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Abstract  

Clustering is an unsupervised learning that divides observations into groups based on their 
similarity. The most widely used clustering algorithm is k-means. However, in this clustering 
algorithm, the number of clusters needs to be determined in advance. In this study, the most 
widely used methods for determining the number of clusters, namely Average Silhouette, 
Caliński-Harabasz, Davies-Bouldin and Dunn Index were used. The performances of these 
methods were compared by Rand Index and Meila's Variation of Information (MVI) criteria on 
nine real data sets where the number of clusters was known in advance. According to these 
criterias, Average Silhouette was given more successful results.  
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Optimal Küme Sayısının Belirlenmesinde Kullanılan Yöntemlerin 
Karşılaştırılması 

Özet 

Kümeleme, gözlemleri benzerliklerine göre gruplarına ayıran bir denetimsiz öğrenme şeklidir. 
En yaygın olarak kullanılan kümeleme algoritması k-ortalamadır. Ancak bu kümeleme 
algoritmasında küme sayısının önceden belirlenmesi gerekmektedir. Bu çalışmada en çok 
kullanılan küme sayısı belirleme yöntemlerinden Ortalama Silüet (Average Silhouette), 
Caliński-Harabasz, Davies-Bouldin ve Dunn Endeksi kullanılmıştır. Bu yöntemlerin 
performansları küme sayısı önceden belli olan dokuz gerçek veri seti üzerinde Rand Endeksi 
ve Meila bilgi kriteri (Meila’s Variation of Information-MVI) kriterleri ile karşılaştırılmıştır. Bu 
kriterlere göre değerlendirildiğinde Ortalama Silüet ile daha başarılı sonuçlar elde edilmiştir. 
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1 Introduction 

Machine learning is an evolving branch of computer 
algorithms that are designed to imitate human 
intelligence. Techniques supported by machine 
learning are applied with success in numerous 
fields starting from pattern recognition, computer 
vision, finance, entertainment, and computational 
biology to medical specialty and medical 
applications [1]. It is possible to divide machine 
learning into three categories. The first one is 
supervised learning.  Supervised learning is just a 
rationalization of the concept of learning from 
experiences. In supervised learning, the learner 
program is given two sets of data, a training and a 
test. The concept is for the learner to “learn” from a 
group of labeled examples within the training data 
so it can establish unlabeled examples in the test 
data with the best attainable accuracy [2]. The most 
widely used algorithms of supervised learning are 
tree-based algorithms for classification and 
regression. The second category is semi-supervised 
learning (SSL). It is the conclusion of the idea that 
labeling the training data in the real-world project 
is difficult, computationally expensive, or taking too 
much time, because it needs human expertise with 
specific domain expertise and training [3]. SSL 
addresses this issue by permitting the model to 
integrate half or all of the offered unlabeled data in 
its supervised learning. The goal is to maximize the 
training performance of the model through such 
newly-labeled examples while minimizing the work 
needed for human expertise [3]. The third category 
of machine learning is unsupervised learning. In 
contrast to supervised learning, the data is not 
labeled in unsupervised learning. Instead, it 
captures patterns as probability densities [4].            
Unsupervised learning is used in many fields such 
as psychology [5], biology [6], computer security [7] 
pattern recognition [8], and image processing [9]. 
The most widely used algorithms in unsupervised 
learning are dimension reduction and clustering. 
Clustering is unsupervised learning that separates 
observations in a dataset into clusters based on 
their similarity [10]. Similarity is based on distance 
measurement. Observations that are close to each 
other are considered similar and observations that 
are far away are considered dissimilar. 
Observations in the same cluster are expected to be 
similar, while observations in different clusters 
should be dissimilar. The Euclidean distance metric 
is generally used to measure similarity/distance 
[11]. In addition, Manhattan and Cosine distance 

metrics are also used. There are two main criterions 
for clustering. The former is that the within-cluster 
variances of the clusters should be as low as 
possible. This ensures for observations in the same 
cluster to be more similar. The letter is to separate 
the clusters from each other as much as possible. 
This ensures for observations in the different 
clusters to be dissimilar.  

