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Abstract 

In this study, hardfacings were obtained by using with submerged arc welding powders including different high carbon 

ferrochromium (4-16 wt.%) and currents from 400 A to 550 A. In order to determine the optimal process parameters in 

hardfacings, we presented two neural network based predictions with ANN algorithm for chromium and carbon percentages, 

secondary dendrite arms spacing, cooling rates, macrohardness, and wear loss. The results of ANN performance were 

presented at two sets of FeCr (wt.%) and net heat inputs in detail. Similarly, two ANN architectures were preferred to obtain 

the most accurate results. The performance evaluations of the networks were carried out by using Root Mean Squared Error 

(RMSE), Mean Absolute Error (MAE), and the Coefficient of Correlation, R2, for all models. The models having architecture of 

2-15-3 and 2-23-4 were found to be optimal after these criteria. The results showed that the ANNs which helped to decrease 

number of experimental tests had an acceptable degree of accuracy and great reliability. 

Keywords: Submerged arc welding; Hardfacing; High carbon ferrochromium; Prediction; ANN algorithm. 

 

1. Introduction  

Submerged arc welding (SAW) is an arc welding 

method in which an arc creates heat energy 

required for welding between consumed electrode 

and work piece. The arc region is occurred between 

welding powder layer, welding bead, and base 

metal. Among the welding techniques, submerged 

arc welding has many advantages such as high 

melting rate, a mechanised system, a smooth weld 

metal, very low smoke, high welding rate, low 

distortion rate, high penetration ability and powder 

reusability. On the other hand, limited use of 

electrodes and powders, only suitability for flat and 

cylindrical parts and applicable only to the thick 

parts due to the high heat input are disadvantages 

of the submerged arc welding method [1]. 

In submerged arc welding, hardfacings are obtained 

by a combination of powder and wire electrodes. 

During the submerged arc welding process, alloying 

elements in powders or alloyed electrodes or both 

melt to form hardfacing. Alloyed submerged 

welding powders partially melt and pass in weld 

metal with unalloyed electrodes and base metal as 

is in this study. Thus, mechanical properties and  

chemical composition are improved with alloying 

elements in hardfacings [2,3].  

Because of many parameters and tests, researchers 

have focused on mathematical modelling by using 

various methods and computer based programs in 

order to decrease numbers of repeated 

experimental tests. Therefore, among the studies 

including mathematical modelling and prediction of 

process parameters in submerged arc welding, 

Kumanan et al., (2007) examined submerged arc 

welding process with the help of Taguchi technique 

and regression analysis technique [4]. All factors 

affecting the welding process were determined by 

using ANOVA technique as a percentage. As a result 

of the study, it was stated that the prediction of the 

welding bead geometry was calculated by using 

multi-regression technique without any test.  In a 

study conducted by Lu et al., (2014) they 

investigated to decrease the heat input for the same 

deposition rate in submerged arc welding process 

made with two electrodes [5].  For this purpose, 

they utilised the joint gap. However, they observed 

that the heat input and current variables also 

affected the system. Therefore, they stated that the 

results were achieved to develop with an algorithm 

including all process parameters. Similarly, Ghosh 

and Hlock, (2013) aimed to form a mathematical 

model including welding bead geometry, 
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mechanical properties, and heat affected zone 

(HAZ) distance [6].  Accordingly, they utilised the 

Mat lab, MS Excel computer base programs, and 

graphical results. Finally, optimal experimental 

parameters were specified as 50 V (voltage), 600A 

(current), and 39 cm/ min (travel speed). Nart and 

Celik, (2013) argued that double ellipsoid models 

would give more accurate results to determine the 

weld pool shape [7]. They stated that stress and 

temperature distributions corresponding to finite 

element method were predicted by using Abaqus 

CAE software. As a result of the study, they 

compared experimental results to evaluate the yield 

of the double ellipsoid method. 

When the other studies in the literature are 

summarised, researchers generally focus on 

modelling and prediction of the heat affected zone, 

[8,9] welding bead height and width, [10,11] 

temperature distribution [12] and penetration 

distance [13]. In these studies, mathematical, 

graphical and software applications were performed 

and all researchers compared experimental and 

predicted results. As a result of these comparisons, 

researchers evaluated suitability of modelling and 

software programs. Hence, all studies in literature 

have aimed to decrease a great number of 

experimental tests, solved the specific problems 

without any test and predicted to the process 

parameters. 

