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ABSTRACT

The class of isotropic submanifolds in pseudo-Riemannian manifolds is a distinguished family
of submanifolds; they have been studied by several authors. In this article we establish Chen
inequalities for isotropic immersions. An example of an isotropic immersion for which the equality
case in the Chen first inequality holds is given.
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1. Introduction

The class of isotropic submanifolds in pseudo-Riemannian manifolds represents a distinguished family of
submanifolds. The concept of isotropic submanifold of a Riemannian manifold was introduced by O’Neill [6],
who studied the general properties of this class of submanifolds. Roughly speaking, a pseudo-Riemannian
submanifold is isotropic if the geometry of the submanifold is the same regardless of directions. The isotropic
submanifolds generalize totally geodesic submanifolds and totally umbilical submanifolds.

On the other hand, one of the basic problems in the geometry of submanifolds is to find optimal relationships
between the intrinsic invariants (for example, sectional curvature, scalar curvature, Ricci curvature) and the
main extrinsic invariant (namely, the squared mean curvature) of a submanifold in a space form. In this respect,
B.Y. Chen [2], [3] defined the δ-invariants, known as Chen invariants, and established geometric inequalities
for these invariants, which are known as Chen inequalities, in particular Chen first inequality. Such inequalities
for different submanifolds in various ambient spaces were obtained by many authors.

In the present paper, we establish a Chen first inequality and Chen inequalities (general case) for spacelike
isotropic submanifolds in pseudo-Riemannian space forms. An explicit example of an isotropic submanifold
which satisfies identically the equality case in the Chen first inequality is given.

2. Preliminaries

Let Mn
t be a submanifold of a pseudo-Riemannian manifold (M̃m

s , g). We denote by R and R̃ the Riemannian
curvature tensors of M and M̃ , respectively. The sectional curvature of a nondegenerate plane section π at a
point p ∈ Mn

t is given by

K(π) =
g(R(X,Y )Y,X)

g(X,X)g(Y, Y )− g2(X,Y )
,

where X,Y ∈ π are linearly independent vectors.
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The Gauss and Weingarten formulae are:

∇̃XY = ∇XY + h(X,Y ),

∇̃Xξ = −AξX +DXξ,

for vector fields X , Y tangent to Mn
t and ξ normal to Mn

t , where ∇ and ∇̃ are the Levi-Civita connections on M

and M̃ , respectively, and h is the second fundamental form of M . A and D are its shape operator and normal
connection.

The Gauss equation is

(R̃(X,Y )Z)t = R(X,Y )Z +Ah(X,Z)Y −Ah(Y,Z)X, ∀X,Y, Z ∈ Γ(TM),

and the mean curvature vector is defined by H = 1
n

∑n
i=1 g(ei, ei)h(ei, ei), for any orthonormal basis {e1, . . . , en}

of TpM
n
t .

We recall the definition of the Chen first invariant. Let p ∈ Mn
t and

(infK)(p) = inf{K(π) | π ⊂ TpM
n
t 2-plane} ∈ R.

We denote by τ the scalar curvature of Mn
t . Then the Chen first invariant is

δM = τ − infK.

The concept of an isotropic submanifold of a Riemannian manifold was extended to submanifolds in pseudo-
Riemannian manifolds by Cabrerizo et al. [1].

Let ϕ : Mn
t → M̃m

s be an isometric immersion. ϕ is called isotropic [1] at the point p ∈ Mn
t if g(h(u, u), h(u, u)) =

λ(p) ∈ R, for any unit tangent vector u ∈ TpM
n
t . This means that λ(p) is well defined, i.e., it does not depend

on the choice of the unit vector u. An isotropic immersion is one which is isotropic everywhere. λ is called the
isotropy function of ϕ.

In the following Section we prove two geometric inequalities for spacelike isotropic submanifolds. We then
give an explicit example for which the equality case is attained.

3. Chen first inequality for spacelike isotropic submanifolds

In [4] we obtained a Chen-Ricci inequality for spacelike isotropic submanifolds in pseudo-Riemannian space
forms. Next, we establish Chen first inequality for such submanifolds.