There are many clustering algorithms (e.g. k-means, 
k-medois, clara, hierarchical, fuzzy, model-based, 
and density based) [12]. However, it would not be 
wrong to say that the most widely used method is k-
means [13-17]. In k-means, each cluster center is 
located according to the arithmetic mean of the 
observations in that cluster. k-means selects a point 
and considers it as the center of the cluster, then 
divides the other observations into clusters 
according to their distance from the mean [18]. 
However, the number of clusters must be 
determined in advance [19]. Determining the 
number of clusters is too complex to be achieved by 
simply observing the overall structure of the data 
set. 

There are more than thirty methods for 
determining the optimal number of clusters [20]. 
While some of these methods are valid only for data 
sets that meet certain conditions, there are also 
methods that are valid for all types of data sets. In 
this paper, we compare four mostly used methods 
[21-24] (Average Silhouette, Calinski-Harabasz, 
Davies - Bouldin and Dunn Index) that determine 
the optimal number of clusters for nine, different 
types of real datasets. The success of the methods in 
estimating the number of clusters of the datasets is 
compared and the Rand Index and Melia VI scores 
based on whether each observation is placed in the 
correct clusters is analyzed. 

The remainder of this paper consists of three 
sections. The second section explains the k-means 
algorithm in detail and then shows how the 
methods used to determine the optimal number of 
clusters which are Average Silhouette, Calinski-
Harabasz, Davies - Bouldin and Dunn Index work. At 
the end of the section Rand Index and Melia VI 
Indexes, which is used to compare the success of the 
methods, is explained. In the third section, each 
dataset is explained and the data cleaning 
performed before the clustering algorithm is 
explained. Then, the number of clusters suggested 
by each method is compared with the real number 
of clusters and the Rand Index and MVI value are 
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compared. In the discussion section, the results of 
the studies are presented. 

2 Methods 

This section provides a theoretical explanation of 
the k-means clustering algorithm and methods to 
determine the optimal number of clusters that are 
used in this study. First, the k-means clustering 
algorithm for clustering data sets will be explained, 
followed by the methods used to determine the 
number of clusters (Average Silhouette, Davies-
Bouldin, Calinski-Harabasz, and Dunn Index). 
Concrete illustrations are included in these 
explanations. Finally, Rand Index and MVI methods 
will be explained to test the success of clustering 
results. 

2.1 k-means algorithm  

There are various k-means algorithms available. 
However, the common approach is the Hartigan-
Wong algorithm [25], which sums the squared 
distances between observations and the matching 
centroid to determine the total within-cluster 
variation.  

Since the data to be clustered is generally not tidy, 
the data should be prepared before it is clustered. 
There are some steps to be followed for this 
preparation process. The first of these steps is to 
check for missing values. The presence of missing 
values should be detected and necessary actions 
should be taken regarding this issue. Secondly, the 
unit of measurement of each variable will 
undoubtedly be different. These differences in 
measurement units will negatively affect distance 
(similarity) calculations. In order to avoid this 
negative impact, standardization, which means 
transforming all observations in the data set with a 
mean of 0 and a standard deviation of 1, should be 
performed [26]. Another preparatory step is to look 
at the correlation matrix of the variables in the data 
set. If there is a high correlation between 
combinations of pairs of variables, this can both 
negatively affect the analysis and prevent the clear 
distinction of observation clusters from being 
recognized. To avoid these situations, principal 
component analysis should be applied to the data 
set. Since principal component analysis (PCA) 
retains only the variables with highest variance, it is 
likely for clusters to be more visible [27]. Other 
advantages of the PCA are both to avoid the curse of 
dimensionality, and to avoid computing the k-
means becomes computationally expensive [28].  

For a clearer understanding of the k-means 
clustering algorithm, it is useful to explain it step by 
step. After the preparation phase, the first step of 
the k-means algorithm is to determine the number 
of clusters. As mentioned before, this step requires 
detailed analysis. In the following sections, the 
methods used to determine the number of clusters 
are explained in detail. In the second step of the k-
means clustering algorithm, cluster centers 
(centroids) are randomly selected as many as the 
number of clusters selected in the previous step. 
The average distance (usually Euclidean Distance is 
used) of the other observations in the dataset to the 
centroid is calculated. According to these 
calculations, observations are assigned to clusters 
according to their distance to each centroid. The 
new centroids of the new clusters formed after 
these assignments are calculated by taking the 
mean of each cluster. The other parts after the 
second stage continue until convergence and the 
number of iterations is reached [29]. Convergence 
is the condition where the total within sum of 
squares within has the minimum value [30]. 
Equation 1 shows how total within sum of squares 
which intended to be minimized is calculated: 

 

tot.withinss =∑ ∑ (𝑥𝑖 − 𝜇𝑘)2
𝑥𝑖∈𝑐𝑘

𝐾
𝑘=1  (1) 

where,  

𝑘 is the cluster number, 
𝑥𝑖 is the observation, 
𝑐𝑘  is the cluster that observation 𝑥𝑖 is assigned to, 
𝜇𝑘 is the mean of 𝑐𝑘. 
 

