King operators which preserve x^{j}

Zoltán Finta*

Abstract

We prove the unique existence of the functions $r_{n}(n=1,2, \ldots)$ on $[0,1]$ such that the corresponding sequence of King operators approximates each continuous function on $[0,1]$ and preserves the functions $e_{0}(x)=1$ and $e_{j}(x)=x^{j}$, where $j \in\{2,3, \ldots\}$ is fixed. We establish the essential properties of r_{n}, and the rate of convergence of the new sequence of King operators will be estimated by the usual modulus of continuity. Finally, we show that the introduced operators are not polynomial and we obtain quantitative Voronovskaja type theorems for these operators.

Keywords: Bernstein operator, King operator, Korovkin theorem, modulus of continuity, polynomial operator.
2020 Mathematics Subject Classification: 41A10, 41A25, 41A36.

1. Introduction

Let Π_{n} be the space of all algebraic polynomials of degree not greater than n. The Bernstein operators $B_{n}: C[0,1] \rightarrow \Pi_{n}$ are given by

$$
\begin{equation*}
\left(B_{n} f\right)(x)=\sum_{k=0}^{n} p_{n, k}(x) f\left(\frac{k}{n}\right) \tag{1.1}
\end{equation*}
$$

where $n=1,2, \ldots, x \in[0,1], f \in C[0,1]$ and $p_{n, k}(x)=\binom{n}{k} x^{k}(1-x)^{n-k}$. For $j=0,1,2, \ldots$, we denote by e_{j} the power function $e_{j}(x)=x^{j}, x \in[0,1]$. It is well-known [6, p. 3] that

$$
\begin{equation*}
\left(B_{n} e_{0}\right)(x)=1,\left(B_{n} e_{1}\right)(x)=x,\left(B_{n} e_{2}\right)(x)=x^{2}+\frac{1}{n} x(1-x), x \in[0,1] . \tag{1.2}
\end{equation*}
$$

Studying the connection between regular summability matrices and convergent positive linear operators, King [14, pp. 204-205] introduced the operators $V_{n}: C[0,1] \rightarrow C[0,1]$ defined by

$$
\begin{equation*}
\left(V_{n} f\right)(x)=\sum_{k=0}^{n} p_{n, k}\left(r_{n}^{*}(x)\right) f\left(\frac{k}{n}\right) \tag{1.3}
\end{equation*}
$$

where

$$
r_{n}^{*}(x)= \begin{cases}x^{2}, & \text { if } n=1 \tag{1.4}\\ -\frac{1}{2(n-1)}+\sqrt{\frac{n}{n-1} x^{2}+\frac{1}{4(n-1)^{2}},} & \text { if } n=2,3, \ldots\end{cases}
$$

Taking into account (1.1)-(1.3), we have $\left(V_{n} f\right)(x)=\left(B_{n} f\right)\left(r_{n}^{*}(x)\right), x \in[0,1]$ and $V_{n} e_{0}=e_{0}$, $V_{n} e_{2}=e_{2}$. The uniform convergence $\lim _{n \rightarrow \infty} V_{n} f=f$ and a quantitative estimation are also discussed in [14, p. 204 and p. 206]. We mention that in [8] we obtained direct and converse
approximation theorems for (1.3). The existence of a sequence of linear positive bounded polynomial operators on $C[0,1]$, possessing e_{0} and e_{2} as fixed points, was proved in [9]. Main results concerning certain King type modifications of the Bernstein operators and the Szász-Mirakyan operators were presented in the survey paper [1].

Replacing $f\left(\frac{k}{n}\right)$ in (1.1) with $f\left(\sqrt[j]{\frac{k(k-1) \ldots(k-j+1)}{n(n-1) \ldots(n-j+1)}}\right), n \geq j \geq 2$, Aldaz, Kounchev and Render [3, p. 12, Proposition 11] defined a new King type operator, which preserves the functions e_{0} and e_{j}, where $j \in\{2,3, \ldots\}$ is fixed. In [10], we proved that there exist infinitely many sequences of Bernstein type operators $\left(L_{n}\right)_{n \geq 1}$, which approximate each continuous function on $[0,1]$ and have the functions e_{0} and e_{j} as fixed points, where $j \in\{1,2, \ldots\}$ is given and

$$
\left(L_{n} f\right)(x)=\sum_{k=0}^{n} p_{n, k}(x) \lambda_{n, k}(f), \quad f \in C[0,1]
$$

and $\lambda_{n, k} \in C^{*}[0,1]$ are bounded positive linear functionals. Further properties of the Bernstein type operators of Aldaz, Kounchev and Render were obtained in the papers [2], [4], [5] and [13]. In [11], among others, we studied the approximation properties of the operators U_{n} : $C[0,1] \rightarrow C[0,1]$ defined by

$$
\begin{equation*}
\left(U_{n} f\right)(x)=\sum_{k=0}^{n} p_{n, k}\left(r_{n}(x)\right) f\left(\frac{k}{n}\right) \tag{1.5}
\end{equation*}
$$

where the functions $r_{n} \in C[0,1]$ were constructed such that U_{n} preserves the functions e_{0} and $e_{2 i}$, with $i \in\{1,2, \ldots\}$ given. The main goal of the present paper is to prove the unique existence of the functions $r_{n}:[0,1] \rightarrow[0,1](n=1,2, \ldots)$ such that the corresponding King operators given by (1.5) approximate each continuous function on $[0,1]$ and satisfy the conditions $U_{n} e_{0}=e_{0}$ and $U_{n} e_{j}=e_{j}$, where $j \in\{2,3, \ldots\}$ is fixed. The essential properties of r_{n} ($n=1,2, \ldots$) will be established. A necessary and sufficient condition is given for the uniform convergence of $\left(U_{n} f\right)_{n \geq 1}$ to $f \in C[0,1]$. The quantitative estimates for the operators (1.5) are obtained with the aid of the usual modulus of continuity. Finally, we show that U_{n} cannot be polynomial operator of degree n, and we obtain a quantitative Voronovskaja type theorem for the operators (1.5).

2. THE CONSTRUCTION OF r_{n}

At first we prove the following lemma.
Lemma 2.1. Let $f, g:[a, b] \rightarrow[\alpha, \beta]$ be strictly increasing and continuous functions such that $f(a)=$ $\alpha=g(a), f(b)=\beta=g(b)$ and $f(u) \leq g(u)$ for all $u \in[a, b]$. Then, the inverse mappings f^{-1}, g^{-1} : $[\alpha, \beta] \rightarrow[a, b]$ exist and are strictly increasing and continuous on $[\alpha, \beta]$ such that $g^{-1}(v) \leq f^{-1}(v)$ for all $v \in[\alpha, \beta]$.

