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Abstract. We study the Dirichlet problem for the nonlocal parabolic equation of the Kirchhoff type

ut − a
(
∥u∥p

Lp(Ω)

) n∑
i=1

Di

(
|u|p−2 Diu

)
+ b(x, t) |u|α(x,t)−2 u log |u| = f (x, t) in QT = Ω × (0,T ),

where p ≥ 2, T > 0, Ω ⊂ Rn, n ≥ 2, is a smooth bounded domain. The coefficient a(·) is real-valued function
defined on R+. It is shown that the problem has a weak solution under appropriate and general conditions on a(·),
α(·, ·) and b(·).
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1. Introduction

This paper deals with the existence of the solution for the following nonlocal nonlinear parabolic Dirichlet-type
boundary value problem with logarithmic nonlinearity. ut − a

(
∥u∥pLp(Ω)

) n∑
i=1

Di

(
|u|p−2 Diu

)
+ b(x, t) |u|α(x,t)−2 u log |u| = f (x, t) ,

u (x, 0) = 0 = u0 (x) , u |ΓT= 0
(1.1)

where p ≥ 2 and (x, t) ∈ QT := Ω × (0,T ) , T > 0, ΓT := ∂Ω × [0,T ] , Ω ⊂ Rn (n ≥ 2) is a bounded domain with
Lipschitz boundary, Di ≡ ∂/∂xi, a(·) is real-valued function defined on R+ and b(x, t), α(x, t) are measurable functions
defined on QT .

One of the main feature of problem (1.1) is the presence of the term a(∥u∥pLp(Ω)), which is said to be nonlocal since
it depends not only on the point in QT where the equation is evaluated, but on the norm of the whole solution. Here we
note that for the functions u(t) : (0,T ) 7→ Lp(Ω)

∥u(t)∥pLp(Ω) = ∥u(t)∥pp =
∫
Ω

|u(x, t)|p dx.

Such problems are usually called of Kirchhoff-type, as they are generalizations of the Kirchhoff equation, originally
proposed in [20]. More specifically, Kirchhoff proposed the following model
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ρ
∂2u
∂t2 −

(
ρ0

h
+

E
2L

∫ L

0

∣∣∣∣∣∂u
∂x

∣∣∣∣∣2 dx
)
∂2u
∂x2 = 0,

where ρ, ρ0, h, L, E are constants. This nonlocal model extends the classical D’Alembert’s wave equation, by consider-
ing the effects of the changes in the length of the strings during the vibrations.

There are numerous nonlocal mathematical models of Kirchhoff type studied by many authors to express the pro-
cesses in physics and engineering see, e.g., [1,6,9–11,25,35] and references therein. For example, nonlocal PDEs arise
in mathematical modelling of migration of a population to describe the density of some biological species are worked
in [12, 16], nonlocal models obtained from combustion theory is considered in [3].

The questions of existence, uniqueness and asymptotic behavior of solutions of the initial and boundary-value
problems for the equations

ut − a(l(u))∆u = f , ut − a(∥∇u∥2L2(Ω))∆u = f ,

were studied in the series of works [9–11] with a continuous function a whose argument l(u) was a linear continuous
functional on L2(Ω), or a continuously differentiable function a of the argument ∥∇u∥2L2(Ω). In these works, the equation
is nondegenerate: a is assumed to be bounded away from zero so there exist positive constants 0 < m ≤ M < ∞ such
that

m ≤ a(s) ≤ M, ∀s ∈ R.

In recent years, logarithmic nonlinearity appears frequently in partial differential equations which describes important
physical phenomena (see [4, 7, 8, 18, 21, 23]) and the references therein). This type of nonlinearity was introduced in
the nonrelativistic wave equations [17]. Moreover, the logarithmic nonlinearity appears in several branches of physics
such as nuclear physics [36], optics and Q-ball dynamics in theoretical physics [15].

It was Chen et al. [7, 8], who first carried out the research on logarithmic source. They studied the following
semilinear heat equation with logarithmic nonlinearity in [7]:

ut − ∆u = u log |u|

in a bounded domain Ω ⊂ RN with zero Dirichlet boundary condition. By using the logarithmic Sobolev inequality,
they proved the existence of global weak solution and showed that the power nonlinearity is a critical condition of
blow-up in finite time for the solutions of the considered problem.