2.2   Average silhouette method 

Average silhouette is a cluster interpretation and 
validation method based on the comparison of 
cluster tightness and separation [31]. Cluster 
tightness assesses how accurate the cluster 
assignment of the observation is, while cluster 
separation assesses how well the observation 
separates from the cluster to which it was not 
assigned. In order to construct silhouettes, a 
clustered data set and calculation of the distance 
between observations are required.  

2.2.1  Cluster tightness 

For each observation in the data set, cluster 
tightness is calculated separately. For each 
observation, the average Euclidean distance 



 
 
 
 

Veri Bilim Derg, 6(1), 34-45, 2023 
 

37 

 

between 𝑥𝑖 and  𝑥𝑖′  nd is calculated.  Assume dark 
colored dot is 𝑥𝑖 and for a concrete illustration 
please see Figure 1. Equation 2 explains how cluster 
tightness is calculated.  

𝑎𝑖  =  
1

𝑛𝑘 −  1
∑ 𝑑

𝑥𝑖 ,𝑥𝑖′
 ∈  𝑐𝑘

(𝑥𝑖 , 𝑥𝑖′) (2) 

where, 
𝑐𝑘 is the cluster that observation 𝑥𝑖 assigned to, 
𝑛𝑘 is the total observation number of 𝑐𝑘 ,  
𝑥𝑖′  are all observations other than 𝑥𝑖 in 𝑐𝑘 ,   
𝑑(𝑥𝑖 , 𝑥𝑖′) is Euclidean distance between 𝑥𝑖  and 
 𝑥𝑖′   

 

Figure 1. illustration of 𝑎𝑖  calculation 
 

2.2.2  Cluster separation 

For each observation in the data set, cluster 
separation is calculated separately. For the 
observation 𝑥𝑖 , cluster separation is calculated as 
the minimum Euclidean distance between 𝑥𝑖 and all 
the observations in the clusters that are not in the 
cluster that 𝑥𝑖is assigned to[31]. Assume dark 
colored dot is 𝑥𝑖 and for a concrete illustration 
please see Figure 2. Equation 3 explains how cluster 
separation is calculated.  
 

𝑏𝑖   =  𝑚𝑖𝑛( 𝑑(𝑥𝑖 , 𝑥𝑖′) ) (3) 

 

 

Figure 2. illustration of 𝑏𝑖 calculation for 
two clustered data 

After both cluster tightness and separation are 
calculated, average silhouette value is calculated by 
using the Equation 4: 
 

𝑆𝑖  =
𝑏𝑖 −  𝑎𝑖

𝑚𝑎𝑥(𝑎𝑖  ,  𝑏𝑖)
  (4) 

As mentioned before, the silhouette value is 
calculated separately for each observation. This 
means that the validity of clustering is measured for 
each observation. The sum of the silhouette values 
of each observation divided by the number of 
observations is sufficient to measure the validity of 
the clustering result. The value obtained as a result 
of this process is called the average silhouette value. 
The average silhouette takes values between -1 and 
1, which means poor clustered and well clustered, 
respectively. 

1. 2.3   Caliński - Harabasz Method 

Essentially, Caliński-Harabasz method is a method 
to minimize the variation of each cluster [32]. It is 
calculated separately for each cluster. The higher 
value of the Caliński-Harabasz is considered as the 
dataset is clustered well. There are two metrics to 
calculate in order to get the Caliński-Harabasz 
value. One is the within-cluster sum of squares, and 
the second one is the between-cluster sum of 
squares. 

2.3.1  Within cluster sum of squares 

In order to calculate within cluster sum of squares 
(WCSS), for each cluster, one needs to calculate the 
average distance between each observation and 
cluster centroid [32]. Assume the dark colored dot 
is a cluster centroid and for a concrete illustration 
please see Figure 3. Equation 5 and 6 explains how 
WCSS is calculated.  
 