Proof. The existence of f^{-1} and g^{-1} is the consequence of the following continuous inverse theorem: if $\varphi:[a, b] \rightarrow \mathbb{R}$ is a strictly increasing and continuous function then the inverse mapping $\varphi^{-1}:[\varphi(a), \varphi(b)] \rightarrow[a, b]$ exists and is strictly increasing and continuous on $[\varphi(a), \varphi(b)]$. Consequently $f^{-1}, g^{-1}:[\alpha, \beta] \rightarrow[a, b]$ are strictly increasing and continuous on $[\alpha, \beta]$. Moreover, for every $v \in[\alpha, \beta]$ there exists a unique $u \in[a, b]$ such that $v=f(u)$. Then $g^{-1}(v)=g^{-1}(f(u)) \leq$ $g^{-1}(g(u))=u=f^{-1}(v)$, because $f(u) \leq g(u)$ and g^{-1} is strictly increasing.

The next result contains the construction of the functions $r_{n}(n=1,2, \ldots)$.

Theorem 2.1. For every $n=1,2, \ldots$, there exists the unique function $r_{n}:[0,1] \rightarrow[0,1]$ such that

$$
\begin{equation*}
\sum_{k=0}^{n} p_{n, k}\left(r_{n}(x)\right)\left(\frac{k}{n}\right)^{j}=x^{j} \tag{2.6}
\end{equation*}
$$

for all $x \in[0,1]$, being $j \in\{2,3, \ldots\}$ fixed.
Proof. If $n=1$ then the function $r_{1}(x)=x^{j}, x \in[0,1]$ satisfies the equality

$$
p_{1,0}\left(r_{1}(x)\right) \cdot 0+p_{1,1}\left(r_{1}(x)\right) \cdot 1=x^{j}, \quad x \in[0,1] .
$$

Let $n \geq 2$ and consider the function $\phi_{n}:[0,1] \rightarrow \mathbb{R}$,

$$
\phi_{n}(y)=\left(B_{n} e_{j}\right)(y)=\sum_{k=0}^{n} p_{n, k}(y)\left(\frac{k}{n}\right)^{j}
$$

By (1.1)-(1.2), we have $\phi_{n}(0)=0, \phi_{n}(1)=1$ and $0 \leq \phi_{n}(y) \leq\left(B_{n} e_{0}\right)(y)=1$ for every $y \in[0,1]$. Because

$$
\left(B_{n} f\right)^{\prime}(y)=n \sum_{k=0}^{n-1} p_{n-1, k}(y)\left[f\left(\frac{k+1}{n}\right)-f\left(\frac{k}{n}\right)\right]
$$

(see [6, p. 305, (2.2)]), we get

$$
\begin{align*}
\phi_{n}^{\prime}(y) & =\left(B_{n} e_{j}\right)^{\prime}(y)=n \sum_{k=0}^{n-1} p_{n-1, k}(y)\left[\left(\frac{k+1}{n}\right)^{j}-\left(\frac{k}{n}\right)^{j}\right] \\
& =n\left\{(1-y)^{n-1}\left(\frac{1}{n}\right)^{j}+\binom{n-1}{1} y(1-y)^{n-2}\left[\left(\frac{2}{n}\right)^{j}-\left(\frac{1}{n}\right)^{j}\right]+\ldots\right. \\
& \left.+\binom{n-1}{n-2} y^{n-2}(1-y)\left[\left(\frac{n-1}{n}\right)^{j}-\left(\frac{n-2}{n}\right)^{j}\right]+y^{n-1}\left[1-\left(\frac{n-1}{n}\right)^{j}\right]\right\} \tag{2.7}
\end{align*}
$$

for all $y \in[0,1]$. Thus $\phi_{n}:[0,1] \rightarrow[0,1]$ is a strictly increasing and continuous function. But the function e_{j} is also strictly increasing and continuous on $[0,1]$ such that $e_{j}(0)=0$ and $e_{j}(1)=1$, therefore if $x \in[0,1]$ is arbitrary then the equation $\phi_{n}(y)=x^{j}$ has a unique solution $y=r_{n}(x)$. In view of the continuous inverse theorem, there exists the strictly increasing and continuous inverse mapping ϕ_{n}^{-1}. Then

$$
\begin{equation*}
r_{n}(x)=\left(\phi_{n}^{-1} \circ e_{j}\right)(x), \quad x \in[0,1] \tag{2.8}
\end{equation*}
$$

and satisfies (2.6). Moreover $0=r_{n}(0) \leq r_{n}(x) \leq r_{n}(1)=1$ for all $x \in[0,1]$.
The essential properties of $r_{n}(n=1,2, \ldots)$ are gathered in the following theorem.
Theorem 2.2. Let $r_{n}:[0,1] \rightarrow[0,1](n=1,2, \ldots)$ be the function defined by (2.6). Then
a) r_{n} is strictly increasing and continuous function on $[0,1]$;
b) $x^{j} \leq r_{n}(x) \leq r_{n+1}(x) \leq x$ for all $x \in[0,1]$;
c) $\lim _{n \rightarrow \infty} r_{n}(x)=x$ for all $x \in[0,1]$;
d) r_{n} is differentiable on $[0,1]$.

Proof. a) By (2.8), we have that $r_{n}(x)=\left(\phi_{n}^{-1} \circ e_{j}\right)(x), x \in[0,1]$, where ϕ_{n}^{-1} is a strictly increasing and continuous function on $[0,1]$. Hence, we obtain that r_{n} is also a strictly increasing and continuous function on $[0,1]$.
b) In view of (1.2), we have $\sum_{k=0}^{n} p_{n, k}\left(r_{n}(x)\right) \frac{k}{n}=r_{n}(x)$. Using (2.6) and Jensen's inequality on $[0,1]$ for the convex function e_{j}, we get

$$
x^{j}=\sum_{k=0}^{n} p_{n, k}\left(r_{n}(x)\right)\left(\frac{k}{n}\right)^{j} \geq\left(\sum_{k=0}^{n} p_{n, k}\left(r_{n}(x)\right) \frac{k}{n}\right)^{j}=\left(r_{n}(x)\right)^{j}, x \in[0,1] .
$$

Hence $r_{n}(x) \leq x, x \in[0,1]$.
Because $\left(B_{n} f\right)(y)>\left(B_{n+1} f\right)(y), 0<y<1$ for any strictly convex function f on $[0,1]$ (see [6, p. 310, Corollary 4.2]), we obtain $\phi_{n}(y)=\left(B_{n} e_{j}\right)(y)>\left(B_{n+1} e_{j}\right)(y)=\phi_{n+1}(y)$ for $y \in(0,1)$. But $\phi_{n}(0)=0=\phi_{n+1}(0)$ and $\phi_{n}(1)=1=\phi_{n+1}(1)$, therefore $\phi_{n}(y) \geq \phi_{n+1}(y), y \in[0,1]$. Due to Lemma 2.1, we have $\phi_{n}^{-1}(x) \leq \phi_{n+1}^{-1}(x), x \in[0,1]$. In particular $\phi_{n}^{-1}\left(x^{j}\right) \leq \phi_{n+1}^{-1}\left(x^{j}\right), x \in[0,1]$, i.e. $r_{n}(x) \leq r_{n+1}(x), x \in[0,1]$, because of (2.8). But $r_{1}(x)=x^{j}, x \in[0,1]$, thus $x^{j} \leq r_{n}(x)$, $x \in[0,1]$.
c) Because $p_{n, k}(k=0,1, \ldots, n)$ are polynomials of degree n, we have, by Taylor's formula for $x, y \in[0,1]$ that

$$
p_{n, k}(y)=p_{n, k}(x)+\frac{1}{1!} p_{n, k}^{\prime}(x)(y-x)+\frac{1}{2!} p_{n, k}^{\prime \prime}(x)(y-x)^{2}+\ldots+\frac{1}{n!} p_{n, k}^{(n)}(x)(y-x)^{n} .
$$