There are a few papers devoted to study on Kirchhoff-type equations with logarithmic nonlinearity [5,14,27,33,37].
The first result due to Ding and Zhou [14]. They considered the following fractional Kirchhoff-type parabolic problem
with logarithmic nonlinearity: 

ut + M([u]2
s)LKu = |u|p−2u log |u|, in Ω × R+

u(x, t) = 0 in (RN \Ω) × R+

u(x, 0) = u0(x) in Ω,

where 0 < s < 1, LK is a nonlocal integro-differential operator which generalizes the fractional Laplace operator
(−∆)s. They combined the Galerkin approximation method and the potential well to prove the existence of a global
weak solution with subcritical and critical states.

The boundary-value problems including the equations of type (1.1) is known as Newtonian filtration equation which
can be given in the following general form:

ut = ∆φ (u) + h.

Equation (1.1) is a parabolic equation with implicit degeneracy which is so called the porous medium equation [19,22,
34], i.e.,

ut = ∆
(
|u|m−1 u

)
+ h,

where m > 1. This equation is parabolic for u different from 0 and degenerates when u = 0. Under condition
m > 1, above equation describes the non-stationary flow of a compressible Newtonian fluid in a porous medium under
polytropic conditions.

Equations with variable nonlinearity and nonlocal equations of Kirchhoff type with logarithmic source appear in
numerous applications and are actively studied as mentioned above. Inspired by the above works, in the present article
we concern a class of the evolution equations which combine both features.
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We generalize the results mentioned above to the Kirchhoff type porous medium equation by considering the equa-
tion with nonlocal diffusion:

a(∥u∥pLp(Ω))∆
(
|u|p−2 u

)
for all p ≥ 2.

It is important to emphasize that by rearranging the diffusion part of the equation (1.1), we have

ut = a
(
∥u∥pLp(Ω)

)
∆

(
|u|p−2 u

)
+ F (x, t, u, f ) . (1.2)

To the best of our knowledge, there are no papers dealing with porous medium equations of type (1.2) providing a
nonlocal coefficient a(∥u∥pLp(Ω)) and forcing term F whose argument depends on |u| with variable nonlinearity and also
logarithmic source.

We apply the general solvability theorem [30], see Theorem 2.8, to prove the existence of weak solution of (1.1).
We study problem (1.1) on the domain of the operator generated by addressed problem and verify the existence of
sufficiently smooth solution of the problem under more general (weak) conditions. Essentially we show that problem
(1.1) has a solution in the space

S 0 := Lp
(
0,T ; S̊ 1,(p−2)q,q (Ω)

)
∩W1,q

(
0,T ; W−1,q (Ω)

)
∩ {u : u (x, 0) = 0},

where

S̊ 1,(p−2)q,q (Ω) :=

u ∈ L1 (Ω) :
n∑

i=1


∫
Ω

|u|(p−2)q |Diu|q dx

 < ∞
 ∩ {u |∂Ω≡ 0} .

Apart from linear boundary value problems, the sets generated by nonlinear problems are subsets of linear spaces
which do not have the linear structure (see [26, 28–32] and references therein).

2. Function Spaces and Notations

We first present some basic facts from the theory of the Generalized Lebesgue spaces which are so called Orlicz-
Lebesgue space. The more details about these spaces can be found in [2, 13].

Let Ω be a Lebesgue measurable subset of Rn such that |Ω| > 0. (Throughout the paper, we denote by |Ω| the
Lebesgue measure of Ω). Let α (x, t) ≥ 1 be a measurable bounded function defined on the cylinder QT = Ω × (0,T ) ,
i.e.,

1 ≤ α− ≡ ess
QT

inf |α (x, t)| ≤ ess
QT

sup |α (x, t)| ≡ α+ < ∞. (2.1)

Then, on the set of all functions on QT define the functional ζα and ∥·∥Lα(x,t)(QT ) by

ζα (u) ≡
∫
QT

|u|α(x,t) dxdt

and

∥u∥Lα(x,t)(QT ) ≡ inf
{
λ > 0| ζα

(u
λ

)
≤ 1

}
.