In this study, unlike the literature, we focused on 

prediction of the effective parameters on 

hardfacing. These parameters were obtained with 

experimental results and these results were 

modelled with artificial neural network method. 

Modelled neural network results were compared 

with experimental results to evaluate the yield of 

method. Yield of modelling helps to decrease the 

number of the experimental tests. 

2. Experimental 

Hardfacings were deposited by using SAW process 

on SAE 1020 steel in sizes of 10 x 30 x 600 mm. 

Submerged arc welding machine Magma weld ZD5-

1000B, power supply MZ-1000BF, unalloyed S1 

welding wire and welding powder having four 

different high carbon ferrochromium  (65 wt.% Cr, 8 

wt.%  C, Bal. wt.% Fe) powders were used for 

hardfacings. Table 1 shows chemical compositions 

of the welding powders.  

During the submerged arc welding process,  Magma 

weld power source was used with 400 – 550 A 

current, 28 V voltage, 50 cm/min travel speed, a 3.2 

mm diameter welding wire, direct / constant 

current mode, and electrode positive polarity. The 

high carbon ferrochromium content of the powder 

mixtures varied from 4 wt.% to 16 wt.%. First four 

samples which have 4wt.% - 16 wt.% high carbon 

ferrochromium in powders with 500 A currents and 

last four samples which have 400 A - 550 A with 16 

wt.% high carbon ferrochromium in powders 

employed depending on the welding condition. 

Other welding process parameters such as voltage, 

wire diameter, and travel speed were kept constant 

during all the experiments.  

Samples in the size of 1 x 1 x 1 cm taken from the 

cross-section of the hardfacings were prepared by 

using metallographic method. EDS composition 

analysis was performed with Jeol (JXA-8230, USA) 

and secondary dendrite arms spacing was measured 

by using Nikon (Eclipse-MA200, Japan) optical 

microscopy on the seam surface and cross-section 

view of the samples. Secondary dendrite arms 

spacing was determined based on mean values of 

results taken from 30 different zones of each 

sample. Figure 1.  shows the measurement of 

secondary dendrite arms spacing as a representative 

image. 

 

Figure 1.  Measurements of the secondary dendrite arms 

spacing for hardfacing made by sample ID 2 at 500 A. 
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 Table 1. Chemical composition for the submerged arc welding powders. 

As is well-known; the heat input is directly related 

with dendrite arms spacing and cooling rate. 

Therefore,   heat input and its effect on weld region 

must be well known. Hence, heat input which was 

occured during the submerged arc welding process 

and arc energy efficiency should be calculated. 

Calculation of the heat input [14,15]; 

 H=60.E.I / 1000 S                                               (1)                                                                                                           

where H is heat input or arc energy (kj/inch or 

kj/mm), E is arc voltage, I is current and S is travel 

speed (inch/min or mm/min). 

Net heat input may be obtained by multiplying with 

effect factor or efficiency coefficient in Table 2.  It is 

seen that submerged arc welding process efficiency 

factor is 1. Thus, submerged arc welding was carried 

out with maximum efficiency [16,17]. 

HI=η. H                                                                            (2) 

where HI is net heat input (kj/inch or kj/mm) and η 

is efficiency factor coefficient.  

Recently, heat input calculation formula is derived 

from more than two above-mentioned formulas. 

Kou, (2003) reported that these formulas were 

different from traditional formulas by means of 

using parameters such as weld beam length and arc 

time in heat input [17].  However, net heat input  

was calculated by using traditional heat input 

formula in this study and arc voltage and welding 

speed were kept constant for all samples. For this 

reason; the most important variable was current or 

heat input in formula was observed. 

Table 2. Efficiency factor coefficients for different 

welding processes [18]. 

 

The cooling rate depending on the 

secondary dendrite arms spacing was calculated by 

the following formulas in references respectively 

[18-21].   

 

 

Chemical composition (wt.%) 

 

Powder 

ID 

FeCr CaO TiO
2
 MnO (Na

2
O 

+K
2
O) 

CaF
2
 FeMn FeMo Elazig 

ferrochromium 

slag 

1 4 3-7 4-8 3-7 1-2 5-15 1-3 0.5-1.5 56.5-65.5 

2 8 3-7 4-8 3-7 1-2 5-15 1-3 0.5-1.5 52.5-61.5 

3 12 3-7 4-8 3-7 1-2 5-15 1-3 0.5-1.5 48.5-57.5 

4 16 3-7 4-8 3-7 1-2 5-15 1-3 0.5-1.5 44.5-53.5 

Process Efficiency factor 

coefficient 

Submerged arc welding (SAW) 1.0 

Manuel metal arc (MMA) 0.8 

Cored wire welding / flux cored arc 

welding(FCAW) 