Theorem 3.1. Let Mn
0 be a spacelike isotropic submanifold of dimension n in a pseudo-Riemannian space form M̃n+s

s (c)
of dimension n+ s, index s and sectional curvature c. Then, for any plane section π at a point p ∈ Mn

0 , we have:

τ −K(π) ≤ 3

4
n2g(H,H)− n2 + 2n+ 4

4
λ+

(n− 2)(n+ 1)

2
c.

Furthermore, the equality holds for a plane section π at a point p ∈ Mn
0 if and only if there exists an orthonormal basis

{e1, e2} ⊂ π such that h(e1, e2) = 0, where h is the second fundamental form of Mn
0 .

Proof. We use the following result from [1]:

3Ah(X,Y )Z = λ[g(X,Y )Z + g(Y,Z)X + g(X,Z)Y ] +R(Z,X)Y − (R̃(Z,X)Y )t +R(Z, Y )X − (R̃(Z, Y )X)t,

for any vectors X,Y, Z ∈ TpM
n
0 , p ∈ TpM

n
0 .

By applying the metric tensor g we obtain:

3g(Ah(X,Y )Z,W ) =λ[g(X,Y )g(Z,W ) + g(Y,Z)g(X,W ) + g(X,Z)g(Y,W )]+

+ g(R(Z,X)Y,W )− g(R̃(Z,X)Y,W ) + g(R(Z, Y )X,W )− g(R̃(Z, Y )X,W ). (3.1)

dergipark.org.tr/en/pub/iejg 202

https://dergipark.org.tr/en/pub/iejg


M. Mirea

Let p ∈ Mn
0 , π ⊂ TpM

n
0 , {X,Y } ⊂ π an orthonormal basis. In equation (3.1) we take X = W, Y = Z and we

get:

3g(h(X,Y ), h(X,Y )) =λ[g(X,Y )g(X,Y ) + g(Y, Y )g(X,X) + g(X,Y )g(Y,X)]+

+ g(R(Y,X)Y,X)− g(R̃(Y,X)Y,X) + g(R(Y, Y )X,X)− g(R̃(Y, Y )X,X),

which implies

3g(h(X,Y ), h(X,Y )) = λ+ c − K(π).

Therefore
K(π) + 3g(h(X,Y ), h(X,Y )) = λ+ c.

In the case under consideration, Mn
0 a spacelike submanifold of M̃n+s

s (c), h(X,Y ) is necessarily timelike or
0, i.e. (h(X,Y ), h(X,Y )) ≤ 0. Hence

K(π) ≥ λ+ c, (3.2)

Let {e1, . . . , en} be an orthonormal basis in TpM
n
0 , with e1, e2 ∈ π. In the equation (3.1) put X = Y = ei, Z =

W = ej . It follows that

3g(h(ei, ei), h(ej , ej)) =λ[g(ei, ei)g(ej , ej) + g(ei, ej)g(ei, ej) + g(ei, ej)g(ei, ej)]+

+ g(R(ej , ei)ei, ej)− g(R̃(ej , ei)ei, ej) + g(R(ej , ei)ei, ej)− g(R̃(ej , ei)ei, ej),

or equivalently,

3g(h(ei, ei), h(ej , ej)) = λ(1 + 2δij) + 2g(R(ej , ei)ei, ej)︸ ︷︷ ︸
2K(ei∧ej)

− 2g(R̃(ej , ei)ei, ej)︸ ︷︷ ︸
2K̃(ei∧ej) =2c

.

By summation after i and j in the above equation we get

3

n∑
i,j=1

g(h(ei, ei), h(ej , ej)) = 2

n∑
i,j=1

K(ei ∧ ej)− 2

n∑
i,j=1

K̃(ei ∧ ej) +

n∑
i,j=1

λ(1 + 2δij),

which implies

3g(nH, nH) = (n2 + 2n)λ+ 4τ − 2n(n− 1)c.

Equivalently, we get

τ =
3

4
n2g(H,H)− n(n+ 2)

4
λ+

n(n− 1)

2
c. (3.3)

We subtract the inequality (3.2) from the equality (3.3) and we obtain

τ −K(π) ≤ 3

4
n2g(H,H)− n(n+ 2)

4
λ+

n(n− 1)

2
c− λ− c,

which is equivalent to

τ −K(π) ≤ 3

4
n2g(H,H)− n2 + 2n+ 4

4
λ+

(n− 2)(n+ 1)

2
c. (3.4)

Equality holds if and only if K(π) = λ+ c, which happens if and only if h(e1, e2) = 0.