The Generalized Lebesgue space is defined as follows:

Lα(x,t) (QT ) := {u : u is a measurable real-valued function in QT , ζα (u) < ∞} .

The space Lα(x,t) (QT ) becomes a Banach space under the norm ∥.∥Lα(x,t)(QT ) which is so-called Luxemburg norm.

Lemma 2.1. Let 0 < |Ω| < ∞, α1, α2 fulfill (2.1). Then,

Lα1(x,t) (QT ) ⊂ Lα2(x,t) (QT ) ⇐⇒ α2 (x, t) ≤ α1 (x, t) for a.e (x, t) ∈ QT .

Lemma 2.2. The dual space of Lα(x,t) (QT ) is Lα
∗(x,t) (QT ) if and only if α ∈ L∞ (QT ). The space Lα(x,t) (QT ) is reflexive

if and only if
1 < α− ≤ α+ < ∞,

here α∗ (x, t) ≡ α(x,t)
α(x,t)−1 .
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For u ∈ Lα(x,t) (QT ) and v ∈ Lα
∗(x,t) (QT ) where α, α∗ satisfy (2.1) and 1

α(x,t) +
1

α∗(x,t) = 1, the following inequalities
hold: ∫

QT

|uv| dxdt ≤ 2 ∥u∥Lα(x,t)(QT ) ∥v∥Lα∗ (x,t)(QT )

and
min{∥u∥α

−

Lα(x,t)(QT ) , ∥u∥
α+

Lα(x,t)(QT )} ≤ ζα (u) ≤ max{∥u∥α
−

Lα(x,t)(QT ) , ∥u∥
α+

Lα(x,t)(QT )}. (2.2)
We introduce certain nonlinear function spaces (pn-spaces) which are complete metric spaces and directly connected

to the problem under consideration. We also give some embedding results for these spaces [28–32] (see also references
cited therein).

Definition 2.3. Let γ ≥ 0, β ≥ 1, ϱ =
(
ϱ1,..,ϱn

)
is multi-index, m ∈ Z+, Ω ⊂ Rn (n ≥ 1) is bounded domain with

Lipschitz boundary.

S m,γ,β (Ω) ≡

u ∈ L1 (Ω) | [u]γ+βS m,γ,β(Ω) ≡
∑

0≤|ϱ|≤m


∫
Ω

|u|γ |Dϱu|β dx

 < ∞


in particularly,

S̊ 1,γ,β (Ω) ≡

u ∈ L1 (Ω) | [u]γ+β
S̊ 1,γ,β(Ω)

≡

n∑
i=1


∫
Ω

|u|γ |Diu|β dx

 < ∞
 ∩ {u |∂Ω≡ 0}

and for p ≥ 1,

Lp
(
0,T ; S̊ 1,γ,β (Ω)

)
≡

u ∈ L1 (QT ) | [u]p
Lp(0,T ;S̊ 1,γ,β(Ω)) ≡

T∫
0

[u]p
S̊ 1,γ,β(Ω)

dt < ∞

 .
These spaces are called pn-spaces.1

Theorem 2.4. Let γ ≥ 0, β ≥ 1 then φ : R→ R, φ (t) ≡ |t|
γ
β t is a homeomorphism between S 1,γ,β (Ω) and W1,β (Ω).

Theorem 2.5. The following embeddings hold:
(i) Let γ, γ1 ≥ 0 and β1 ≥ 1, β ≥ β1,

γ1
β1
≥

γ
β
, γ1 + β1 ≤ γ + β. Then, we have

S̊ 1,γ,β (Ω) ⊆ S̊ 1,γ1,β1 (Ω) .

(ii) Let γ ≥ 0, β ≥ 1, n > β and n(γ+β)
n−β ≥ r. Then, there is a continuous embedding

S̊ 1,γ,β (Ω) ⊂ Lr (Ω) .

Furthermore for n(γ+β)
n−β > r the embedding is compact.

(iii) If γ ≥ 0, β ≥ 1 and p ≥ γ + β, then
W1,p

0 (Ω) ⊂ S̊ 1,γ,β(Ω)
holds.

