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ABSTRACT
Aim: Machine learning tools have various applications in healthcare. However, the implementation of developed models is still 
limited because of various challenges. One of the most important problems is the lack of explainability of machine learning 
models. Explainability refers to the capacity to reveal the reasoning and logic behind the decisions made by AI systems, making 
it straightforward for human users to understand the process and how the system arrived at a specific outcome. The study 
aimed to compare the performance of different model-agnostic explanation methods using two different ML models created 
for HbA1c classification.
Material and Method: The H2O AutoML engine was used for the development of two ML models (Gradient boosting machine 
(GBM) and default random forests (DRF)) using 3,036 records from NHANES open data set. Both global and local model-
agnostic explanation methods, including performance metrics, feature important analysis and Partial dependence, Breakdown 
and Shapley additive explanation plots were utilized for the developed models. 
Results: While both GBM and DRF models have similar performance metrics, such as mean per class error and area under 
the receiver operating characteristic curve, they had slightly different variable importance. Local explainability methods also 
showed different contributions to the features. 
Conclusion: This study evaluated the significance of explainable machine learning techniques for comprehending complicated 
models and their role in incorporating AI in healthcare. The results indicate that although there are limitations to current 
explainability methods, particularly for clinical use, both global and local explanation models offer a glimpse into evaluating 
the model and can be used to enhance or compare models.
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INTRODUCTION
In healthcare, machine-learning (ML) models are used 
for various tasks, such as image and signal analysis, 
disease diagnosis, treatment planning, and drug 
discovery (1). The use of ML models to improve patient 
care is a novel approach, but its implementation in 
clinical practice is still limited (2). 

Explainability can be defined as the capability of making 
the decision-making process of AI systems transparent 
and understandable for human users, it includes how 
the decision was reached and how the system arrived at 
a particular conclusion (3). It is one of the most important 
limitations, and it has long been a question of great interest 
in a wide range of fields, including medicine (4). More 
recently, there has been growing number of publications 
that focus on explainable artificial intelligence (xAI) (5). 

The debate continues regarding the best strategies for the 
appropriate application of explainability tools. To date, 
there has been little agreement about what constitutes 

sufficient explainability and xAI suffers from insufficient 
application, and limited studies have investigated whether 
xAI contributes to ML model use in medicine(4,6). Model-
agnostic explainability techniques refers to methods or 
techniques that can be applied to any model, regardless of 
its architecture or learning algorithm, and these methods 
can be further categorized into local and global methods. 
While global interpretability focuses on understanding 
the overall functioning and decision-making processes of 
a model, local interpretability focuses on understanding 
the reasoning behind individual predictions made by the 
model (5,7).

Diabetes mellitus is a chronic medical condition 
characterized by high blood sugar levels resulting from 
defects in insulin production, insulin action, or both. 
Monitoring HbA1c levels is critical for managing diabetes 
and preventing complications such as kidney damage, 
nerve damage, and cardiovascular disease (8). The aim 
of this study is to develop an ML model that utilizes 
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routine laboratory and clinical data for hemoglobin 
A1c prediction and investigate the effectiveness of 
cutting-edge global and local explainability tools that 
are used for prediction explanations by comparing 
different models. To achieve this goal, two different ML 
algorithms were developed and applied to both local and 
global explainability model predictions.

MATERIAL AND METHOD
Data Source and HbA1c Classification
All procedures were carried out in accordance with the 
ethical rules and the principles of the Declaration of Helsinki. 
Open data sets were utilized for the study. Therefore, ethics 
committee approval was not obtained. The National Health 
and Nutrition Examination Survey data sets between 
2014–2017 were used (9). Only records of adults aged 18 
years and older were included in the study. Twenty-eight 
parameters, including clinical laboratory results and clinical 

information, were selected for ML model development. 
Regarding prediction, quantitative hemoglobin A1c (A1c) 
results were split into the following three classes according 
to the criteria recommended by the American Diabetes 
Association: normal (<5.7%), prediabetes (5.7%–6.4%), 
and diabetes (>6.4%) (10). The descriptive statistics of the 
included parameters are given in Table 1. 

Machine-Learning Model Development
Pre-process, data cleaning, and generation of training and 
test sets: Data preparation, the creation of ML models, and 
statistical analyses were all completed using R statistical 
software version 4.2 (11). The model explanations 
were carried out using the H2O and DALEX packages 
(12,13). The data set was composed of 3,036 records that 
contained all selected parameters. Therefore, there were 
no missing values in the data set. The data were split into 
training (70%, n=2,114) and test sets (30%, n=912) using 
stratification according to A1c, age, and sex. 