In a similar way, we can prove the following result.

Theorem 3.2. Let Mn be a Riemannian isotropic submanifold of dimension n in a Riemannian space form M̃n+s(c) of
dimension n+ s and sectional curvature c. Then

τ −K(π) ≥ 3

4
n2g(H,H)− n2 + 2n+ 4

4
λ+

(n− 2)(n+ 1)

2
c.

Furthermore, the equality holds for a plane section π at a point p ∈ Mn if and only if there exists an orthonormal basis
{e1, e2} ⊂ π such that h(e1, e2) = 0, where h is the second fundamental form of Mn.
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4. An example for the equality case

Let γ : R → C be the smooth plane curve

γ(t) =
√

cosh(2t) exp{i arctan(tanh t)}.

It may be shown [1] that the mapping ϕ : R× Sn−1 → Cn, ϕ(t, x1, . . . , xn) = γ(t)(x1, . . . , xn) is an isometric
immersion when R× Sn−1 is equipped with the induced metric

g = cosh 2t(dt2 + g0),

where g0 denotes the standard Riemannian metric on Sn−1 (induced by the standard Euclidean inner product
on Rn).

We compute the sectional curvature of Mn = Im ϕ.
As in [1], let {e1, . . . , en} be an orthonormal basis of TpM

n, with

e1 =
1

|γ|
(∂t, 0),

ei =
1

|γ|
(0, en),

where {e2, . . . , en} is an orthonormal basis in the corresponding tangent space to Sn−1.

We also obtain the local orthonormal basis {ei, Jei} of Cn by this construction.

Remark 4.1. We note that in the above definitions of the vectors ei, the corresponding vectors ei on the sphere
are completely arbitrary, except for the condition that they form an orthonormal basis. Therefore any set of
vectors {e2, . . . , en} that form an orthonormal basis on Sn−1 determine an orthonormal basis {e1, . . . , en} on
TpM

n and it is obvious that we can also go in the opposite direction, {e1, . . . , en} → {e2, . . . , en}, by taking ei to
be the last n− 1 components of |γ|ei; therefore there is a 1 : 1 correspondence between the bases {e1, . . . , en} in
TpM

n with e1 = 1
γ (∂t, 0, ..., 0) and the bases {e2, . . . , en} in Tp̄S

n−1.

Remark 4.2. With respect to the basis {ei, Jei} the second fundamental form h of ϕ has the expression [1], [5]:{
h(e1, e1) = aJe1, h(e2, e2) = . . . = h(en, en) = −aJe1,

h(e1, ej) = −aJej , h(ej , ek) = 0, 2 ≤ j ̸= k ≤ n,

where a = −(cosh 2t)−
3
2 .

This implies that ϕ is isotropic with isotropy function λ = a2.

Lemma 4.1. The sectional curvature of Mn is

K(π) = (cos2 α− 2 sin2 α)a2, α ∈ [0,
π

2
],

where π is a plane section tangent to Mn at a point p and α is the angle between π and span{e2, . . . , en}.

Proof. We split the proof into three cases.
Case 1. Let π ⊂ TpM

n, π = span{e1, u}, with u ∈ span{e2, . . . , en}. We may assume π = span{e1, e2}. Then:

K(e1 ∧ e2) =< h(e1, e1), h(e2, e2) > − < h(e1, e2), h(e1, e2) >

=< aJe1,−aJe1 > − < −aJe2,−aJe2 >

= −a2 − a2 = −2a2.

Case 2. Let U = span{e2, . . . , en} and π ⊂ U be a plane section. We may assume π = span{e2, e3}. Then:

K(e2 ∧ e3) =< h(e2, e2), h(e3, e3) > − < h(e2, e3), h(e2, e3) >

=< −aJe1,−aJe1 > − < 0, 0 >= a2.
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Case 3. Let U = span{e2, . . . , en} and π be a 2-dimensional plane determined by 2 vectors x and y with
x /∈ U, y /∈ U .