Similar problem to (1.1) was studied in [24]. Differently from this article we consider logarithmic nonlinearity in
the reaction part of the equation (1.1). The presence of the logarithmic nonlinearity caused some difficulties to obtain
energy inequalities to apply Theorem 2.8. In order to handle this situation the following two lemmas (Lemma 2.6 and
Lemma 2.7) will be used to get the required estimates. For the proof of these lemmas, we refer [28] and references
cited there.

Let us denote the function set M (Ω) to the family of all measurable functions α : Ω −→ [1,∞] and the set M0 (Ω)
is defined as,

M0 (Ω) :=
{
α ∈ M (Ω) : 1 ≤ α− ≤ α (x) ≤ α+ < ∞, a.e. x ∈ Ω

}
,

1S 1,γ,β (Ω) is a complete metric space with the following metric: ∀u, v ∈ S 1,γ,β (Ω)

dS 1,γ,β (u, v) =
∥∥∥∥|u| γβ u − |v|

γ
β v

∥∥∥∥
W1,β(Ω)
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where α− := ess
Ω

inf |α (x)| , α+ := ess
Ω

sup |α (x)|.

Lemma 2.6. Assume that α ∈ M0(Ω) and β ≥ 1, σ > 0. Then, for every u ∈ Lα(·)+σ (Ω)∫
Ω

|u|α(x)
∣∣∣log |u|

∣∣∣β dx ≤ M1

∫
Ω

|u|α(x)+σ dx + M2

is fulfilled. Here M1 ≡ M1 (σ, β) > 0 and M2 ≡ M2 (σ, β, |Ω|) > 0 are constants.

Lemma 2.7. Let ε̃ > 0 and β1 : Ω→ [ε̃,∞) be a measurable function which satisfy ε̃ ≤ β−1 ≤ β1 (x) ≤ β+1 < ∞ and α,
β ∈ M0(Ω). Then, the inequality∫

Ω

|u|α(x)
|ln |u||β(x) dx ≤ C1

∫
Ω

|u|α(x)+β1(x) dx +C2, ∀u ∈ Lα(·)+β1(·) (Ω)

holds. Here C1 ≡ C1 (ε̃, β+) > 0 and C2 ≡ C2 (ε̃, β+, |Ω|) > 0 are constants.

In the following, we present the general solvability theorem [30](see also for similar theorems [29, 32]). We will
employ this theorem to demonstrate the existence of a weak solution of problem (1.1).

Theorem 2.8. Let X and Y be Banach spaces with dual spaces X∗ and Y∗, respectively, Y be a reflexive Banach space,
M0 ⊆ X be a weakly complete “reflexive” pn-space, X0 ⊆ M0 ∩ Y be a separable vector topological space. Let the
following conditions be fulfilled:

(i) ξ : S 0 −→ Lq (0,T ; Y) is a weakly compact (weakly continuous) mapping, where

S 0 := Lp (0,T ; M0) ∩W1,q (0,T ; Y) ∩ {x (t) : x (0) = 0}

1 < max {q, q′} ≤ p < ∞, q′ = q
q−1 ;

(ii) there is a linear continuous operator A : W s,m (0,T ; X0) −→ W s,m (0,T ; Y∗) , s ≥ 0, m ≥ 1 such that A
commutes with ∂

∂t and the conjugate operator A∗ has ker(A∗) = 0;
(iii) operators ξ and A generate, in generalized sense, a coercive pair on space Lp (0,T ; X0) , i.e. there exist a

number r > 0 and a function Ψ : R+ −→ R+ such that Ψ (τ) /τ ↗ ∞ as τ ↗ ∞ and for any x ∈ Lp (0,T ; X0)
such that [x]Lp(M0) ≥ r following inequality holds:

T∫
0

⟨ξ (t, x (t)) , Ax (t)⟩ dt ≥ Ψ
(
[x]Lp(M0)

)
;

(iv) there exists some constants C0 > 0, C1,C2 ≥ 0 and ν > 1 such that the inequalities

T∫
0

⟨η (t) , Aη (t)⟩ dt ≥ C0 ∥η∥
ν
Lq(0,T ;Y) −C2,

t∫
0

〈
∂x
∂τ
, Ax (τ)

〉
dτ ≥ C1 ∥x∥νY (t) −C2, a.e. t ∈ [0,T ]

hold for any x ∈ W1,p (0,T ; X0) and η ∈ Lp (0,T ; X0) .