Table 1. Clinical laboratory results and demographic features of the study population and feature importance for the developed models

Parameter n (%) Min Max Mean (SD) Median (IQR)
Feature Importance1

ML Model
DRF GBM

Age 18 80 44.7 (17.8) 41 (30) 0.36* 0.15*
ACR, Urine, mg/g 0.94 7980 39.1 (257) 6.54 (8.07) 0.07 0.01
Albumin, g/L 21 54 42.1 (3.59) 42 (5) 0.08 0.01
ALP, U/L 23 347 71.9 (24) 69 (26) 0.06 0.01
ALT, U/L 3 181 25 (16.5) 21 (14) 0.06 0.02
AST, U/L 8 289 24 (13.4) 21 (8) 0.04 0.01
BMI kg/m2 15.5 65.3 29.1 (6.9) 28 (8.5) 0.10 0.02
BUN, mg/dL 2 79 14.4 (5.63) 14 (6) 0.07 0.00
Calcium, mg/dL 7.8 10.5 9.27 (0.329) 9.3 (0.5) 0.06 0.00
Cholesterol, mg/dL 76 433 182 (39.6) 178 (52) 0.09 0.03
Creatinine, mg/dL 0.3 6.73 0.91 (0.29) 0.88 (0.29) 0.08 0.01
Glucose, mg/dL 19 434 104 (34.9) 95 (17) 0.99* 0.98*
HDL-C, mg/dL 6 151 51.6 (15.2) 49 (19) 0.08 0.01
Hemoglobin g/dL 6.3 19 14.5 (1.55) 14.6 (2) 0.09 0.02
Lymphocyte, % 7 94.5 31.2 (8.64) 30.7 (11.5) 0.07 0.01
MCV, fL 51.6 114 88.6 (6.19) 89.1 (6.6) 0.09 0.05*
Neutrophil, % 3.6 85.8 56.7 (9.37) 57 (12.5) 0.09 0.03
Platelet, 103 cells/µL 14 662 232 (61.7) 225 (75) 0.08 0.02
RBC, 10⁶cells/µL 2.52 6.82 4.9 (0.50) 4.9 (0.66) 0.07 0.01
Bilirubin, mg/dL 0 2.8 0.57 (0.309) 0.5 (0.3) 0.07 0.02
Total Protein g/L 56 90 71.9 (4.25) 72 (6) 0.07 0.01
Triglyceride, mg/dL 10 2140 109 (88.5) 89 (76.2) 0.09 0.02
Uric acid, mg/dL 1.8 18 5.69 (1.47) 5.6 (2) 0.08 0.01
Waist Circ., cm 63.2 170 99.9 (17.2) 98.4 (22.5) 0.14* 0.02
WBC, 103 cells/µL 2.5 117 6.88 (2.85) 6.6 (2.4) 0.07 0.01
Sex 0.03 0.00

Male 2201 (72.5%)      
Female 835 (27.5%)      

HbA1c Class
Normal 1898 (62.5%)
Prediabetes 788 (26.0%)
DM 350 (11.5%)          

ACR: Albumin creatinine ratio, Circ: Circumference, DRF: Distributed Random Forest, GBM: Gradient Boosting Machine, IQR: Interquartile range, SD: Standard deviation, 1 
Scaled Importance, * Top three features
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To identify the important features for developing 
a ML model, the study utilized the Boruta feature 
selection algorithm. This algorithm generated a shadow 
feature for each attribute by shuffling the values of the 
original attributes across properties. The importance 
of the features was then categorized into three classes: 
“discard” (red), “speculative” (blue), tentative (yellow) 
and “keep” (green) to identify the significant features 
(14). According to the Boruta analysis results Monocyte 
% parameter was excluded for ML development. 
Details of Boruta analysis were given in supplementary 
material. 

Utilization of the AutoML tool: In the study, ML 
models were developed using the H2O AutoML engine. 
H2O is an open source, distributed ML platform that 
can perform all ML model development steps, including 
data processing, feature engineering, model building, 
hyperparameter optimization, and performance 
evaluation. The H2O engine was utilized to develop ML 
models for the multinomial (multiclass) classification 
of A1c. Gradient boosting machine (GBM) and 
default random forests (DRF) models were selected as 
candidate algorithms. All model development-related 
steps were performed by the AutoML tool using the 
training data set. Because of the unequal distribution of 
A1c classes, the “balance_classes” option was used. This 
feature could be utilized to equalize the distribution 
of classes in a dataset. When activated the majority 
classes are either undersampled or the minority classes 
are oversampled. The resulting model will correct 
the final probabilities using a monotonic transform 
(12). Further, during the model development phase, 
hyperparameters optimization was performed using 
k‑fold cross-validation (k=10). Finally, multiple models 
that were developed by the AutoML tool were evaluated 
using an automatically split leaderboard data set, and 
the winning tuned models were determined. In the 
study, the best models were used for the explainability 
method comparison. 