Hence, in view of (2.6) and (1.1),

$$
\begin{align*}
x^{j}-\left(B_{n} e_{j}\right)(x) & =\sum_{k=0}^{n} p_{n, k}\left(r_{n}(x)\right)\left(\frac{k}{n}\right)^{j}-\sum_{k=0}^{n} p_{n, k}(x)\left(\frac{k}{n}\right)^{j} \\
& =\sum_{k=0}^{n}\left[p_{n, k}\left(r_{n}(x)\right)-p_{n, k}(x)\right]\left(\frac{k}{n}\right)^{j} \\
& =\sum_{k=0}^{n}\left\{\sum_{i=1}^{n} \frac{1}{i!} p_{n, k}^{(i)}(x)\left(r_{n}(x)-x\right)^{i}\right\}\left(\frac{k}{n}\right)^{j} \\
& =\sum_{i=1}^{n} \frac{1}{i!}\left(r_{n}(x)-x\right)^{i} \sum_{k=0}^{n} p_{n, k}^{(i)}(x)\left(\frac{k}{n}\right)^{j}=\sum_{i=1}^{n} \frac{1}{i!}\left(r_{n}(x)-x\right)^{i}\left(B_{n} e_{j}\right)^{(i)}(x) . \tag{2.9}
\end{align*}
$$

On the other hand the Bernstein polynomial $B_{n} P$ of a polynomial P of degree m is itself a polynomial of degree m, if $n \geq m$ (see [6, p. 306]). Then $\left(B_{n} e_{j}\right)^{(i)}(x)=0, x \in[0,1]$ for $n \geq i>j$. By (2.9), we get for $n>j$ that

$$
\begin{equation*}
x^{j}-\left(B_{n} e_{j}\right)(x)=\sum_{i=1}^{j} \frac{1}{i!}\left(r_{n}(x)-x\right)^{i}\left(B_{n} e_{j}\right)^{(i)}(x) . \tag{2.10}
\end{equation*}
$$

It is known that $\lim _{n \rightarrow \infty}\left(B_{n} f\right)^{(i)}(x)=f^{(i)}(x)$, if $x \in[0,1]$ and $f \in C^{i}[0,1]$ (see [6, p. 306, Theorem 2.1]). Thus

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(B_{n} e_{j}\right)^{(i)}(x)=e_{j}^{(i)}(x)=j(j-1) \ldots(j-i+1) x^{j-i} \tag{2.11}
\end{equation*}
$$

where $x \in[0,1]$ and $i \in\{1,2, \ldots, j\}$. Furthermore, in view of b), the sequence $\left(r_{n}(x)\right)_{n \geq 1}$ is convergent for all $x \in[0,1]$: there exists

$$
\begin{equation*}
\lim _{n \rightarrow \infty} r_{n}(x)=r(x), \quad x \in[0,1] \tag{2.12}
\end{equation*}
$$

Combining (2.10)-(2.12), we find that

$$
\begin{aligned}
0 & =\lim _{n \rightarrow \infty}\left(x^{j}-\left(B_{n} e_{j}\right)(x)\right) \\
& =\sum_{i=1}^{j} \frac{1}{i!} \lim _{n \rightarrow \infty}\left(r_{n}(x)-x\right)^{i} \lim _{n \rightarrow \infty}\left(B_{n} e_{j}\right)^{(i)}(x) \\
& =\sum_{i=1}^{j} \frac{1}{i!}(r(x)-x)^{i} j(j-1) \ldots(j-i+1) x^{j-i}=\sum_{i=1}^{j}\binom{j}{i}(r(x)-x)^{i} x^{j-i} \\
& =-x^{j}+\sum_{i=0}^{j}\binom{j}{i}(r(x)-x)^{i} x^{j-i}=-x^{j}+(r(x)-x+x)^{j}=-x^{j}+(r(x))^{j} .
\end{aligned}
$$

Hence $r(x)=x, x \in[0,1]$, thus $\lim _{n \rightarrow \infty} r_{n}(x)=x$.
d) Because $\phi_{n}^{\prime}(y)>0, y \in[0,1]$ (see (2.7)) and $r_{n}(x)=\phi_{n}^{-1}\left(x^{j}\right), x \in[0,1]$ (see (2.8)), it follows that r_{n} is a differentiable function on $[0,1]$. Moreover

$$
\begin{equation*}
r_{n}^{\prime}(x)=\left(\phi_{n}^{-1}\right)^{\prime}\left(x^{j}\right) \cdot\left(x^{j}\right)^{\prime}=\frac{j x^{j-1}}{\left(\phi_{n}^{\prime}\right)^{\prime}\left(r_{n}(x)\right)}=\frac{j x^{j-1}}{\left(B_{n} e_{j}\right)^{\prime}\left(r_{n}(x)\right)}, \quad x \in[0,1], \tag{2.13}
\end{equation*}
$$

because $\phi_{n}\left(r_{n}(x)\right)=x^{j}$.
Remark 2.1. Due to (1.4), we have for all $x \in[0,1]$ that

$$
\left(r_{n}^{*}\right)^{\prime}(x)= \begin{cases}2 x, & \text { if } n=1 \\ \frac{n}{n-1} x\left(\frac{n}{n-1} x^{2}+\frac{1}{4(n-1)^{2}}\right)^{-\frac{1}{2}}, & \text { if } n=2,3, \ldots\end{cases}
$$

The same result can be obtained from (2.13) for $j=2$.
Indeed, by (2.7), (1.2) and (1.4), we have for $x \in[0,1]$ and $n \geq 2$ that

$$
\begin{aligned}
\left(B_{n} e_{2}\right)^{\prime}\left(r_{n}^{*}(x)\right) & =n \sum_{k=0}^{n-1} p_{n-1, k}\left(r_{n}^{*}(x)\right)\left[\left(\frac{k+1}{n}\right)^{2}-\left(\frac{k}{n}\right)^{2}\right] \\
& =\frac{2(n-1)}{n} \sum_{k=0}^{n-1} p_{n-1, k}\left(r_{n}^{*}(x)\right) \frac{k}{n-1}+\frac{1}{n} \sum_{k=0}^{n-1} p_{n-1, k}\left(r_{n}^{*}(x)\right) \\
& =\frac{2(n-1)}{n} r_{n}^{*}(x)+\frac{1}{n} \\
& =\frac{2(n-1)}{n} \sqrt{\frac{n}{n-1} x^{2}+\frac{1}{4(n-1)^{2}}}
\end{aligned}
$$