0.8 

Metal active gas/metal inert 

gas(MIG/MAG)  Gas metal arc welding 

(GMAW) 

0.8 

Tungsten inert gas (TIG)/ Gas tungsten arc 

welding (GTAW) 

0.6 

Plasma arc welding 0.6 
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Formula 1; λ = 104.47 x T-0.310                                 (3) 

Formula 2; λ = 156.52 x T-0.349                                 (4) 

Formula 3; λ = 148 x T-0.38                                 (5) 

Formula 4; λ =  68 x T-0.45                                 (6) 

Where λ is secondary dendrite arms spacing (µm) 

and T is cooling rate (ºC/Sec). 

Among these formulas, formula 1 and 2 are 

preferred to calculate the cooling rate for nickel 

based materials. The formula 3 is preferred when 

the steel contains C of 0-0.53 wt.%. Formula 4 is 

preferred to calculate cooling rate of ASTM 304 

stainless steel. In this study, Formula 4 was chosen 

to calculate the cooling rate due to the similarity 

with ASTM 304 stainless steel and possible 

composition of the hardfacing. 

Macrohardness tests were carried out by using HRC 

(Rockwell-C) scale under a 150  kgf  (1471.5  N) load. 

Macrohardness was measured from the cross 

section of the hardfacings as an average values 

which was taken 10 different locations. Wear tests 

were carried out by using pin-on-disc method and 

30 N load, 20 m sliding distance and 80 mesh 

abrasive paper were employed to determine the 

wear loss of harfacings and wear losses were 

calculated as a percentage for more objective 

results. 

3. Experimental results and determination of input 

and output parameters 

Table 3 shows experimental results of the 

hardfacing. When the experimental results were 

analysed depending on increasing percentage of the 

ferrochromium in powder (4-16 wt.%) at 500A 

(Sample ID 1-4), net heat input was found to be 

constant because of the constant current. According 

to the EDS analysis results, chromium and carbon 

percentages increased from 3.12 wt.% to 7.13 wt.% 

and 1.65 wt.% to % 2.12 wt.% respectively. With the 

increasing amount of ferrochromium in powder, 

chromium and carbon percentage of the hardfacing 

also increased. When secondary dendrite arms 

spacing and cooling rates were analysed, dendrite 

arms spacing was shrunk and cooling rates 

increased with the increasing percentage of 

chromium and carbon in hardfacing samples. 

Accordingly, when macrohardness and wear loss 

(wt.%) results were analysed, hardness results 

increased from 34 to 46 HRC and wear losses 

decreased from 5.01 wt.% to 4.41 wt.%. In this 

condition, with the increasing amount of the 

chromium and carbon passing in hardfacing, 

secondary dendrite arms spacing were shrunk; 

accordingly, cooling rates, hardness, and wear 

resistance increased.  

When the experimental results were analysed 

depending on increasing currents of 400-550A for 

16 wt.% FeCr (Sample ID 5-8), net heat input 

increased from 1.08 kj/mm to 1.62 kj/mm. Passed 

chromium percentage increased from 3.51 wt.% to 

7.60 wt.%  and carbon also increased from 1.70 wt. 

% to 2.19 wt.%. With the increasing of net heat 

input, secondary dendrite arms spacing expanded 

and cooling rates decreased. When the hardness 

results were analysed, hardness results increased 

from 37 HRC to 53 HRC. Unlike the first four 

samples, expanded secondary dendrite arms 

spacing and decreasing cooling rates increased 

hardness results. In this condition, increasing 

content of the passed chromium and carbon in 

hardfacings,  triggered the martensitic 

transformation for low cooling rate and 

transformation delay. Considering hardfacing 

microstructures; martensite, austenite and carbides 

phases were stable. Because of the allothropic 

transformation, heat input and composition of 

hardfacing were affected the experimental results. 

Finally, when the wear losses (wt.%) were analysed, 

wear losses decreased from 4.88 wt.% to 3.90 wt.% 

because of increased hardness. 

At the end of the all experimental results, net heat 

input and increasing amount of high carbon 

ferrochromium in powders were affected all 

experimental results were observed. Therefore, net 

heat input and increasing amount of ferrochromium 

in powders were determined as input data, passed 

chromium and carbon percentage in hardfacings, 

secondary dendrite arms spacing, cooling rate, 

hardness, and wear losses (wt.%) were determined  
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Table 3.  Experimental results of hardfacings produced. 