𝑊𝐶𝑆𝑆𝑘  = ∑( 𝑥𝑖 −  𝑐𝑐𝑘  )2

𝑛𝑘

𝑖 = 1

 (5) 

𝑊𝐶𝑆𝑆 = ∑ 𝑊𝐶𝑆𝑆𝑘

𝐾

𝑘=1

 (6) 

 
𝑊𝐶𝑆𝑆𝑘 is the within cluster sum of squares of 
cluster 𝑖, 
𝑛𝑘 is number of the observations in cluster that 𝑥𝑖 is 
assigned to, 
𝑥𝑖 is the ith observation of 𝑐𝑘  , 
𝑐𝑐𝑘 is the centroid of cluster 𝑐𝑘 . 
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Figure 3. illustration of the WCSS calculation for a 

cluster 

2.3.2  Between cluster sum of squares 

For each cluster, between cluster sum of squares 
(BCSS) is the Euclidean distance between the 
centroid of that cluster and the centroid of the 
dataset(barycenter) [32]. Assume the dark colored 
dot in the middle is barycenter, the other dark 
colored ones are the centroids of the clusters and 
for a concrete illustration please see Figure 4. 
Equation 7 explains how BCSS is calculated.  

𝐵𝐶𝑆𝑆 =  ∑ 𝑛𝑘 × (𝑐𝑐𝑘  − 𝐶 )2

𝐾

𝑘 =1

  (7) 

where 𝐶 is the barycenter of the dataset. 
 

 
Figure 4. illustration of BCSS calculation for two 

clustered data 
 
After WCSS and BCSS are calculated, Caliński-
Harabasz value can be calculated by using equation 
8. 

𝐶𝐻 =
𝐵𝐶𝑆𝑆

𝑊𝐶𝑆𝑆
 −  

𝑛 − 𝑘

𝐾 −  1
  (8) 

2.4   Davies - Bouldin Method 

Essentially, Davies - Bouldin is an index to calculate 
similarity between clusters [33]. In a four step 
calculation, Davies - Bouldin method finds the most 
similar cluster for each cluster. It is calculated 

separately for each cluster. Davies-Bouldin takes 
values between 0 and 1. Lower value of the Davies - 
Bouldin means the dataset is clustered well. 

2.4.1  Intra-cluster dispersion 

Intra-cluster dispersion measures distribution of 
the cluster. It is, for each cluster, the average 
distance between cluster centroid and each 
observation. Assume the dark colored dot is a 
cluster centroid and for a concrete illustration 
please see Figure 5. Equation 9 explains how intra-
cluster dispersion is calculated.  
 

𝑆𝑘  =  
1

𝑛𝑘
∑( 𝑥𝑖 −  𝑐𝑐𝑘  )2

𝑛𝑘

𝑖= 1

  (9) 

 
Figure 5. illustration of 𝑆𝑘 calculation 

 

2.4.2  Separation criteria 

In this step, the sum of squared distances between 
each cluster centroid is calculated. In this way, how 
well the clusters separation is determined. It should 
be noted that for each cluster centroid, there are 
𝑘 − 1 distances. Let the cluster number be three. To 
calculate separation criteria for cluster 1, distance 
between both centroid of cluster 1 and centroid of 
cluster 2, and centroid of cluster 1 and centroid of 
cluster 3 is calculated. Assume the dark colored dots 
are the centroid of the clusters and for a concrete 
illustration for two clustered data, please see Figure 
6. Equation 10 explains how separation criteria is 
calculated. 
 

𝑀𝑘𝑘′  =  ( 𝑐𝑐𝑘  −  𝑐𝑐𝑘′ )
2  (10) 

 
where, 
 𝑐𝑐𝑘 is the centroid of cluster 𝑘, 
𝑐𝑐𝑘′ is the centroid of cluster 𝑘′. 
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Figure 6. illustration of the calculation of 
Separation Criteria for two clustered data 

 