Hence, by (2.13),

$$
\left(r_{n}^{*}\right)^{\prime}(x)=\frac{2 x}{\left(B_{n} e_{2}\right)^{\prime}\left(r_{n}^{*}(x)\right)}=\frac{n}{n-1} x\left(\frac{n}{n-1} x^{2}+\frac{1}{4(n-1)^{2}}\right)^{-\frac{1}{2}}
$$

3. THE APPROXIMATION PROPERTIES OF U_{n}

The operators $U_{n}: C[0,1] \rightarrow C[0,1]$ given by (1.5) are positive linear and $\left(U_{n} f\right)(0)=f(0)$ and $\left(U_{n} f\right)(1)=1$, because $r_{n}(0)=0$ and $r_{n}(1)=1$. Moreover, by (1.2) and (2.6), we have $U_{n} e_{0}=e_{0}$ and $U_{n} e_{j}=e_{j}$. In the following theorem, we study the convergence $U_{n} f \rightarrow f$ in the uniform norm defined by $\|f\|=\sup \{|f(x)|: x \in[0,1]\}, f \in C[0,1]$.

Theorem 3.3. $\lim _{n \rightarrow \infty}\left\|U_{n} f-f\right\|=0$ for each $f \in C[0,1]$ if and only if $\lim _{n \rightarrow \infty}\left\|r_{n}-e_{1}\right\|=0$, where r_{n} $(n=1,2, \ldots)$ are defined by (2.6).

Proof. Using (1.5), (1.1) and (1.2), we obtain

$$
\begin{equation*}
\left(U_{n} e_{0}\right)(x)=1,\left(U_{n} e_{1}\right)(x)=r_{n}(x),\left(U_{n} e_{2}\right)(x)=\left(r_{n}(x)\right)^{2}+\frac{1}{n} r_{n}(x)\left(1-r_{n}(x)\right) \tag{3.14}
\end{equation*}
$$

Hence

$$
\begin{align*}
\left\|U_{n} e_{0}-e_{0}\right\| & =0 \tag{3.15}\\
\left\|U_{n} e_{1}-e_{1}\right\| & =\left\|r_{n}-e_{1}\right\| \tag{3.16}
\end{align*}
$$

and

$$
\begin{equation*}
\left\|U_{n} e_{2}-e_{2}\right\| \leq\left\|r_{n}^{2}-e_{1}^{2}\right\|+\frac{1}{4 n} \leq 2\left\|r_{n}-e_{1}\right\|+\frac{1}{4 n} \tag{3.17}
\end{equation*}
$$

because $r_{n}(x) \in[0,1]$ for $x \in[0,1]$ (see Theorem 2.1).
On the other hand, the statements a), b) and c) of Theorem 2.2, and Dini's theorem (see e.g. [15, p. 150, 7.13. Theorem]) imply that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|r_{n}-e_{1}\right\|=0 \tag{3.18}
\end{equation*}
$$

Combining (3.15)-(3.18), in view of Korovkin theorem [6, pp. 8-10], we obtain the assertion of our theorem.

The next result contains pointwise and uniform quantitative estimates for $U_{n}(n=1,2, \ldots)$, using the usual modulus of continuity of $f \in C[0,1]$ given by

$$
\omega(f ; \delta)=\sup \{|f(u)-f(v)|: u, v \in[0,1],|u-v|<\delta\}, \delta>0 .
$$

Theorem 3.4. Let $\left(U_{n}\right)_{n \geq 1}$ be the sequence of operators defined by (1.5). Then for every $f \in C[0,1]$, we have
a) $\left|\left(U_{n} f\right)(x)-f(x)\right| \leq 2 \omega\left(f ; \sqrt{\left(r_{n}(x)-x\right)^{2}+\frac{1}{n} r_{n}(x)\left(1-r_{n}(x)\right)}\right), n \geq 1, x \in[0,1]$;
b)

$$
\left|\left(U_{n} f\right)(x)-f(x)\right| \leq \begin{cases}6 \omega\left(f ; \sqrt{\frac{x(1-x)}{n}}\right), & \text { if } j=2 \\ 2(1+\sqrt{C(j)}) \omega\left(f ; \frac{\sqrt{x(1-x)}}{\sqrt[2]{n}}\right), & \text { if } j=3,4, \ldots\end{cases}
$$

where $n \geq j, x \in[0,1]$ and

$$
\begin{equation*}
C(j)=(j-1) \sqrt[j]{\frac{j(j-1)^{2}}{8}}+j \tag{3.19}
\end{equation*}
$$

c)

$$
\left\|U_{n} f-f\right\| \leq \begin{cases}6 \omega\left(f ; \frac{1}{\sqrt{n}}\right), & \text { if } j=2 \\ 2(1+\sqrt{C(j)}) \omega\left(f ; \frac{1}{\sqrt[{2 \sqrt{n}}]{ }}\right), & \text { if } j=3,4, \ldots\end{cases}
$$

where $n \geq j$ and $C(j)$ is defined by (3.19).

Proof. a) For any sequence $\left(L_{n}\right)_{n \geq 1}$ of positive linear operators on $C[a, b]$, it is known [7, p. 30] that for $f \in C[a, b]$ and $x \in[a, b]$, we have

$$
\begin{aligned}
\left|\left(L_{n} f\right)(x)-f(x)\right| & \leq|f(x)| \cdot\left|\left(L_{n} e_{0}\right)(x)-e_{0}(x)\right| \\
& +\omega(f ; \delta)\left[\left(L_{n} e_{0}\right)(x)+\frac{1}{\delta}\left(\left(L_{n} e_{0}\right)(x)\right)^{1 / 2} \cdot\left(\left(L_{n}\left(e_{1}-x e_{0}\right)^{2}\right)(x)\right)^{1 / 2}\right] .
\end{aligned}
$$

In our case $[a, b]=[0,1]$ and $U_{n} e_{0}=e_{0}$ (see (3.14)), thus

$$
\begin{equation*}
\left|\left(U_{n} f\right)(x)-f(x)\right| \leq\left[1+\delta^{-1}\left(\left(U_{n}\left(e_{1}-x e_{0}\right)^{2}\right)(x)\right)^{1 / 2}\right] \omega(f ; \delta) \tag{3.20}
\end{equation*}
$$

But, in view of (3.14), we have

$$
\begin{align*}
\left(U_{n}\left(e_{1}-x e_{0}\right)^{2}\right)(x) & =\left(U_{n} e_{2}\right)(x)-2 x\left(U_{n} e_{1}\right)(x)+x^{2}\left(U_{n} e_{0}\right)(x) \\
& =\left(r_{n}(x)-x\right)^{2}+\frac{1}{n} r_{n}(x)\left(1-r_{n}(x)\right) . \tag{3.21}
\end{align*}
$$