Model explainability comparison: Model agnostic 
explainability methods were applied to the developed 
ML models. Both global and local explainability 
approaches were used to compare the effectiveness of 
the explainability methods for the DRF and GBM ML 
models. 

Global exploration: Global methods are useful for 
understanding the overall patterns and behaviors of a 
ML model. They provide an average understanding of 
the model’s performance. These types of methods are 
particularly helpful when the person building the model 
wants to gain a general understanding of how the model 
works or troubleshoot any issues with the model. In the 
context of the study, the following global explorations 

were performed to compare the internal reasoning of 
two ML models:

a. Performance metrics: (i) The mean per class error is 
the average of the errors of each class in multinominal 
models. It represents the misclassification of the data 
across the classes, and lower metrics indicate a better 
performance. (ii) The area under the receiver operating 
characteristic curve (AUC) is a metric that evaluates the 
model’s performance for distinguishing true positives 
and negatives and is normally used for binominal 
classification problems. However, it is also possible 
to calculate the AUC for multinominal models using 
different approaches. In the study, the method that was 
suggested by Till was used to calculate the AUC (15). 
Because of the imbalanced classes, the one vs. one 
calculation method was used for the AUC calculation 
(iii) The area under the precision recall curve (AUCPR) 
is important and is not affected by the true negatives. 
Therefore, it is preferred for imbalanced data sets 
(15). When dealing with imbalanced data, many true 
negatives often make it difficult to see the impact of 
changes in other metrics, such as false positives. AUCPR 
is more responsive to changes in true positives, false 
positives, and false negatives than the AUC, making it a 
better choice for evaluating highly imbalanced data sets 
(12).

b. Variable importance (VIP): Variable importance is 
the measurement of how much each feature contributes 
to the ML model’s predictions. This method ranks the 
features based on their relative importance to the model. 
Therefore, VIP can give a broad overview of the model’s 
characteristics. There are several methods to measure 
variable importance, such as permutation importance 
and importance based on Shapley additive explanations 
(SHAP) values (16, 17). In the study, VIP values were 
calculated for all parameters. The significance of each 
variable is determined by evaluating the relative impact 
of the variable in the tree-building process based on its 
frequency of being chosen as a splitting point and the 
decrease in squared errors across all trees (12).

c. Partial dependence profiles (PDPs): PDPs provide 
visual feedback for the interpretation of any black box 
model by showing the influence of different features 
or feature subsets. It also shows the marginal effect of 
a variable for the average prediction (5). The impact of 
a variable can be determined by observing the change 
in the average response (12). PDPs do not take into 
consideration all possible feature interactions. Therefore, 
they can provide limited accurate information about 
the model. Despite this, they frequently provide helpful 
information, which substantially aids in understanding 
black box models, particularly when most of these 
interactions are low. They can be used for improving 
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ML models, comparing different models, and evaluating 
model performance (5). PDP plots were created for the 
four most important parameters (glucose, age, waist 
circumference, and mean corpuscular volume (MCV) 
to investigate and compare the prediction patterns of 
the two models.

Local exploration (single row prediction): In contrast 
to global exploration, local exploration methods assist 
in comprehending how a model generates a prediction 
for an individual data point. In the study, cases with 
the highest model prediction score and incorrect 
predictions were selected for local exploration. The 
following local explorations were used:

a. Breakdown plots for additive attributions: 
Breakdown explainability is a method for understanding 
the contribution of each feature to a specific prediction 
made by a ML model. It breaks down the prediction into 
the contributions of individual features and shows how 
each feature contributes to the final prediction. This type 
of explainability is particularly useful for understanding 
how a model arrived at a specific prediction and can 
help identify any biases or errors in the model (5, 18).

b. SHAP: This method assigns a unique importance 
value to each feature, indicating the contribution of 
that feature toward the model’s output for a particular 
prediction. It is based on the game theory and aims to 
improve interpretability by calculating the significance 
of each feature for individual predictions. The objective 
of SHAP is to clarify the prediction of a specific data 
point x by calculating the impact of each feature on the 
prediction. The method utilizes certain visualization 
techniques to display how the predictors affect the 
predicted values. It also allows for the identification 
of feature interactions and provides global and local 
explanations (17, 18).