 

as output data to predict the optimal process 

parameters with Matlab programme. In this 

direction, we prepared two ANN architecture which 

have the same input and output data due to the first 

four samples having different ferrochromium 

percentages in powder and last four samples having 

different net heat inputs. 

4. Prediction of the experimental results 

4.1. ANN Algorithm 

ANN is a computer-based program that can be used 

in an effective way in nonlinear systems and other 

systems. Neural networks are the basic information 

processing structure consisting of connected 

neurons. Neural networks are sending signals with 

weighted connections to communicate with each 

other. In the training process, learning rule modifies 

the connection weight. Learning process is a 

mathematical method that improves the 

performance of the neural network via biases and 

the weights determined with the training data set  

prepared in the training process. Followıng to this 

process, test data are employed for net validation 

control. Starting point of weights and biases are 

determined randomly. In here, activation function is 

employed for the calculation of the output neurons. 

Input signals (xi) sums with the each neuron in the 

hidden layer and these results  multiply with the 

respective connection weights (wji) to determine 

the output data (yj) that is calculated as a function 

of the sum; 

( ) xwfy ijij ∑=
 

 

In this formula, f is a activation function which is 

required to convert the sum of signals contacting to 

the neuron. A sigmoidal activation function is 

employed for the aim of output neuron calculation. 

E, is represented with the sum of squared 

differences between the desired and actual values 

of the output neurons is given by; 

∑ −=

j

jdj yyE 2
)(

2

1

 
Where (ydj) represents the desired output value of 

neuron, the neuron (j) and (yj) represent the actual 

output value of neurons [22]. 

   

 

Sample 

ID 

Ferrochromium in 

powder 

(wt.% ) 

Current 

(A) 

Net heat 

input 

 

(kj/mm) 

 

EDS analysis 

(wt.% ) 

Cr             C 

Secondary 

dendrite arms 

spacing 

(µm) 

 

Cooling rate 

Formula  4, 

(C˚/Sec) 

λ =  68 x T
-0,45

 

Hardness 

(HRC) 

Wear 

loss 

(wt.%) 

1 4 500 1.44 3.12 1,65 19.24 (± 2.12) 1.64x10 34 5.01 

2 8 500 1.44 4.03 1.77 17.46 (± 2.51) 2.04x10 39 4.76 

3 12 500 1.44 6.55 1.99 16.11 (± 3.01) 2.44x10 43 4.50 

4 16 500 1.44 7.13 2.12 15.08 (± 3.57) 2.81x10 46 4.41 

5 16 400 1.08 3.51 1.70 13.12 (± 2.75) 3.85x10 37 4.88 

6 16 450 1.26 5.40 1.88 14.39 (± 2.43) 3.13x10 41 4.65 

7 16 500 1.44 7.13 2.12 15.08(± 3.57) 2.81x10 46 4.41 

8 16 550 1.62 7.60 2.19 18.05 (± 2.86) 1.89x10 53 3.90 
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Number of studies preperad with the ANN 

architecture are available in the literature. 

Researchers such as Ghosh and Hlock, (2013) and 

Towsyfyan et al., (2013) compared submerged arc 

welding experimental results with artificial neural 

network (ANN) results in their studies [6,23]. At the 

end of their studies, they stated that more accurate 

and compatible results were determined with ANN 

architecture to obtain an experimental design. 

Therefore, we preferred ANN algorithm in this study 

as well. In accordance with this purpose, back-

propagation learning algorithm was employed in 

feed forward neural network. Neural network 

comprise of an input layer, a hidden layer, and an 

output layer. Schematic image of the multilayer 

feed-forward network used in this study is given in 

Figure 2. 

 

Figure 2.  Schematic diagram of proposed ANN. 

 

In the study, two data groups were used for training 

and testing. While four of eight data were employed 

for the aim of training in the first step,  the other 

four data were employed for the aim of testing in 

the second. In order to achieve best architecture of 

ANN compatible with experimental results, 

randomly decided three neuron numbers on layers 

2-15-3, 2-7-7-3 and 2-23-3 were used to obtain the 

optimum ANN1 and other three neuron numbers on 

layers 2-23-4, 2-17-3 and 2-21-3 were used to obtain 

the optimum ANN2. 