Choosing $\delta=\left(\left(r_{n}(x)-x\right)^{2}+\frac{1}{n} r_{n}(x)\left(1-r_{n}(x)\right)\right)^{1 / 2}$ in (3.20), we get the required estimate.
$b)$ We will prove the following estimates below:

$$
\left(U_{n}\left(e_{1}-x e_{0}\right)^{2}\right)(x) \leq \begin{cases}\frac{4}{n} x(1-x), & \text { if } j=2 \tag{3.22}\\ \frac{C(j)}{\sqrt[3]{n}} x(1-x), & \text { if } j \geq 3\end{cases}
$$

where $x \in[0,1]$ is arbitrary. Hence, by (3.20) and the property $\omega(f ; \lambda \delta) \leq(1+\lambda) \omega(f ; \delta), \lambda>0$, we get for $\delta=\left(\left(U_{n}\left(e_{1}-x e_{0}\right)^{2}\right)(x)\right)^{1 / 2}$ that

$$
\begin{aligned}
\left|\left(U_{n} f\right)(x)-f(x)\right| & \leq 2 \omega\left(f ;\left(\left(U_{n}\left(e_{1}-x e_{0}\right)^{2}\right)(x)\right)^{1 / 2}\right) \\
& \leq \begin{cases}2 \omega\left(f ; 2 \sqrt{\frac{x(1-x)}{n}}\right), & \text { if } j=2 \\
2 \omega\left(f ; \sqrt{C(j)} \frac{\sqrt{x(1-x)}}{\sqrt[21]{n}}\right), & \text { if } j \geq 3\end{cases} \\
& \leq \begin{cases}6 \omega\left(f ; \frac{\sqrt{x(1-x)}}{\sqrt{n}}\right), & \text { if } j=2 \\
2(1+\sqrt{C(j)}) \omega\left(f ; \frac{\sqrt{x(1-x)}}{\sqrt[21]{n}}\right), & \text { if } j \geq 3\end{cases}
\end{aligned}
$$

which was to be proved.
Now let us prove (3.22). Using Theorem 2.2 b), we have for $x \in[0,1]$ that

$$
\begin{equation*}
r_{n}(x)\left(1-r_{n}(x)\right) \leq x\left(1-x^{j}\right)=x(1-x)\left(1+x+\ldots+x^{j-1}\right) \leq j x(1-x) \tag{3.23}
\end{equation*}
$$

For $j=2$, we have in view of [$8, \mathrm{p} .87$, Lemma 1, d)] that $0 \leq x-r_{n}(x) \leq \frac{2}{n}(1-x)$. Hence

$$
\begin{equation*}
\left(x-r_{n}(x)\right)^{2}=\left(x-r_{n}(x)\right)\left(x-r_{n}(x)\right) \leq \frac{2}{n} x(1-x) \tag{3.24}
\end{equation*}
$$

Then (3.21), (3.24) and (3.23) imply $\left(U_{n}\left(e_{1}-x e_{0}\right)^{2}\right)(x) \leq \frac{2}{n} x(1-x)+\frac{2}{n} x(1-x)=\frac{4}{n} x(1-x)$.
Let $j \geq 3$ and $n \geq j$. By Theorem 2.1 and [11, pp. 102-103, Lemma 1 and Lemma 2], the polynomial $\phi_{n}(y) \equiv P_{n, j}(y)=\sum_{k=0}^{n} p_{n, k}(y)\left(\frac{k}{n}\right)^{j}=a_{0} y^{j}+a_{1} y^{j-1}+\ldots+a_{j-1} y$ satisfies the
following conditions:

$$
\begin{aligned}
& P_{n, j}\left(r_{n}(x)\right)=x^{j} ; \\
& a_{0}=\frac{1}{n^{j-1}}(n-1)(n-2) \ldots(n-j+1) ; a_{1}, \ldots, a_{j-1}>0 ; a_{0}+a_{1}+\ldots+a_{j-1}=1 ; \\
& 0 \leq 1-a_{0} \leq \frac{j(j-1)}{2 n} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
0 & \leq x^{j}-\left(r_{n}(x)\right)^{j}=P_{n, j}\left(r_{n}(x)\right)-\left(r_{n}(x)\right)^{j} \\
& =\sum_{k=0}^{j-1} a_{k}\left(r_{n}(x)\right)^{j-k}-\left(r_{n}(x)\right)^{j} \\
& =\left(a_{0}-1\right)\left(r_{n}(x)\right)^{j}+\sum_{k=1}^{j-1} a_{k}\left(r_{n}(x)\right)^{j-k} \\
& =-\sum_{k=1}^{j-1} a_{k}\left(r_{n}(x)\right)^{j}+\sum_{k=1}^{j-1} a_{k}\left(r_{n}(x)\right)^{j-k} \\
& =\sum_{k=1}^{j-1} a_{k}\left(r_{n}(x)\right)^{j-k}\left[1-\left(r_{n}(x)\right)^{k}\right] \\
& =\sum_{k=1}^{j-1} a_{k}\left(r_{n}(x)\right)^{j-k}\left(1-r_{n}(x)\right)\left[1+r_{n}(x)+\ldots+\left(r_{n}(x)\right)^{k-1}\right] \\
& \leq r_{n}(x)\left(1-r_{n}(x)\right) \sum_{k=1}^{j-1} k a_{k} \leq(j-1) r_{n}(x)\left(1-r_{n}(x)\right) \sum_{k=1}^{j-1} a_{k} \\
& =(j-1) r_{n}(x)\left(1-r_{n}(x)\right)\left(1-a_{0}\right) \\
& \leq \frac{j(j-1)^{2}}{2 n} r_{n}(x)\left(1-r_{n}(x)\right) \leq \frac{j(j-1)^{2}}{8 n} .
\end{aligned}
$$

Using $(u-v)^{2 j} \leq\left(u^{j}-v^{j}\right)^{2}, u, v \in[0,1]$ (see [11, p. 103, Lemma 2, (b)]), we find that $(x-$ $\left.r_{n}(x)\right)^{2 j} \leq\left(x^{j}-\left(r_{n}(x)\right)^{j}\right)^{2} \leq\left(\frac{1}{8 n} j(j-1)^{2}\right)^{2}$, i.e.

$$
\begin{equation*}
0 \leq x-r_{n}(x) \leq \sqrt[j]{\frac{1}{8 n} j(j-1)^{2}} \tag{3.25}
\end{equation*}
$$

At the same time, due to Theorem 2.2 b), we obtain
(3.26) $0 \leq x-r_{n}(x) \leq x-x^{j}=x\left(1-x^{j-1}\right)=x(1-x)\left(1+x+\ldots+x^{j-2}\right) \leq(j-1) x(1-x)$.

Hence, in view of (3.21), (3.25), (3.26) and (3.23), we get

$$
\begin{aligned}
\left(U_{n}\left(e_{1}-x e_{0}\right)^{2}\right)(x) & =\left(x-r_{n}(x)\right)\left(x-r_{n}(x)\right)+\frac{1}{n} r_{n}(x)\left(1-r_{n}(x)\right) \\
& \leq \sqrt[j]{\frac{1}{8 n} j(j-1)^{2}}(j-1) x(1-x)+\frac{j}{n} x(1-x) \leq \frac{C(j)}{\sqrt[j]{n}} x(1-x)
\end{aligned}
$$

c) Because $x(1-x) \leq 1$ for $x \in[0,1]$, the estimates formulated in c) follow from the statement of b).