2.4.3  Cluster similarity & most similar clusters 

Let K be 3 again.  In order to calculate cluster 
similarity for the cluster 1 and 2, values for cluster 
1 and 2 calculated in the first step are summed. 
Then, it is divided to the value for cluster 1 and 2 
that is calculated in the second step. Just like the 
second step, for each cluster there are k-1 similarity 
measurements 𝑅𝑘𝑘′. Higher value of the 𝑅𝑘𝑘′ means 
that for cluster 𝑘, the most similar cluster is 𝑘′. 
Equations 11 and 12 explains how similarity and 
most similar clusters are calculated: 
 

𝑅𝑘𝑘′ ≡  
𝑆𝑘  + 𝑆𝑘′ 

𝑀𝑘𝑘′
  (11) 

 
𝑅𝑘  ≡  𝑚𝑎𝑥(𝑅𝑘𝑘′)  (12) 

 
where, 
𝑆𝑘 is the intra cluster dispersion of cluster 𝑘, 
𝑆𝑘′  is the intra cluster dispersion of cluster not 𝑘, 
𝑀𝑘𝑘′ is the separation criteria of cluster 𝑘 and 
cluster not 𝑘. 
 
After the first three steps are calculated, Davies -
Bouldin index is calculated by applying Equation 13.  

�̅� ≡  
1

𝐾
∑ 𝑅𝑘

𝐾

𝑘 = 1

  (13) 

where 𝐾 is the total cluster number. 

 

2.5  Dunn index 

Dunn Index is calculated by dividing minimum 
separation to maximum diameter [34] It is 
calculated separately for each cluster. Higher value 
of the Dunn Index means data is clustered well. The 
minimum distance between observations that 
belong to the separate clusters is called minimum 
separation. Assume dark colored dots represent the 

closest observations between two separate clusters 
and for a concrete illustration please see Figure 7. 
On the other hand, the maximum distance between 
observations that are assigned to the same cluster 
is called maximum diameter. Assume dark colored 
dots represent the furthest observations in the 
same cluster and for a concrete illustration please 
see Figure 8.  Equation 14 and 15 explains how 
minimum separation and maximum diameter are 
calculated: 
 

𝑚𝑖𝑛𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛  = 𝑚𝑖𝑛(𝑑(𝑥𝑖 , 𝑥𝑖′) 𝑐𝑘≠𝑐𝑘′
)   

(14) 

where, 

𝑥𝑖 are the observations in 𝑐𝑘  
𝑥𝑖′ are the observations in 𝑐𝑘′ . 

 

 

Figure 7. illustration of the minimum separation 
calculation for two clustered data 

 

 
𝑚𝑎𝑥𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟  = 𝑚𝑎𝑥(𝑑(𝑥𝑖  , 𝑥𝑖′) 𝑥𝑖 ,𝑥𝑖′∈𝑐𝑘

)   
(15) 

where, 

𝑥𝑖 are the observations in 𝑐𝑘  
𝑥𝑖′ are the observations other than 𝑥𝑖  in 𝑐𝑘 .     
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Figure 8. illustration of the maximum diameter 
calculation 

2.6   Rand index 

The Rand Index is a measure of the similarity 
between clustering result and label of the dataset. It 
was introduced by William M. Rand in 1971 and is 
defined as the ratio of the total number of 
observations that clustered correctly to the total 
number of observations [35]. The Rand Index takes 
values from 0 to 1, with a value of 1 indicating that 
the dataset is clustered perfectly, and a value of 0 
indicating that dataset clustered imperfectly. It is 
often used as a measure of the quality of a clustering 
algorithm or as a measure of the similarity between 
different clustering techniques applied to the same 
dataset. 
To compute the Rand Index, we first need to define 
a confusion matrix, which is a matrix that compares 
the elements in the clustering result and the actual 
values. Table 1 explains the confusion matrix in 
detail. The confusion matrix has four entries: a, b, c, 
and d. The entry a represents the number of 
observations that are in the same cluster in both 
clustering result and label. The entry b represents 
the number of observations that are in the same 
cluster in the label but in different clusters in the 
clustering result. The entry c represents the number 
of observations that are in different clusters in the 
label but in the same cluster in the clustering result. 
The entry d represents the number of observations 
that are in different clusters in both clustering 
result and label. Equation 16 explains how 
similarity and most similar clusters are calculated. 
 