Assume that that conditions (i)-(iv) are fulfilled. Then, the Cauchy problem

dx
dτ
+ ξ (t, x (t)) = y (t) , y ∈ Lq (0,T ; Y) ; x (0) = 0

is solvable in S 0 in the following sense
T∫

0

〈
dx
dτ
+ ξ (t, x (t)) , y∗ (t)

〉
dt =

T∫
0

⟨y (t) , y∗ (t)⟩ , ∀y∗ ∈ Lq′ (0,T ; Y∗) ,
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for any y ∈ Lq (0,T ; Y) satisfying the inequality

sup

 1
[x]Lp(0,T ;M0)

T∫
0

⟨y (t) , Ax (t)⟩ dt : x ∈ Lp (0,T ; X0)

 < ∞.
3. Assumptions and theMain Result

Suppose that following conditions are fulfilled for problem (1.1):

(U.1) Let p ≥ 2, a(·) : R→ R is a continuous function and there exists positive constants 0 < m ≤ M < ∞ such that

m ≤ a(s) ≤ M, ∀s ∈ R. (3.1)
(U.2) Assume α : QT → R is a measurable function and satisfies 1 < α− ≤ α (x, t) ≤ α+ < p. Also, the coefficient

b(x, t) is a measurable function defined on QT that holds |b(x, t)| ≤ B0.

We study problem (1.1) for the functions f ∈ Lq
(
0,T ; W−1,q (Ω)

)
, where the dual space is defined W−1,q (Ω) :=(

W1,p
0 (Ω)

)∗
for q := p

p−1 .
Let us denote S 0 by

S 0 := Lp
(
0,T ; S̊ 1,(p−2)q,q (Ω)

)
∩W1,q

(
0,T ; W−1,q (Ω)

)
∩ {u : u (x, 0) = 0}.

The solution of the problem (1.1) is understood in the following sense:

Definition 3.1. A function u : QT → R is called a weak solution of problem (1.1) if
(i) u ∈ S 0;

(ii) for every test-function η ∈ Lp
(
0,T ; S̊ 1,(p−2)q,q (Ω)

)
∩W1,q

(
0,T ; W−1,q (Ω)

)
∫

QT

utη dz +
n∑

i=1

∫
QT

(
a(∥u∥pp) |u|p−2 Diu

)
Diη dz +

∫
QT

b(x, t)|u|α(x,t)−2u log |u|η dz =
∫

QT

fη dz.

We now present the main result of this paper:

Theorem 3.2. Let the conditions (U.1)-(U.2) are fulfilled. Then, for all f ∈ Lq
(
0,T ; W−1,q (Ω)

)
problem (1.1) has a

weak solution in the space S 0 and ∂u/∂t belongs to Lq
(
0,T ; W−1,q (Ω)

)
.

We introduce the following mappings in order to apply Theorem 2.8 to prove Theorem 3.2.

ξ : S 0 −→ Lq
(
0,T ; W−1,q (Ω)

)
,

ξ (u) := −a(∥u∥pp)
n∑

i=1

Di

(
|u|p−2 Diu

)
+ b(x, t)|u|α(x,t)−2u log |u|,

A : Lp
(
0,T ; W1,p

0 (Ω)
)
⊂ S 0 −→ Lp

(
0,T ; W1,p

0 (Ω)
)
,

A(u) := u.

We prove several lemmas to show that all conditions of Theorem 2.8 are fulfilled under the conditions of Theorem 3.2.

Lemma 3.3. Under the conditions of Theorem 3.2, ξ and A generate a “coercive pair” on Lp
(
0,T ; W1,p

0 (Ω)
)
.

Proof. Since A ≡ Id, being “coercive pair” equals to order coercivity of ξ on Lp
(
0,T ; W1,p

0 (Ω)
)
.

For u ∈ Lp
(
0,T ; W1,p

0 (Ω)
)
, we have the following:

⟨ξ (u) , u⟩QT
=

n∑
i=1


T∫

0

a(∥u∥pp)
∫
Ω

|u|p−2 |Diu|2 dxdt

 +
∫
QT

b(x, t)|u|α(x,t) log |u| dz.