Remark 3.2. By Theorem 2.1, we have $U_{n} f \equiv V_{n} f$ for $j=2$. Then $V_{n} e_{0}=e_{0}$ and $V_{n} e_{2}=e_{2}$, thus, by (3.21), we get $\left(V_{n}\left(e_{1}-x e_{0}\right)^{2}\right)(x)=2 x\left(x-r_{n}^{*}(x)\right)$. Applying Theorem 3.4, we obtain

$$
\begin{aligned}
\left|\left(V_{n} f\right)(x)-f(x)\right| & \leq 2 \omega\left(f ; \sqrt{2 x\left(x-r_{n}^{*}(x)\right)}\right), n \geq 1, x \in[0,1] \\
\left|\left(V_{n} f\right)(x)-f(x)\right| & \leq 6 \omega\left(f ; \sqrt{\frac{x(1-x)}{n}}\right), n \geq 2, x \in[0,1] \\
\left\|V_{n} f-f\right\| & \leq 6 \omega\left(f ; \frac{1}{\sqrt{n}}\right), n \geq 2
\end{aligned}
$$

For the first estimate see [14, p. 206, Theorem 3.1].
Furthermore, we have the following theorem.
Theorem 3.5. Let $U_{n}: C[0,1] \rightarrow C[0,1](n=1,2, \ldots)$ be the operators given by (1.5) with r_{n} defined by (2.6). Then U_{n} cannot be polynomial operator of degree n : there exists $f \in C[0,1]$ such that $U_{n} f \notin \Pi_{n}$.

Proof. Let $n \geq j$ and suppose that $U_{n} f \in \Pi_{n}$ for all $f \in C[0,1]$. Then $U_{n} e_{1}=r_{n} \in \Pi_{n}$ due to (3.14). Furthermore $B_{n} e_{j}$ is a polynomial of degree j, because $n \geq j$, and thus $\left(B_{n} e_{j}\right)(y)=$ $a_{0} y^{j}+a_{1} y^{j-1}+\ldots+a_{j-1} y$, where $a_{0}>0$ (see [11, p. 102, Lemma 1]). Taking into account (2.6), we have

$$
x^{j}=\left(U_{n} e_{j}\right)(x)=\left(B_{n} e_{j}\right)\left(r_{n}(x)\right)=a_{0}\left(r_{n}(x)\right)^{j}+a_{1}\left(r_{n}(x)\right)^{j-1}+\ldots+a_{j-1} r_{n}(x)
$$

In view of $r_{n} \in \Pi_{n}$ and $a_{0}>0$, we find that r_{n} is a first degree polynomial. By Theorem 2.1, we have $r_{n}(0)=0$ and $r_{n}(1)=1$, thus $r_{n}(x)=x, x \in[0,1]$. Hence $\left(U_{n} f\right)(x)=\left(B_{n} f\right)\left(r_{n}(x)\right)=$ $\left(B_{n} f\right)(x), x \in[0,1]$. But $U_{n} e_{j}=e_{j}$ (see (2.6)), therefore $B_{n} e_{j}=e_{j}$ on [0,1], contradiction, because $\left(B_{n} f\right)(x)>f(x), 0<x<1$ for any strictly convex function f on [0,1] (see [6, p. 310, Corollary 4.2]), in particular $B_{n} e_{j}>e_{j}$ on (0,1).

If $1 \leq n<j$ and $U_{n} f \in \Pi_{n}$ for all $f \in C[0,1]$, then $U_{n} e_{j}=e_{j} \in \Pi_{n}$ due to (2.6). Hence $j \leq n$, contradiction.

Finally, we have the following quantitative Voronovskaja type theorem for the operators (1.5). We mention that similar result was established for the Bernstein type operators of Aldaz, Kounchev and Render in [12].

Theorem 3.6. Let $U_{n}(n=1,2, \ldots)$ be given by (1.5). Then
a) $\left|n\left(\left(U_{n} f\right)(x)-f(x)\right)+\left(f^{\prime}(x)-x f^{\prime \prime}(x)\right) n\left(x-r_{n}(x)\right)\right| \leq 2(2+\sqrt{39}) x(1-x) \omega\left(f^{\prime \prime} ; \frac{1}{\sqrt{n}}\right)$ for all $x \in[0,1], f \in C^{2}[0,1]$ and $j=2$, where

$$
0 \leq \liminf _{n \rightarrow \infty} n\left(x-r_{n}(x)\right) \leq \limsup _{n \rightarrow \infty} n\left(x-r_{n}(x)\right) \leq 2
$$

b) $\left.\left\lvert\, \sqrt[j]{n}\left(\left(U_{n} f\right)(x)-f(x)\right)+f^{\prime}(x) \sqrt[j]{n}\left(U_{n}\left(x e_{0}-e_{1}\right)\right)(x)-\frac{1}{2} f^{\prime \prime}(x)\right.\right) \sqrt[j]{n}\left(U_{n}\left(x e_{0}-e_{1}\right)^{2}\right)(x) \mid$ $\leq \sqrt{C(j)}\left(\sqrt{C(j)}+\sqrt{C_{1}(j)}\right) x(1-x) \omega\left(f^{\prime \prime} ; \frac{1}{\sqrt[2]{n}}\right)$
for all $x \in[0,1], f \in C^{2}[0,1]$ and $j \geq 3$, where $C(j)$ is defined by (3.19),

$$
C_{1}(j)=\frac{3}{4} j^{2}+\frac{119}{8} j+\frac{1}{4}(j-1)^{2} \sqrt[j]{\frac{1}{64} j^{2}(j-1)^{4}}
$$

and

$$
0 \leq \liminf _{n \rightarrow \infty} \sqrt[j]{n}\left(U_{n}\left(x e_{0}-e_{1}\right)\right)(x) \leq \limsup _{n \rightarrow \infty} \sqrt[j]{n}\left(U_{n}\left(x e_{0}-e_{1}\right)\right)(x) \leq \sqrt[j]{\frac{1}{8} j(j-1)^{2}}
$$

$$
0 \leq \liminf _{n \rightarrow \infty} \sqrt[j]{n}\left(U_{n}\left(x e_{0}-e_{1}\right)^{2}\right)(x) \leq \limsup _{n \rightarrow \infty} \sqrt[j]{n}\left(U_{n}\left(x e_{0}-e_{1}\right)^{2}\right)(x) \leq \frac{1}{4} C(j)
$$

Proof. For $f \in C^{2}[0,1]$ and $x, t \in[0,1]$, by Taylor's formula, we have

$$
f(t)=f(x)+f^{\prime}(x)(t-x)+\frac{1}{2} f^{\prime \prime}(x)(t-x)^{2}+\int_{x}^{t}\left(f^{\prime \prime}(u)-f^{\prime \prime}(x)\right)(t-u) d u
$$

