the variation in the classification accuracy with both adjustment weights at the same time. As 

the color scale in the colormap approaches white, the accuracy rate rises. As the color scale approaches black, the 

accuracy rate decreases. The classification accuracy ranges from 50% to 100%. Generally speaking, and neglecting 

the exceptions, when the values of the self-adjustment weight and social adjustment weight hyperparameters are 

simultaneously increased or decreased, a considerable rise in the classification accuracy is not seen. On the large 

values of the social adjustment weight hyperparameter and the small or medium values of the self-adjustment 

weight hyperparameter, high classification accuracies can be obtained. For the small values of the social 

adjustment weight hyperparameter, we have acquired low classification accuracies on the data sets. We specify 

that higher classification accuracies can be obtained when the values of the self-adjustment weight and social 

adjustment weight hyperparameters simultaneously vary. Considering the data sets in detail in terms of both 

adjustment weights, the self-adjustment weight and social adjustment weight hyperparameters significantly affect 

classification accuracies on the Banknote Authentication, Ionosphere, Connectionist Bench, Mozilla4, QSAR 

Biodegradation, and Vertebral Column data sets. Further, the self-adjustment weight and social adjustment weight 

hyperparameters have little effect in terms of classification accuracies on the Blood Transfusion, Climate Model, 

Haberman, and Parkinson Speech data sets. Finally, the self-adjustment weight and social adjustment weight 

hyperparameters have a bit of an effect in terms of classification accuracies on the Breast Cancer, Diabetic 

Retinopathy, EEG Eye State, HTRU2, and Madelon data sets. To sum up, the effect of the self-adjustment weight 

and social adjustment weight hyperparameters on the data sets changes. Hence, it is needed to observe the effect 

by changing the values of these hyperparameters. 
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Figure 6. The variation in the classification accuracy with both adjustment weights 

Table 4 shows the accuracy rate of PSC on the data sets after setting its adjustment weight parameters. 

According to the results, the average classification accuracy of PSC increases by 3.0% in comparison to the default 

parameter values. 

 

As a result, the average performances of PSC, SVM, and LR are very close to each other and the difference 

between them is not statistically significant. Therefore, we remark that a linear classifier developed by using PSO 

can compete with the other linear classifiers. In order to increase the classification performance of PSC, more 

different objective functions can be enhanced, or the existing ones can be improved more. Moreover, tighter 

constraints can be constructed with the other meta-heuristic methods and the classification accuracy can be 

provided to be increased even a bit more. In a nutshell, the experimental results show that meta-heuristics can be 

exploited to build linear models. 
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Table 4. The accuracy rate of PSC on the data sets after setting its adjustment weight parameters. 

Data set PSC (tuned) Self-adjustment weight Social adjustment weight 

Banknote Authentication 98.7% ± 1.0 2.3 1.3 

Blood Transfusion 79.1% ± 0.2 0.4 2.2 

Breast Cancer 97.4% ± 0.1 1.7 1.9 

Climate Model 92.0% ± 0.0 2.9 1.8 

Connectionist Bench 75.2% ± 2.7 1.4 1.7 

Diabetic Retinopathy 66.1% ± 0.7 0.8 2.6 

EEG Eye State 58.1% ± 0.2 2.3 1.7 

Haberman 75.8% ± 1.2 2.3 1.1 

HTRU2 97.9% ± 0.1 0.5 2.3 

Ionosphere 83.5% ± 2.1 0.6 2.2 

Madelon 60.0% ± 0.3 1.4 2.1 

Mozilla4 93.4% ± 0.5 0.3 3.0 

Parkinson Speech 64.6% ± 0.9 2.8 0.7 

QSAR Biodegradation 84.5% ± 0.8 0.9 2.3 

Vertebral Column 85.8% ± 1.9 2.0 2.1 

Avg. 80.8% ± 13.9 1.5 1.9 

 

6. Conclusion 

In this study, we first attempt to reply to the question of whether meta-heuristics can be exploited to build linear 

models or not. To this end, Particle Swarm Optimization (PSO) has been employed to handle linear classification 

problems. A determined objective function has been tried on 15 data sets and compared to well-known three linear 

classifiers (i.e., SVM, PLR, and LR). The experimental results show that the Particle Swarm Classifier (PSC) is 

competitive with the other classification algorithms, and for a few binary classification problems, it turns out to be 

superior to other classifiers. In terms of running time, PSC is undoubtedly faster than the other classifiers. In 

particular, the speed of PSC can be apparently seen as compared to the other classifiers on large and high-

dimensional data sets. According to the experimental results, the average performances of PSC, SVM, and LR are 

similar to each other and the difference between their performance is statistically insignificant. From a statistical 

viewpoint, the average classification accuracies of PSC (tuned), SVM, and LR are 80.8%, 80.6%, and 77.4%, 

respectively. To put it short, the experiments show that meta-heuristics can be used to generate linear models. 

Concerning future works, more efficient and effective objective functions will be considered and evaluated. In 

order to increase the classification performance of PSC, more advanced objective functions can be developed, or 

the current objective functions can be improved satisfactorily. Further, tighter constraints can be formed by means 

of the other meta-heuristic methods and the classification accuracy can be increased more and more. 
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