By using (3.1) we have
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⟨ξ (u) , u⟩QT
≥ m

n∑
i=1


T∫

0

∫
Ω

|u|p−2 |Diu|2 dz

 −
∫
QT

|b(x, t)||u|α(x,t)| log |u|| dz.

From Definition 2.3 and condition (U.2) we obtain

⟨ξ (u) , u⟩QT
≥ m [u]p

Lp(0,T ;S̊ 1,(p−2),2(Ω)) − B0

∫
QT

|u|
α(x,t)
| log |u|| dz. (3.2)

If we consider the embedding

S̊ 1,(p−2),2 (Ω) ⊂ S̊ 1,(p−2)q,q (Ω)

to estimate pseudo-norm in (3.2) and as α+ < p, utilizing Lemma 2.6 for some σ > 0 such that α+ < α+ + σ ≤ p to
estimate the second integral in (3.2), then we get

⟨ξ (u) , u⟩QT
≥ mC [u]p

Lp(0,T ;S̊ 1,(p−2)q,q(Ω)) −C0

∫
QT

|u|α(x,t)+σ dz −C1. (3.3)

Using (2.2) to estimate the integral right-hand side of (3.3), we obtain

⟨ξ (u) , u⟩QT
≥ mC [u]p

Lp(0,T ;S̊ 1,(p−2)q,q(Ω)) −C0
(
∥u∥α

++σ
Lα(x,t)+σ(QT ) + 1

)
−C2. (3.4)

By applying Young’s inequality in (3.4) for ϵ ∈ (0, 1), we have

⟨ξ (u) , u⟩QT
≥ mC [u]p

Lp(0,T ;S̊ 1,(p−2)q,q(Ω)) − ϵ∥u∥
p
Lα(x,t)+σ(QT ) −C3. (3.5)

By considering the embedding

Lp
(
0,T ; S̊ 1,(p−2)q,q (Ω)

)
⊂ Lp (QT ) ⊂ Lα(x,t)+σ (QT ) (3.6)

into (3.5) to estimate the second norm and choosing ϵ sufficiently small, we obtain

⟨ξ (u) , u⟩QT
≥ C4 [u]p

Lp(0,T ;S̊ 1,(p−2)q,q(Ω)) −C3. (3.7)

Here, C3 = C3 (p, α+, σ, B0, |Ω|), C4 = C4 (p,m, α+, B0, |Ω|) are positive constants. So from (3.7) the proof is com-
pleted. □

Lemma 3.4. Under the conditions of Theorem 3.2, ξ is bounded from S 0 into Lq
(
0,T ; W−1,q (Ω)

)
.

Proof. We define the mappings

ξ1 (u) := −a(∥u∥pp)
n∑

i=1

Di

(
|u|p−2 Diu

)
,

ξ2 (u) := b(x, t)|u|α(x,t)−2u log |u|.

We need to show that, these mappings are both bounded from Lp
(
0,T ; S̊ 1,(p−2)q,q (Ω)

)
into Lq

(
0,T ; W−1,q (Ω)

)
.

Let us show that ξ1 is bounded: For u ∈ Lp
(
0,T ; S̊ 1,(p−2)q,q (Ω)

)
and v ∈ Lp

(
0,T ; W1,p

0 (Ω)
)

∣∣∣⟨ξ1 (u) , v⟩QT

∣∣∣ ≤ n∑
i=1


T∫

0

a(∥u∥pp)
∫
Ω

|u|p−2 |Diu| |Div| dxdt

 .
Applying Hölder’s inequality and by (3.1) we find,
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∣∣∣⟨ξ1 (u) , v⟩QT

∣∣∣ ≤ M

 n∑
i=1


T∫

0

∫
Ω

|u|(p−2)q |Diu|q dxdt




1
q
 n∑

i=1


T∫

0

∫
Ω

|Div|p dxdt




1
p

= M [u]p−1
Lp(0,T ;S̊ 1,(p−2)q,q(Ω)) ∥v∥Lp

(
0,T ;W1,p

0 (Ω)
) .