Since dimπ︸ ︷︷ ︸
=2

+ dimU︸ ︷︷ ︸
=n−1

= n+ 1, it follows that π and U = span{e2, . . . , en} intersect in a 1-dimensional

subspace. Therefore there exists a vector u ∈ π ∩ span{e2, . . . , en}. We may take u unit without loss of generality.
If e1 ∈ π, as e1 ⊥ u and u is unit, we may take u = e2 and this corresponds to Case 1. Therefore we may

assume e1 /∈ π.
Let v be another vector in π such that {u, v} is an orthonormal basis of π. The plane span{e1, v} intersects

U = span{e2, . . . , en} (for the same reason as above) in another 1-dimensional vector space, which we take to
be spanned by the unit vector w.

By construction u ⊥ v, by hypothesis u ⊥ e1, therefore u ⊥ span{e1, v}. As w ∈ span{e1, v} we obtain that
u ⊥ w. Therefore π = span{u, v} with {u, v} orthonormal basis and v = sinαe1 + cosαw, where u ⊥ w, u ⊥ e1. α
is obviously the angle between the 2-dimensional plane π and the (n− 1)-dimensional subspace U .

We have shown that any plane π which is not included in span{e2, . . . , en} and does not pass through e1
is spanned by two orthogonal unit vectors u and v, with v = sinαe1 + cosαw, u ⊥ w, and both u and w are
in span{e2, . . . , en}. Obviously e1 ⊥ w and α ∈ (0, π

2 ). Using the Remark 4.1 we may take u = e3 and w = e2,
therefore π = span{sinαe1 + cosαe2, e3}.

We can also compute K(π) in this case:

K(π) =< h(sinαe1 + cosαe2, sinαe1 + cosαe2), h(e3, e3) >=

− < h(sinαe1 + cosαe2, e3), h(sinαe1 + cosαe2, e3) >=

=< sin2 αh(e1, e1)︸ ︷︷ ︸
aJe1

+2 sinα cosαh(e1, e2)︸ ︷︷ ︸
−aJe2

+cos2 αh(e2, e2)︸ ︷︷ ︸
−aJe1

, h(e3, e3)︸ ︷︷ ︸
−aJe1

> −

− < sinαh(e1, e3)︸ ︷︷ ︸
−aJe3

+cosαh(e2, e3)︸ ︷︷ ︸
=0

, sinαh(e1, e3)︸ ︷︷ ︸
−aJe3

+cosαh(e2, e3)︸ ︷︷ ︸
=0

>=

= (cos2 α− sin2 α)a2 − sin2 αa2 =

= (cos2 α− 2 sin2 α)a2.

We get K(π) = (cos2 α− 2 sin2 α)a2, α ∈ (0, π
2 ).

The above three cases above exhaust the possibilities. We notice that in fact Case 1 corresponds to the angle
α = π

2 and Case 2 to the angle α = 0.
Therefore we have in general K(π) = (cos2 α− 2 sin2 α)a2, α ∈ [0, π

2 ].

We apply the results of Section 3 to Mn.
In the case of ϕ defined above h(e2, e3) = 0, so the equality case is obtained. We also show by direct

computation that is indeed true.
We have Mn = Imϕ and M̃ = Cn. We compute the scalar curvature τ of Mn.

τ =
∑

1≤i<j≤n

K(ei ∧ ej) =

n∑
j=2

K(e1 ∧ ej)︸ ︷︷ ︸
Case 1 of Remark 4.2

+
∑

2≤i<j≤n

K(ei ∧ ej)︸ ︷︷ ︸
Case 2 of Remark 4.2

=

= (n− 1)K(e1 ∧ e2) +
(n− 2)(n− 1)

2
K(e2 ∧ e3) = −2(n− 1)a2 +

(n− 2)(n− 1)

2
a2 =

= (n− 1)a2
(
n− 2

2
− 2

)
=

(n− 6)(n− 1)

2
a2.

We compute H :

H =
1

n

n∑
i=1

h(ei, ei) =
1

n
(h(e1, e1) + h(e2, e2) + . . .+ h(en, en)) =

=
1

n
(aJe1 − aJe1 − . . .− aJe1) =

2− n

n
aJe1.
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The inequality to check is

τ −K(π) ≥ 3

4
n2g(H,H)− n2 + 2n+ 4

4
λ+

(n− 2)(n+ 1)

2
c.