 
 
 
 
 

Table 1. Confusion matrix 

  Label 

  1 0 

Clustering  
result 

1 a b 

0 c d 

 

𝑅𝐼 =
𝑎 + 𝑑

𝑎 + 𝑏 + 𝑐 + 𝑑
 

 

(16) 

 

2.7   Meila’s variation of information 

MVI is a measure of the dissimilarity between 
clustering result and label of the dataset. It was 
introduced by Marina Meila in 2005 as an 
alternative to the Rand Index and other measures of 
cluster similarity that are based on the confusion 
matrix. The VI is defined as the sum of the mutual 
information between the two clustering and the 
entropy of each clustering [36]. Mutual information 
is a measure of the amount of information shared 
between two random variables, and entropy is a 
measure of the amount of uncertainty or 
randomness in a random variable. MVI takes values 
between 0 to infinity, with a value of 0 indicating 
that clustering result and the label are identical and 
a larger value indicating greater dissimilarity. It is 
often used as a measure of the quality of a clustering 
algorithm or as a measure of the similarity between 
different clustering techniques applied to the same 
dataset. MVI is calculated by computing the mutual 
information between the clustering result and label 
and the entropy of clustering result and label. 
Equation 17 explains how the mutual information is 
calculated: 
 

𝑀𝐼 = ∑ ∑ 𝑝(𝑘, 𝑘 ′)𝑙𝑜𝑔
𝑝(𝑘, 𝑘 ′)

(𝑝(𝑘)𝑝′(𝑘′))

𝑛𝑘′

𝑘′=1

𝑛𝑘

𝑘=1

 (17) 

where, 
𝑝(𝑘) and 𝑝′(𝑘′) are random variables associated 
with the clusterings 𝑐𝑘 and 𝑐𝑘′ , 
𝑝(𝑘, 𝑘′) is the probability that a pair of elements 
belong to 𝑐𝑘 in the clustering result and 𝑐𝑘′ in the 
label 
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Second step is the calculation of the entropy of the 
clustering result and the label. Equation 18 explains 
how the entropy is calculated for the clustering 
result. It is also calculated for the label. 
 

𝐻 =  − ∑ 𝑝(𝑘)log (𝑝(𝑘))

𝑛𝑘

𝑘 =1

 (18) 

 
Finally, the Variation of Information is calculated by 
using Equation 19 follows: 
 

𝑉𝐼 = 𝐻(𝑘) + 𝐻(𝑘 ′) − 2(𝑀𝐼) 
(19) 

where 𝐻(𝑘) and 𝐻(𝑘′) are the entropies of the 
clustering result and the label, 𝑀𝐼 is the mutual 
information between clustering result and the label. 

 

3   Real data analysis 

R programming language was used in all of the 
analyses performed in this study. The factoextra 
[37] package was used for the clustering algorithms, 
the NbClust [38] package was used for the functions 
to determine the optimal number of clusters, and 
the fpc [39] package was used to calculate the Rand 
Index and MVI scores. 
 
In this section, analyses that are done in nine real 
datasets from different study areas are used. Except 
for User Knowledge [40] and Appendicitis [41] 
datasets, all other datasets, which are wine, e.coli, 
breast cancer wisconsin, column3c, iris, haberman, 
and breast tissue, were taken from the UCI Machine 
Learning Depository [42]. In all of the data sets used 
in the study, there is one variable containing class 
information; however, this dependent variable was 
removed from the data set before clustering. Class 
information is used to calculate Rand Index and MVI 
scores at the end of clustering and to measure 
whether the number of clusters is correctly decided.  
Information on how many clusters(class) the data 
sets consist of and the process applied in the data 
preparation process can be found in Table 2. The 
codes of the study can be found at 
https://github.com/ozturkfemre/optimal_k . 
 

 

 

 

Table 2. Information about datasets 

Dataset Abbreviation  # of 
class 

Preparation 

Wine d1 3 Standardiza
tion 

E.coli d2 8 Standardiza
tion 

Breast 
Cancer 

Wisconsin 

d3 2 PCA 

Column3c d4 3 PCA 

Iris d5 3 PCA 

Haberman d6 2 Standardiza
tion 

Breast 
Tissue 

d7 6 PCA 

Appendicitis d8 2 PCA 

User 
Knowledge 

d9 4 Standardiza
tion 

 
As can be seen from Table 2, PCA was applied to 
some datasets during the data preparation, while 
some datasets were standardized. When the 
correlation matrix of breast cancer wisconsin, 
column3c, iris, breast tissue, and appendicitis 
datasets are examined, high correlation is noticed in 
the combinations of variable pairs. PCA was applied 
to these datasets to prevent this correlation from 
negatively affecting the analysis. 
 