Hence

$$
\begin{align*}
\left(U_{n} f\right)(x) & =f(x)+f^{\prime}(x)\left(U_{n}\left(e_{1}-x e_{0}\right)\right)(x)+\frac{1}{2} f^{\prime \prime}(x)\left(U_{n}\left(x e_{0}-e_{1}\right)^{2}\right)(x) \\
& +U_{n}\left(\int_{x}^{t}\left(f^{\prime \prime}(u)-f^{\prime \prime}(x)\right)(t-u) d u ; x\right) \tag{3.27}
\end{align*}
$$

Because

$$
\begin{aligned}
& \left|\int_{x}^{t}\left(f^{\prime \prime}(u)-f^{\prime \prime}(x)\right)(t-u) d u\right| \leq\left|\int_{x}^{t}\right| f^{\prime \prime}(u)-f^{\prime \prime}(x)| | t-u|d u| \\
\leq & \left|\int_{x}^{t} \omega\left(f^{\prime \prime} ;|u-x|\right)\right| t-u|d u| \leq\left|\int_{x}^{t}\left(1+\delta^{-1}|u-x|\right) \omega\left(f^{\prime \prime} ; \delta\right)\right| t-u|d u| \\
= & \omega\left(f^{\prime \prime} ; \delta\right)\left|\int_{x}^{t}\left(|t-u|+\delta^{-1}|u-x||t-u|\right) d u\right| \leq \omega\left(f^{\prime \prime} ; \delta\right)\left(|t-x|^{2}+\delta^{-1}|t-x|^{3}\right)
\end{aligned}
$$

where $\delta>0$, we get, by (3.27) and Hölder's inequality that

$$
\begin{align*}
& \left|\left(\left(U_{n} f\right)(x)-f(x)\right)+f^{\prime}(x)\left(U_{n}\left(x e_{0}-e_{1}\right)\right)(x)-\frac{1}{2} f^{\prime \prime}(x)\left(U_{n}\left(e_{1}-x e_{0}\right)^{2}\right)(x)\right| \\
\leq & \omega\left(f^{\prime \prime} ; \delta\right)\left\{\left(U_{n}\left(e_{1}-x e_{0}\right)^{2}\right)(x)+\delta^{-1}\left(U_{n}\left|e_{1}-x e_{0}\right|^{3}\right)(x)\right\} \\
\leq & \omega\left(f^{\prime \prime} ; \delta\right) \\
\times & \left.\times\left(U_{n}\left(e_{1}-x e_{0}\right)^{2}\right)(x)+\delta^{-1}\left[\left(U_{n}\left(e_{1}-x e_{0}\right)^{2}\right)(x)\right]^{1 / 2}\left[\left(U_{n}\left(e_{1}-x e_{0}\right)^{4}\right)(x)\right]^{1 / 2}\right\} . \tag{3.28}
\end{align*}
$$

Using the first four moments of the Bernstein polynomials [6, p. 304], we have

$$
\begin{align*}
& \left(U_{n}\left(e_{1}-x e_{0}\right)^{4}\right)(x)=\sum_{k=0}^{n} p_{n, k}\left(r_{n}(x)\right)\left(\frac{k}{n}-x\right)^{4} \\
= & \sum_{k=0}^{n} p_{n, k}\left(r_{n}(x)\right)\left[\left(\frac{k}{n}-r_{n}(x)\right)+\left(r_{n}(x)-x\right)\right]^{4} \\
= & \sum_{k=0}^{n} p_{n, k}\left(r_{n}(x)\right)\left(\frac{k}{n}-r_{n}(x)\right)^{4}+4\left(r_{n}(x)-x\right) \sum_{k=0}^{n} p_{n, k}\left(r_{n}(x)\right)\left(\frac{k}{n}-r_{n}(x)\right)^{3} \\
+ & 6\left(r_{n}(x)-x\right)^{2} \sum_{k=0}^{n} p_{n, k}\left(r_{n}(x)\right)\left(\frac{k}{n}-r_{n}(x)\right)^{2} \\
+ & 4\left(r_{n}(x)-x\right)^{3} \sum_{k=0}^{n} p_{n, k}\left(r_{n}(x)\right)\left(\frac{k}{n}-r_{n}(x)\right)+\left(r_{n}(x)-x\right)^{4} \\
= & \frac{3}{n^{2}}\left(r_{n}(x)\right)^{2}\left(1-r_{n}(x)\right)^{2}+\frac{1}{n^{3}}\left[r_{n}(x)\left(1-r_{n}(x)\right)-6\left(r_{n}(x)\right)^{2}\left(1-r_{n}(x)\right)^{2}\right] \\
+ & 4\left(r_{n}(x)-x\right) \frac{1}{n^{2}}\left(1-2 r_{n}(x)\right) r_{n}(x)\left(1-r_{n}(x)\right)+6\left(r_{n}(x)-x\right)^{2} \frac{1}{n} r_{n}(x)\left(1-r_{n}(x)\right) \tag{3.29}\\
+ & \left(r_{n}(x)-x\right)^{4} .
\end{align*}
$$

a) If $j=2$, then $r_{n}(x)\left(1-r_{n}(x)\right) \leq 2 x(1-x), x \in[0,1]$, due to (3.23). Hence, by (3.29) and (3.24),

$$
\begin{align*}
& \left(U_{n}\left(e_{1}-x e_{0}\right)^{4}\right)(x) \\
\leq & \frac{12}{n^{2}} x^{2}(1-x)^{2}+\frac{2}{n^{2}} x(1-x)\left(1+6 r_{n}(x)\left(1-r_{n}(x)\right)\right. \\
+ & \frac{8}{n^{2}} x(1-x)\left(x-r_{n}(x)\right)\left(1+2 r_{n}(x)\right)+\frac{12}{n} x(1-x)\left(x-r_{n}(x)\right)^{2}+\left(x-r_{n}(x)\right)^{4} \\
\leq & \frac{3}{n^{2}} x(1-x)+\frac{2}{n^{2}}\left(1+\frac{3}{2}\right) x(1-x) \\
+ & \frac{24}{n^{2}} x(1-x)+\frac{12}{n} x(1-x) \frac{2}{n} \frac{1}{4}+\frac{4}{n^{2}} x(1-x) \frac{1}{4} \\
= & \frac{39}{n^{2}} x(1-x) . \tag{3.30}
\end{align*}
$$

Then (3.28), (3.22) and (3.30) imply that

$$
\begin{aligned}
& \left|n\left(\left(U_{n} f\right)(x)-f(x)\right)+f^{\prime}(x) n\left(U_{n}\left(x e_{0}-e_{1}\right)\right)(x)-\frac{1}{2} f^{\prime \prime}(x) n\left(U_{n}\left(e_{1}-x e_{0}\right)^{2}\right)(x)\right| \\
\leq & \omega\left(f^{\prime \prime} ; \delta\right)\left\{4 x(1-x)+\delta^{-1} \frac{2 \sqrt{39}}{\sqrt{n}} x(1-x)\right\} .
\end{aligned}
$$

Choosing $\delta=\frac{1}{\sqrt{n}}$, and taking into account that $\left(U_{n}\left(x e_{0}-e_{1}\right)\right)(x)=x-r_{n}(x)$ and $\left(U_{n}\left(e_{1}-\right.\right.$ $\left.\left.x e_{0}\right)^{2}\right)(x)=2 x\left(x-r_{n}(x)\right)$, we obtain the desired estimate.