RESULTS
The demographic features of patients and clinical 
laboratory result summaries are given in Table 1. As 
shown in this table, the records had wide spectrum of 
laboratory results. Additionally, there was a distinctive 
class imbalance between A1c classes and sex. 

Table 2 summarizes the prediction errors for DRF and 
GBM models. There was no misclassification for the DRF 
ML model on the training set. However, prediabetes and 
diabetes prediction error rates were lower for the GBM 
model on the test set. 

Table 3 provides the performance metrics for both 
models. When the performance metrics were evaluated, 
both models had similar AUC and AUCPR metrics. 
However, DRF had a lower mean per class error for the 
test set, while DRF was lower for the test set. 

In Figure 1, PDF plots were given for the top important 
features for both models, which provides information 
related to all data sets. Figures 2 and 3 show the 
breakdown and SHAP plots, respectively, for four 
selected test set records. These plots cover three correct 
classifications and one misclassification for the DRF 
model. All model details, including the hyperparameters, 
are provided in the Supplementary Material. 

DISCUSSION
The study aimed to compare the performance of 
different model-agnostic explanation methods using 
two different ML models created for A1c prediction. 
The results showed that model explanation methods 
provide important contributions for both evaluating 
models internally and comparing different models. 
Moreover, it was found that using a combination of 
local and global explanation models is more effective for 
explaining and comparing models than using a single 

Table 2. Multinominal classification confusion matrix for the developed ML models

Model Class
Training Set Test Set

Normal PreD. DM Error Normal PreD. DM Error
DRF Normal 1329 0 0 0.0% 548 21 0 3.6%

PreD 0 551 0 0.0% 178 52 7 78%
DM 0 0 244 0.0% 36 17 53 5%

GBM Normal 1259 67 3 5.3% 518 50 1 8.9%
PreD 187 356 8 35.4% 117 101 19 57%

  DM 6 18 220 9.9% 5 23 78 26%
DRF: Distributed Random Forest, GBM: Gradient Boosting Machine, PreD: Prediabetes

Table 3. Calculated performance metrics for the developed ML models
Model Data Set Mean per Class Error AUC AUC Precision Recall Accuracy Macro F1
DRF Training 0.00 1.00 1.00 1.00 1.00

Test 0.44 0.85 0.84 0.72 0.63
GBM Training 0.17 0.96 0.96 0.86 0.85
  Test 0.31 0.88 0.86 0.76 0.71
AUC: Area under curve, DRF: Distributed Random Forest, GBM: Gradient Boosting Machine



121

Topçu D. Explainability of a HbA1c classification modelJ Med Palliat Care 2023; 4(2): 117-125

explanation model. However, there are some limitations 
related to these tools, such as limited interpretability and 
the required computation power. Although these tools 
helped the end user (e.g., clinicians) to understand some 
predictions, they only provided a general idea. 

The first finding that model explanation techniques 
contribute to prediction explanations is supported by the 
conclusions derived from PDP plots. When examining 
the PDP graphics in Figure 2, the relationship between 
glucose levels and A1c is clearly visible. The known 
relationship between glucose and A1c is that estimated 
average glucose (eAG)= 28.7×A1c(%)– 46.7 can be easily 
observed with both models (19). In both the DRF and 
GDM models, the predictions for A1c quickly change 

Figure 1. Partial dependence plots for the four most important features of the DRF and GMB models. 
The Partial dependence lines for normal prediction classes are green, pre-diabetes prediction classes are blue, diabetes mellitus prediction classes 
are yellow, and ceteris-paribus profiles are gray lines.
DRF: Distributed Random Forest, GBM: Gradient Boosting Machine.