Table 3 shows the number of clusters suggested by 
the four methods for each data set. Among the four 
methods, Caliński-Harabasz and Average Silhouette 
are found to be the most successful method by 
correctly determining the cluster of 2 out of 9 
datasets, while the others seem to be correctly 
determining in 1 dataset.  
 
 
 
 

 

https://github.com/ozturkfemre/optimal_k
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Table 3. Suggested cluster numbers 
 

Data 
# of 
class 

Average 
Silhouette 

Caliński - 
Harabasz 

Davies - 
Bouldin 

Dunn 
Index  

d1 3 3 3 3 3 

d2 8 4 4 5 6 

d3 2 2 2 7 6 

d4 3 2 2 9 10 

d5 3 2 9 2 2 

d6 2 4 5 5 6 

d7 6 2 4 4 2 

d8 2 3 4 10 10 

d9 4 9 2 9 8 

 
At this point, it may be necessary to draw attention 
especially to the d2 dataset. In Figure 9 which is the 
scatter plot of the d2 dataset, it was found that the 
number of observations included in some of the 8 
classes of the dataset was less than five (see purple, 
green, and pink observations. Considering the 
number of clusters proposed by all methods, it was 
realized that these methods had difficulty in 
detecting small clusters.  
 
 

 
Figure 9. Scatterplot of d2 

(each color represents a class) 

 

Another striking feature is in the d5. Three of the 
four methods suggested two cluster numbers for 
the d5.  As can be seen in Figure 10, the scatterplot 
of the PCA applied d5 data set shows a two-cluster 
decomposition, but in any case, it needs to be noted 
that the methods failed because the actual number 
of classes is three. It is also noteworthy that the 
Average Silhouette method suggests two clusters in 
four out of nine datasets, no matter how diverse the 
datasets and how different the number of classes. 
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Figure 10. Scatterplot of d5 

(each color represents a class) 
 

4   Discussion & Conclusion 

This study set out to compare four different 

methods (Average Silhouette, Caliński-Harabasz, 

Davies-Bouldin, and Dunn Index) to determine the 

optimal number of clusters in nine real datasets 

[43]. Each dataset is clustered by the k-means 

algorithm. The most striking result to emerge from 

this study is that methods failed to determine the 

optimal number of clusters correctly on the 

majority of the data sets. Table 4 shows the averages 

of Rand Index and MVI values calculated for each 

method for nine real data sets and success rate of 

each method. When the Rand Index and MVI 

metrics, which measure the accuracy of clustering 

observations into clusters, are analyzed, it is 

possible to have information about how the 

methods approach the correct number of clusters, 

even if they cluster incorrectly. Although Average 

Silhouette and Caliński-Harabasz correctly 

determined an equal number of datasets, the 

average Rand Index and average MVI values suggest 

that Average silhouette is closer to the correct 

number of clusters in the datasets that it incorrectly 

determined. 

 

 

Table 4. Average metrics and success rates of 
methods 

Methods Rand 
Index 

MVI Success 
Rate 

Average 
Silhouette 

0.40 1.14 0.22 

Caliński - 
Harabasz 

0.38 1.29 0.22 

Davies - 
Bouldin 

0.33 1.54 0.11 

Dunn Index  0.30 1.56 0.11 

 

Although there are no other studies that use 

validation metrics (Rand Index and Meila’s 

Variation of Information) for evaluation, there are 

some comparisons in several studies that the 

methods used in this study is compared The same 

results were obtained on the Iris data set where 

NbClust package is presented [44]. Nanjundan et al. 

[45] also compared Average Silhouette method with 

the proposed method on six data sets, including Iris 

and Breast Cancer Wisconsin, and obtained the 

similar results. On 12 data sets, 7 of which are the 

same, the I-nice algorithm [46] is compared with the 

Elbow and Average Silhouette approaches. The 

same results were obtained. 

 

The evidence from this study suggests that methods 

tend to fail in some specific cases. Future research 

should therefore concentrate on developing new 

methods and algorithms. For the former, since 

Average Silhouette and Caliński-Harabasz are the 

methods which are closer to the better success, they 

can be starting points for following studies. 
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