Performance evaluation of the network were held 

on the basis of three criteria. The first, Root Mean 

Square Error (RMSE), the second, Coefficient of 

determination (R2) and the third, Mean Absolute 

Error (MAE) and these are given by; 

 

���� = �∑ �	
��,��	�������
�  

 

�� = 1 − ∑ �	
��,��	�������
∑ �	���,�������

 

 

��� = ∑ �	
��,��	������
�  

 

Where (n) is the number of data sample, (ypre,I) is 

the predicted value and (yi) is the value of a data 

sample. 

In order to  determine best architecture of ANN 

compatible with experimental results, great number 

of neurons in layers were employed. As is seen in all 

tables, 2-15-3 is more optimal structure for ANN1 

compared to others. It had R2 value of 0.9995, 

RMSE value of 0.0449, and MAE value of 0.1287. For 

ANN2, the best structure was 2-23-4 and it had R2 

value of 0.9996, RMSE value of 0.0438, and MAE 

value of 0.1343. 

Learning algorithm was determined with the help of 

Levenberg-Marquardt back propagation algorithm, 

because of giving good performance in both ANNs. 

When  a sigmoidal activation function was 

employed for the aim of neurons located in input 

and hidden layers, linear activation function was 

employed for the aim of neurons located in output 

layers. While Table 4 shows the evaluation of ANN1, 

Table 5 shows the measured and predicted values. 

Table 4.  The performance of ANN1. 

 

 

 

 

 

Figures 3-7 show respectively the EDS analysis 

results for chromium and carbon percentage, 

secondary dendrite arms spacing, cooling rate, 

hardness and wear loss (wt.%) versus FeCr (wt.%) 

and net heat input. As is seen in Table 5, percentage 

value of FeCr in powders changed from 4 wt.% to 16 

wt.%; whereas, net heat input was constant. 

   

Algorithm R2 RMSE  MAE 

2-15-3 0.9995 0.0449 0.1287 

2-7-7-3 0.9990 0.0642 0.2293 

2-23-3 0.9993 0.0547 0.1566 
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 Table 5.  The measured and predicted values by ANN1. 

 

Ferrochromium in powder (wt.% ) 4 8 12 16 

Net heat input (kj/mm) 1.44 1.44 1.44 1.44 

EDS analysis -Cr (wt.% ) Measured 3.12 4.03 6.55 7.13 

Predicted 3.0208 4.1489 6.5175 7.1031 

Error -0.0992 0.1189 -0.0325 -0.0269 

EDS analysis -C (wt.% ) Measured 1.65 1.77 1.99 2.12 

Predicted 1.6423 1.7929 2.0112 2.0826 

Error -0.0077 0.0229 0.0212 -0.0374 

Secondary dendrite 

arms spacing (μm) 

Measured 19,24 17,46 16,11 15,08 

Predicted 19.1230 17.4460 15.9944 15.0157 

Error -0.1170 -0.0140 -0.1156 -0.0643 

Cooling rate 

Formula  4 (C˚/Sec) 

Measured 16.4 20.4 24.4 28.1 

Predicted 16.3396 20.5887 24.3938 27.9880 

Error -0.0604 0.1887 -0.0062 -0.1120 

Hardness (HRC) Measured 34 39 43 46 

Predicted 34.1705 38.9069 43.0565 46.0644 

Error 0.1705 -0.0931 0.0565 0.0644 

 Wear loss (wt.% ) Measured 5.01 4.76 4.5 4.41 

Predicted 5.0137 4.7030 4.4945 4.4440 

Error 0.0037 -0.0570 -0.0055 0.0340 

Figure 3. EDS analysis versus  FeCr (wt.%) and net heat 

input. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Secondary dendride arms spacing versus  FeCr 

(wt.%)-Net heat input. 
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Figure 5. Cooling rate (Formula 4) versus FeCr (wt.%)-Net 

heat input. 

 

 

 
Figure  6. Hardness versus FeCr (wt.%) -Net heat input. 

 

 

Figure 7. Wear loss (wt.%) versus FeCr (wt.%)-Net heat 

input. 

 

 

As is seen in above Figures 3-7 the ANN model had 

very good estimation ability. The differences 

between measured and predicted values were very 

low and acceptable. 

 

The second ANN algorithm was developed to 

estimate the EDS analysis results for chromium and 

carbon percentage, secondary dendrite arms 

spacing, cooling rate, hardness and wear loss (wt.%) 

with the inputs of FeCr (wt.%) and net heat input. 