By the last inequality, boundedness of ξ1 is obtained.
On the other hand, for the boundeness of ξ2 from (3.6) and Theorem 2.5, it is sufficient to show that ξ2(u) is bounded

in Lα
∗(x,t) (QT ) where α∗ is conjugate of α i.e. α∗ (x, t) := α(x,t)

α(x,t)−1 .

ζα∗ (ξ2 (u)) =
∫
QT

(
|b(x, t)||u|α(x,t)−1| log |u||

)α∗(x,t)
dz

≤ C5

∫
QT

|u|α(x,t)| log |u||α
∗(x,t) dz.

By applying Lemma 2.7 to the last integral above, we get

ζα∗ (ξ2 (u)) ≤ C6

∫
QT

|u|α(x,t)+σ dz +C7

≤ C6
(
∥u∥α

++σ
Lα(x,t)+σ(QT ) + 1

)
+C7.

(3.8)

Estimating the right side of (3.8) by the help of embedding (3.6), we obtain

ζα∗ (ξ2 (u)) ≤ C8 [u]p
Lp(0,T ;S̊ 1,(p−2)q,q(Ω)) +C9,

here C8 = C8 (α+, B0, σ, p) , C9 = C9 (α+, σ, B0, p, |Ω|) > 0 are constants.
That yields ξ2 : Lp

(
0,T ; S̊ 1,(p−2)q,q (Ω)

)
→ Lα

∗(x,t) (QT ) ⊂ Lq
(
0,T ; W−1,q (Ω)

)
is bounded. □

Lemma 3.5. Under the conditions of Theorem 3.2, ξ is weakly compact from S 0 into Lq
(
0,T ; W−1,q (Ω)

)
.

Proof. We first prove the weak compactness of ξ1, where ξ1 (u) := −a(∥u∥pp)
∑n

i=1 Di

(
|u|p−2 Diu

)
. Let {um (x, t)}∞m=1 ⊂

S 0 be bounded and um
S 0
⇀ ũ0. It is sufficient to find a subsequence of

{
um j

}∞
m=1
⊂ {um}

∞
m=1 which satisfies ξ1

(
um j

)
Lq(0,T ;W−1,q(Ω))

⇀ ξ1 (ũ0) .
For a.e. t ∈ (0,T ) , um (·, t) ∈ S̊ 1,(p−2)q,q (Ω) and by using the one-to-one correspondence between the classes

(Theorem 2.4)
S̊ 1,(p−2)q,q (Ω)

φ
←→
φ−1

W1,q
0 (Ω)

with the homeomorphism
φ (τ) ≡ |τ|p−2 τ, φ−1 (τ) ≡ |τ|−

p−2
p−1 τ,

for all m ≥ 1 we have
|um|

p−2 um ∈ Lq
(
0,T ; W1,q

0 (Ω)
)

is bounded.

Due to the fact Lq
(
0,T ; W1,q

0 (Ω)
)

is a reflexive space, there exists a subsequence
{
um j

}∞
m=1
⊂ {um}

∞
m=1 such that

∣∣∣um j

∣∣∣p−2
um j

Lq
(
0,T ;W1,q

0 (Ω)
)

⇀ ζ. (3.9)

Now, we show that ζ = |ũ0|
p−2 ũ0. According to compact embedding [32],

Lp
(
0,T ; S̊ 1,(p−2)q,q (Ω)

)
∩W1,q

(
0,T ; W−1,q (Ω)

)
↪→ Lp (QT ) (3.10)

we have
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∃
{
um jk

}∞
m=1
⊂

{
um j

}∞
m=1

, um jk

Lp(QT )
→ ũ0

which implies

um jk

QT
→
a.e

ũ0

by the continuity of φ (·) , we get ∣∣∣um jk

∣∣∣p−2
um jk

QT
→
a.e
|ũ0|

p−2 ũ0

that yields ζ = |ũ0|
p−2 ũ0.