according to the blood glucose levels. The effect of age 
can also be seen in a similar way in these plots. It has 
also been mentioned in the literature that PDP graphics 
can be easily interpreted by field experts because they 
provide explanation by simplification (3). Another use 
of PDP is to compare the effect of features for different 
models, as shown in Figure 2. The effect of waist 
circumference, which is more meaningful for the DRF 
model, can be observed in Figure 2. Relation between 
DM and waist circumference was also reported by Feller 
et al. (20). However, when it comes to the interaction 
between multiple parameters, the power of these 
graphics decreases. The assumption of independence is 
the biggest issue with PDP (5). 
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Local explanation techniques explain specific predictions, 
which provide details about the inner workings of the 
model instead of using all model data. Therefore, they 
can be also used for understanding the model’s decision-
making process. Breakdown plots in Figure 2b precisely 
show each feature’s contribution to the final prediction. 
The relationship between serum glucose and age, which 
can also be observed by global methods, on normal, 
prediabetes, and diabetes predictions are clearly shown 
case by case. Especially for unexpected predictions, local 
explanation methods reveal the cause of the model’s 
failed reasoning, which makes it possible to improve 

the model (18). For example, Figure 2d shows that an 
individual with a diabetic A1c level has been incorrectly 
classified as normal. This situation can be caused by 
majority case drift caused by the number of records with 
normal A1c levels during the development of the model, 
which presents a 0.716 intercept score in Figure 2. When 
detecting the issue, different data pre-processes could be 
considered for imbalanced data to improve the model. 
SHAP plots also allow for the identification of feature 
interactions and provide global and local explanations. 
SHAP values can also be used for variable importance by 
calculating them for the entire dataset (21).

Figure 2. Breakdown plots for additive attributions of Distributed Random Forest model for the test set.
The green and red bars indicate positive and negative changes in the mean predictions, respectively. The blue bar shows the prediction for the 
instance of interest.
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Another important finding was for the DRF ML model, 
while there was no classification error for the training 
set, there were classification errors in the test set as 
expected (Table 2). Moreover, the training set had 
better performance metrics compared to test set (Table 
3). These results suggest overfitting for the DRF model. 
Therefore, limiting the depth of individual trees, 
increasing the number of trees in the forest, and using 
techniques such as bagging and feature subsetting can 
help to prevent overfitting (12). Additionally, in both 
data sets classification between normal and prediabetic 
patients was more distinctive than prediabetic and 

Figure 3. Plots of Distributed Random Forest model Shapley values for the test set.
Red and green bars present negative and positive Shapley values, respectively.

diabetic classification (Table 2). Interestingly this 
finding was similar with clinical setting and this 
distinction is considered as challenging. Prediabetes 
is a condition that exists on a continuum between 
normal blood glucose levels and diabetes. And is 
characterized by higher-than-normal blood glucose 
levels but not high enough to be classified as diabetes. 
The borderline nature of prediabetes means that there 
can be significant overlap between normal and pre-
diabetic patients in terms of their blood glucose levels, 
making it challenging to accurately separate the two 
groups (8, 19). 
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In the study, model-agnostic methods were applied 
for xAI. Model-agnostic explanations are considered 
consistent across different models, which means they 
can be easily used for multiple model comparisons. 
Additionally, their model-independent nature provides 
developers with more options for selecting models 
during development. An alternative to model-agnostic 
interpretation is using only interpretable models, but 
this may result in reduced performance and limits the 
choice of models that can be used (5).

Different methods have been proposed to assess and 
quantify the quality of explanations generated by xAI 
systems, as shown in this study. Nonetheless, there is 
currently no widely accepted standard for determining 
whether an xAI system is more understandable to a 
user than a non-xAI system. Some methods rely on 
subjective evaluations such as surveys to gauge user 
satisfaction with the explanations. Other methods 
are more objective, such as determining whether the 
explanations improve the user’s decision-making 
performance (4). Instead of providing specific, valid 
justifications for a model’s predictions, it is more 
accurate to view explainability techniques as overall 
explanations of how a model operates (3). As in the 
current study, these tools are still far from interpreting 
results in a clinical context.

This research has several limitations. First, the use of 
glucose for A1c prediction can be considered a bias. 
However, the glucose parameter was specifically selected 
for the demonstration of local and global explanations 
of strong and weak features. Second, preprocessing 
for imbalance classes for both diabetes classes and 
sex could also increase model effectiveness. However, 
since the aim of the study is not to create models with 
the best performance but to evaluate the effectiveness 
of explanation tools, simpler methods were preferred 
while creating models. Additionally, during training, 
the “imbalanced_classes” option was activated in the 
AutoML tool. The final limitation refers to the included 
ML model types, as only tree-based models were 
included in the study. However, using different models 
such as deep learning can provide different perspectives 
for model explainability.

CONCLUSION
The current study assessed the importance of transparent 
ML methods in understanding complex models and 
how it promotes the integration of AI in healthcare. 
Results showed that despite the limitations of current 
explainability methods, especially for the clinical 
approach, both global and local explanation models 
provide an insight into model evaluation, and they can 
be used to improve or compare models.
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