Furthermore, in view of [8, p. 87, Lemma 1, d)], we have $0 \leq x-r_{n}(x) \leq \frac{2}{n}(1-x) \leq \frac{2}{n}$, $x \in[0,1]$, thus $0 \leq \liminf _{n \rightarrow \infty} n\left(x-r_{n}(x)\right) \leq \limsup _{n \rightarrow \infty} n\left(x-r_{n}(x)\right) \leq 2$.
b) If $j \geq 3$, then (3.29), (3.23), (3.25) and (3.26) imply that

$$
\begin{align*}
& \left(U_{n}\left(e_{1}-x e_{0}\right)^{4}\right)(x) \\
\leq & \frac{3}{n^{2}} j^{2} x^{2}(1-x)^{2}+\frac{1}{n^{3}} j x(1-x)\left(1+6 r_{n}(x)\left(1-r_{n}(x)\right)\right. \\
+ & \frac{4}{n^{2}} j x(1-x)\left(x-r_{n}(x)\right)\left(1+2 r_{n}(x)\right)+\frac{6}{n} j x(1-x)\left(x-r_{n}(x)\right)^{2}+\left(x-r_{n}(x)\right)^{4} \\
\leq & \frac{3 j^{2}}{4 n^{2}} x(1-x)+\frac{5 j}{2 n^{3}} x(1-x) \\
+ & \frac{12 j}{n^{2}} x(1-x)+\frac{3 j}{8 n}(j-1)^{2} x(1-x)+\sqrt[j]{\frac{1}{64 n^{2}} j^{2}(j-1)^{4}}(j-1)^{2} \frac{1}{4} x(1-x) \\
\leq & \frac{1}{\sqrt[j]{n^{2}}} x(1-x)\left\{\frac{3}{4} j^{2}+\frac{119}{8} j+\frac{1}{4}(j-1)^{2} \sqrt[j]{\frac{1}{64} j^{2}(j-1)^{4}}\right\}=\frac{C_{1}(j)}{\sqrt[j]{n^{2}}} x(1-x) . \tag{3.31}
\end{align*}
$$

Using (3.28), (3.22) and (3.31), we get

$$
\begin{aligned}
&\left.\left\lvert\, \sqrt[j]{n}\left(\left(U_{n} f\right)(x)-f(x)\right)+f^{\prime}(x) \sqrt[j]{n}\left(U_{n}\left(x e_{0}-e_{1}\right)\right)(x)-\frac{1}{2} f^{\prime \prime}(x)\right.\right) \sqrt[j]{n}\left(U_{n}\left(e_{1}-x e_{0}\right)^{2}\right)(x) \mid \\
& \leq \omega\left(f^{\prime \prime} ; \delta\right)\left\{C(j) x(1-x)+\delta^{-1} \frac{\sqrt{C(j)}}{\sqrt[2 j]{n}} \sqrt{C_{1}(j)} x(1-x)\right\}
\end{aligned}
$$

Choosing $\delta=\frac{1}{\sqrt[2]{n}}$, we obtain the desired estimate.

Finally, by (3.25) and (3.22), we get

$$
0 \leq \liminf _{n \rightarrow \infty} \sqrt[j]{n}\left(U_{n}\left(x e_{0}-e_{1}\right)\right)(x) \leq \limsup _{n \rightarrow \infty} \sqrt[j]{n}\left(U_{n}\left(x e_{0}-e_{1}\right)\right)(x) \leq \sqrt[j]{\frac{1}{8} j(j-1)^{2}}
$$

and

$$
0 \leq \liminf _{n \rightarrow \infty} \sqrt[j]{n}\left(U_{n}\left(x e_{0}-e_{1}\right)^{2}\right)(x) \leq \limsup _{n \rightarrow \infty} \sqrt[j]{n}\left(U_{n}\left(x e_{0}-e_{1}\right)^{2}\right)(x) \leq \frac{1}{4} C(j)
$$

which completes the proof of the theorem.

REFERENCES

[1] T. Acar, M. C. Montano, P. Garrancho and V. Leonessa: On sequences of J. P. King-type operators, J. Funct. Spaces, 2019 (2019), Article ID 2329060, 12 pages.
[2] A. M. Acu, H. Gonska and M. Heilmann: Remarks on a Bernstein-type operator of Aldaz, Kounchev and Render, J. Numer. Anal. Approx. Theory, 50 (2001), 3-11.
[3] J. M. Aldaz, O. Kounchev and H. Render: Shape preserving properties of generalized Bernstein operators on extended Chebyshev spaces, Numer. Math., 114 (2009), 1-25.
[4] M. Birou: A proof of a conjecture about the asymptotic formula of a Bernstein type operator, Results Math., 72 (2017), 1129-1138.
[5] D. Cárdenas-Morales, P. Garrancho and I. Raşa: Asymptotic Formulae via a Korovkin-Type Result, Abstr. Appl. Anal., 2012 (2012), Article 217464, 12 pages.
[6] R. A. DeVore and G. G. Lorentz: Constructive Approximation, Springer, Berlin (1993).
[7] R. A. DeVore: The Approximation of Continuous Functions by Positive Linear Operators, Lecture Notes in Mathematics, 293, Springer, New York, (1972).
[8] Z. Finta: Direct and converse theorems for King operators, Acta Univ. Sapientiae, 12 (1) (2020), 85-96.
[9] Z. Finta: Estimates for Bernstein type operators, Math. Inequal. Appl., 15 (1) (2012), 127-135.
[10] Z. Finta: Bernstein type operators having 1 and x^{j} as fixed points, Centr.Eur. J. Math., 11 (12) (2013), 2257-2261.
[11] Z. Finta: New properties of King's operators, Positivity, 17 (1) (2013), 101-109.
[12] Z. Finta: A quantitative variant of Voronovskaja's theorem for King-type operators, Constr. Math. Anal., 2 (3) (2019), 124-129.
[13] I. Gavrea and M. Ivan: Complete asymptotic expansions related to conjecture on a Voronovskaja-type theorem, J. Math. Anal. Appl., 458 (2018), 452-463.
[14] J. P. King: Positive linear operators which preserve x^{2}, Acta Math. Hungar., 99 (3) (2003), 203-208.
[15] W. Rudin: Principles of Mathematical Analysis, Third Edition, McGraw-Hill, New York (1976).

Zoltán Finta

Babeş-Bolyai University
Department of Mathematics
1, M. KogĂlniceanu st., 400084 Cluj-Napoca, Romania
ORCID: 0000-0003-2104-3483
E-mail address: fzoltan@math.ubbcluj.ro