Because λ = g(h(e1, e1), h(e1, e1)) = a2 and K(Cn) = 0, we have

(n− 6)(n− 1)

2
a2 −K(π) ≥ 3

4
n2 (2− n)2

n2
g(aJe1, aJe1)−

n2 + 2n+ 4

4
a2,

i.e.,

−K(π) ≥ 3

4
(2− n)2a2 − n2 + 2n+ 4

4
a2 − (n− 6)(n− 1)

2
a2,

equivalent with

K(π) ≤ a2.

But K(π) = (cos2 α− 2 sin2 α)a2 ≤ a2 for any π, so the inequality is checked, and it is also clear that the
equality case is attained for α = 0.

5. Chen inequalities: general case

We generalize the Theorems 3.1 and 3.2.

Let k ∈ N and n1, . . . , nk ≥ 2 be integers such that n1 < n, n1 + . . .+ nk ≤ n. We consider mutually orthogonal
subspaces L1, . . . , Lk ⊂ TpM , with dim(Li) = ni, i = 1, ..., k. Denote by τ(Lj) the scalar curvature of Lj .

Theorem 5.1. Let Mn
0 be a spacelike isotropic submanifold of dimension n in a pseudo-Riemannian space form M̃n+s

s (c)
of dimension n+ s, index s and sectional curvature c. Then, for any p ∈ Mn

0 and any mutually orthogonal subspaces
L1, ..., Lk, we have:

τ −
k∑

i=1

τ(Li) ≤
3

4
n2g(H,H)− n(n+ 2)

4
λ+

n(n− 1)

2
c− (λ+ c)

k∑
i=1

ni(ni − 1)

2
.

The equality case is attained at a point p ∈ Mn
0 for the subspaces L1, ..., Lk if and only if for any j = 1, ..., k, h(X,Y ) = 0,

for all orthonormal vectors X,Y ∈ Lj .

Theorem 5.2. Let Mn be a Riemannian isotropic submanifold of dimension n in a Riemannian space form M̃n+s(c) of
dimension n+ s and sectional curvature c. Then, for any p ∈ Mn and any mutually orthogonal subspaces L1, ..., Lk, we
have:

τ −
k∑

i=1

τ(Li) ≥
3

4
n2g(H,H)− n(n+ 2)

4
λ+

n(n− 1)

2
c− (λ+ c)

k∑
i=1

ni(ni − 1)

2
.

The equality case is attained at a point p ∈ Mn for the subapsaces L1, ..., Lk if and only if for any j = 1, ..., k, h(X,Y ) = 0,
for all orthonormal vectors X,Y ∈ Lj .

We prove Theorem 5.2. Theorem 5.1 has an analogous proof.

Proof. Let i = 1, ..., k and {e1, . . . , eni} be an orthonormal basis of Li. Then

τ(Li) =
∑

1≤a<b≤ni

K(ea ∧ eb) ≤
∑

1≤a<b≤ni

(λ+ c) =
ni(ni − 1)

2
(λ+ c). (5.1)

Therefore

k∑
i=1

τ(Li) ≤
k∑

i=1

ni(ni − 1)

2
(λ+ c). (5.2)
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Subtracting the above equation from the equation (3.3), we obtain

τ −
k∑

i=1

τ(Li) ≥
3

4
n2g(H,H)− n(n+ 2)

4
λ+

n(n− 1)

2
c− (λ+ c)

k∑
i=1

ni(ni − 1)

2
. (5.3)

The equality holds in the equation (5.3) if and only if we have the equality in the equation (5.2), which means
that K(ea ∧ eb) = λ+ c, for any 1 ≤ a < b ≤ ni. We know from the (3.2) that this is equivalent to h(ea, eb) = 0,
for all 1 ≤ a < b ≤ ni.

Remark 5.1. The equality case is attained in the example if n is large enough, as is obvious from the expression of
the second fundamental form h in Remark 4.2. Computations completely similar to those preceding Theorem
5.1 also show this directly.
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