The performances of ANN2 and estimation results 

are present in Tables 6 and 7, respectively. 

Graphical results are shown from Figure 8 to 12. As 

is seen in Table 7, net heat input values changed 

from 1.08 to 1.62; whereas,  FeCr (wt.%) was 

constant. 

 

 

 Table 6.  The performance of ANN2. 

 

 

 

  

The graphical results from Figure 8 to 12 show that 

the ANN2 had a very successful performance in 

giving the results very close to measured values. 

Both ANN1 and ANN2 had a very good performance 

for estimating the results. This helps to reduce the 

number of experiments and prevents time-

consuming procedures. 

 

 

 

 

Algorithm R
2
 RMSE  MAE 

2-23-4 0.9996 0.0438 0.1343 

2-17-3 0.9961 0.0536 0.2129 

2-21-3 0.9994 0.0502 0.1496 
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Table 7.  The measured and predicted values by ANN2. 

Ferrochromium in powder (wt.%) 16 16 16 16 

Net heat input (kj/mm) 1.08 1.26 1.44 1.62 

EDS analysis - Cr (wt.% ) Measured 3.51 5.4 7.13 7.6 

Predicted 3.4377 5.3488 7.1191 7.6064 

Error -0.0723 -0.0512 -0.0109 0.0064 

EDS analysis - C (wt.% ) Measured 1.7 1.88 2.12 2.19 

Predicted 1.7017 1.8778 2.0418 2.2226 

Error 0.0017 -0.0022 -0.0782 0.0326 

Secondary dendrite 

arms spacing (μm) 

Measured 13.12 14.39 15.08 18.05 

Predicted 13.2153 14.2417 15.1150 17.8854 

Error 0.0953 -0.1483 0.0350 -0.1646 

Cooling rate 

Formula  4 (C˚/Sec) 

Measured 38.5 31.3 28.1 18.9 

Predicted 38.2808 31.0369 27.9360 18.9050 

Error -0.2192 -0.2631 -0.1640 0.0050 

Hardness (HRC) Measured 37 41 46 53 

Predicted 36.9990 41.0734 46.1830 52.9452 

Error -0.0010 0.0734 0.1830 -0.0548 

Wear loss (wt.% ) Measured 4.88 4.65 4.41 3.9 

Predicted 4.8573 4.6520 4.4497 3.8459 

Error -0.0227 0.0020 0.0397 -0.0541 

Figure 8. EDS analysis versus FeCr (wt.%)-Net heat input. Figure 9. Secondary dendrite arms spacing versus FeCr 

(wt.%)-Net heat input. 
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Figure 10. Cooling rate (Formula 4) versus FeCr (wt.%)-

Net heat input. 

 

Figure 11. Hardness versus FeCr (wt.%)-Net heat input. 

Figure 12. Wear loss (wt.%) versus FeCr (wt.%)-Net heat 

input. 

5. Conclusion 

Modelling and predictions could be made by using 

with the input data such as heat input and welding 

powder including high carbon ferrochromium, and 

output data such as EDS chromium and carbon 

composition, secondary dendrite arms spacing, 

cooling rate, hardness and wear loss (wt.%) in ANN 

algorithm were observed. The results obtained from 

this study can be given as follows, 

1.Increasing amount of high carbon ferrochromium 

in powders and increasing of heat input from 400 A 

to 550 A, chromium and carbon percentages in 

hardfacings were increased. Consequently, cooling 

rate changed and estimating quantity of martensite 

phases in hardfacings, hardness, and wear 

resistance increased. 

2.ANN algorithm was performed with two different 

ANN architectures to obtain optimal process 

parameters. Two different input data were 

preferred to predict chromium and carbon 

percentages, secondary dendrite arms spacing, 

cooling rate, hardness, and wear loss as an output 

data. First input data was heat input and the second 

one was increasing quantity of ferrochromium in 

powders and experimental results and predicted 

results were compared with these input and output 

data for optimal ANN algorithm model. 

3.2-15-3 and 2-23-4 architectures played a key role 

to obtain more accurate results by using ANN 

algorithm and results predicted by ANN algorithm 

were in good agreement with experimental results. 

4. Experimental results of hardfacing performed by 

using submerged arc welding powders including 

ferrochromium and device parameters could be 

modelled and predicted with ANN an algorithm. The 

design of the experimental results from the 

hardfacing with alloyed electrode and / or alloyed 

submerged arc welding powder can be applied with 

ANN algorithm in the future studies. 
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