By the the compact embedding (3.10) and continuity of a(·) we have

a(∥um jk
(t)∥pp)→ a(∥ũ0(t)∥pp) a.e. in (0,T ). (3.11)

Thus, by using (3.9) and (3.11) together with the boundedness of ξ1 from Lemma 3.4, we deduce that for each v ∈
Lp

(
0,T ; W1,p

0 (Ω)
)
⟨ξ1

(
um jk

)
, v⟩QT =

n∑
i=1

∫ T

0
a(∥um jk

∥
p
p)⟨−Di

(∣∣∣um jk

∣∣∣p−2
Dium jk

)
, v⟩Ω dt

−→
m j↗∞

n∑
i=1

∫ T

0
a(∥ũ0(t)∥pp)⟨−Di

(
|ũ0|

p−2 Diũ0

)
, v⟩Ω dt = ⟨ξ1 (ũ0) , v⟩QT ,

whence, the result is obtained.
We now show the weak compactness of ξ2: By Lemma 3.4

ξ2 : Lp
(
0,T ; S̊ 1,(p−2)q,q (Ω)

)
→ Lα

∗(x,t) (QT )

is bounded. Thus, for m ≥ 1, ξ2 (um) =
{
b(x, t)|um|

α(x,t)−2um log |um|)
}∞
m=1
⊂ Lα

∗(x,t) (QT ) .

From Lemma 2.2, Lα
∗(x,t) (QT ) (1 < (α∗)− < ∞) is a reflexive space, so {um}

∞
m=1 has a subsequence

{
um j

}∞
m=1

such that

|um|
α(x,t)−2um log |um|

Lα
∗ (x,t)(QT )
⇀ ψ.

We deduce from the compact embedding (3.10) that

∃
{
um jk

}∞
m=1
⊂

{
um j

}∞
m=1

, um jk

Lp(QT )
→ ũ0 .

Thus,

um jk

QT
→
a.e

ũ0.

Accordingly, for almost (x, t) ∈ QT the continuity of |τ|α(x,t)−2τ log |τ| with respect to τ implies that

|um jk
|α(x,t)−2um jk

log |um jk
|

QT
→
a.e
|ũ0|

α(x,t)−2ũ0 log |ũ0|,

so, we arrive at ψ = |ũ0|
α(x,t)−2ũ0 log |ũ0| i.e. ξ2(um jk

)
Lq(0,T ;W−1,q(Ω))

⇀ ξ2 (ũ0). Thus, we conclude that ξ is weakly compact
from S 0 into Lq

(
0,T ; W−1,q (Ω)

)
. □

Now, we give the proof of main theorem of this section.

Proof of Theorem 3.2. Since A = Id, obviously it is a linear bounded map and satisfies the conditions (ii) of Theorem
2.8. Furthermore for any u ∈ W1,p

0 (QT ) the following inequalities are valid:

T∫
0

⟨u, u⟩Ω dt =

T∫
0

∥u∥2L2(Ω) dt ≥ K ∥u∥2Lq(0,T ;W−1,q(Ω))
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and

t∫
0

〈
∂u
∂τ
, u

〉
Ω

dτ =
1
2
∥u(t)∥2L2(Ω) ≥ K

1
2
∥u(t)∥2W−1,q(Ω) ,

a.e. t ∈ [0,T ] (constant K > 0 comes from embedding inequality). Thus, condition (iv) of Theorem 2.8 is satisfied as
well. Consequently from Lemma 3.3-Lemma 3.5, it follows that the mappings ξ and A fulfill all the conditions of The-
orem 2.8. Employing this theorem to problem (1.1), we find that (1.1) is solvable in S 0 for any f ∈ Lq

(
0,T ; W−1,q (Ω)

)
satisfying the following inequality

sup

 1
[u]Lp(0,T ;S̊ 1,(p−2)q,q(Ω))

T∫
0

⟨ f , u⟩Ω dt : u ∈ Lp
(
0,T ; W1,p

0 (Ω)
) < ∞.

Considering the norm definition of f in Lq
(
0,T ; W−1,q (Ω)

)
, we conclude that (1.1) is solvable in S 0 for any f ∈

Lq
(
0,T ; W−1,q (Ω)

)
. In order to complete the proof, it remains to remark that (1.1) can be written in the form

∂u
∂t
= f (x, t) − F (x, t, u,Diu) ,

and under the conditions of Theorem 3.2, right hand belongs to Lq
(
0,T ; W−1,q (Ω)

)
which implies

∂u/∂t ∈ Lq
(
0,T ; W−1,q (Ω)

)
.
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