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ABSTRACT: This article studies the free vibration and thermal buckling responses of functionally 

graded material (FGM) porous nanoplates exposed to thermal load. The developed mathematical 

model includes a shear deformation, size-scale, and microstructure influence by a high-order shear 

deformation and nonlocal strain gradient theories. The study considers four different porosity patterns across 

the thickness: uniform, symmetrical, asymmetric bottom, and asymmetric top distributions. The equation of 

motion of the FGM porous nanoplate, including the effects of thermal load, was derived with Hamilton's 

principle, and then solved analytically by employing the Navier method. Especially the temperature-dependent 

material properties of Ti-6Al-4V and Zirconia are involved in the model in calculating thermal loads due to their 

effectiveness in the dynamic behavior of the nanoplate. For the free vibration responses of the nanoplate, the 

effects of nonlocal and strain gradient elasticities, temperature rise, porosity volume fraction and its distribution 

have been analyzed. The results reveal significant influences of porosity and its distribution pattern, material's 

volumetric dispersion, size dependency, and temperature on the plate's free vibration and buckling temperatures.  

Keywords: Porosity, Functionally Graded Material, Nanoplate, Nonlocal strain gradient theory, Thermal 

load. 
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1. INTRODUCTION  

Many diverse types of engineering structures frequently employ laminated composite materials. 

In common laminated composite constructions, homogeneous elastic laminae are linked together to 

produce improved mechanical characteristics. However, significant interlaminar stresses, causing 

delamination, can be induced by sudden material characteristic changes at the interface between two 

materials (Zenkour, 2005). Functionally graded materials (FGMs), usually consisting of ceramic and 

metal mixtures, are developed to overcome the drawbacks of classical composites by providing a 

smooth material transition. In these materials, the interface problems of classical composites can be 

eliminated by gradually changing the volume fraction of the constituent materials in the thickness 

direction. Thus, a smooth stress distribution is provided (Zenkour and Alghamdi, 2010). The powder 

metallurgy method is the most suitable and applicable process for FGM production. Porosity, 

controlled by compression and sintering temperature and time, is one of the critical parameters 

affecting the mechanical behavior of the parts produced with powder metallurgy (Pasha and B.M., 

2022; Şanlı and Gavas, 2021). 

Because of its excellent mechanical, biocompatibility, and corrosion resistance, titanium and 

its alloys are frequently employed in biomedical equipment. Ti-6Al-4V is one of the most popular 

titanium alloys due to its excellent mechanical and physical properties. In addition, ZrO2 is a medical 

ceramic frequently used in dental applications, and its benefits, including strong biocompatibility, 

simple sterilization, and shaping, have drawn increasing attention (X. Zhang et al. 2018, Zhou et al. 

2022). Also, it can be used as a second phase to reduce the sintering temperature and improve the 

mechanical properties of boron carbide (Biçer 2022). Besides using Ti-6Al-4V/ZrO2 in biomedical 

applications, Ti-6Al-4V has been commonly utilized in the automotive industry, medical instruments, 

and gas turbines, due to its superior performance, such as high fracture toughness, specific strength, 

and corrosion resistance. Meanwhile, as a thermal barrier, zirconia is frequently bonded with Ti-6Al-

4V to manufacture some complex parts used in aircraft turbines. Therefore, joining Ti-6Al-4V and 

ZrO2 properly are crucial to achieve excellent joints (C. Zhang et al., 2020). 

Recently, a substantial investigation has been performed on the dynamic behavior of small-

scale structures under thermal and mechanical loads. However, the classical theories need to be 

revised to predict the dynamic behavior of micro/nanoscale structures. For this reason, to consider 

the small-scale effects, various theories have been proposed so far, such as the micro-morphic theory 

(MMT) defined by (Eringen and Suhubi, 1964), the nonlocal elasticity theory (NET) (Eringen, 1983), 

the strain gradient elasticity theory (SGT) (Kong et al., 2008), the modified couple stress theory 

(MCST) (Ke et al., 2012) and the nonlocal strain gradient theory (NSGT) (Li and Hu, 2015). 

Porous small-scale structures under several loads and environments are gaining significance 

nowadays, and the free vibration and bending response of functionally graded material (FGM) porous 

nanoplates have been studied in numerous studies. Barati and Zenkour examined an FGM nanoplate's 

post-buckling behavior, considering the geometric imperfections and porosity based on the NET and 

high-order shear deformation theory (HSDT) (Barati and Zenkour, 2019). Bendaho et al. studied an 

FGM nanoplate's free vibration analysis using the 2D and quasi-3D nonlocal shear deformation 

theories (Bendaho et al., 2019). By combining the finite element method (FEM) and nonlocal theory, 

Doan et al. analyzed the free vibration response of FGM porous nanoplates with different shapes, 

considering foundation effects (Doan et al., 2021). Kiani examined a carbon nanotube (CNT) 

reinforced composite plate's post-buckling problem subjected to uniform temperature rise using first-
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order shear deformation theory (FSDT) (Kiani, 2017). The study, examining the effect of uniform or 

functionally grading distribution of the CNTs used as reinforcement, stated that the X-type FGM 

distribution of the CNT model resulted in higher buckling temperature and reduced the plate's 

deflection after buckling. Talebizadehsardari et al. developed a closed-form solution based on the 

third-order shell theory (TSDT) for the free vibration of porous FGM micro-nano shells 

(Talebizadehsardari et al., 2020). Using the TSDT, Coskun et al. examined an FGM porous 

microplate's static bending, free vibration, and buckling behavior (Coskun et al., 2019). They stated 

that every porosity distribution's effect is discerned due to the connection among the porosity 

variation and the material properties' heterogeneity. 

The studies on FGM porous nanoplates are limited in the literature and have only addressed the 

free response of porous nanoplates with uniform and random porosity distributions. This study aims 

to investigate the free vibration and buckling response of an FGM porous nanoplate exposed to a 

thermal load using the HSDT and NGST. The nanoplate consists of Zirconia (ZrO2) and Titanium 

(Ti-6Al-4V) constituents that are graded according to a power law across the thickness. The porosity 

is inevitable due to the nature of such structures. In addition, it may be desirable to create porosity 

for lightweight structures by design in specific areas of use. The proposed method considers four 

different porosity distributions and models for FGM porous nanoplates using the HSDT and NGST. 

Especially the temperature-dependent material properties of the plate's constituents, Zirconia (ZrO2) 

and Titanium (Ti-6Al-4V), are considered in the study due to their effectiveness in the dynamic 

behavior of the nanoplate. By applying Navier's method, the effects of porosity distribution, nonlocal 

and size parameters, and thermal force are analyzed, and some interesting new results are also 

presented. 

 

2. MATERIALS AND METHODS 

Figure 1 depicts a porous FGM nanoscale plate in a thermal environment with the sizes a 

(width), b (length), and h (thickness). In contrast, the nanoplate's upper and lower surfaces are, in 

turn, made of Zirconia (ZrO2) and Titanium (Ti-6Al-4V). Moreover, these two components are 

functionally graded according to a power law between surfaces. The temperature-dependent material 

properties and porosity distribution patterns are explained below. 

 

2.1 Temperature-dependent material properties 

The effective material properties of ceramic (ZrO2) and metal (Ti-6Al-4V) material constituents 

can be defined as temperature-dependent with the following (Touloukian 1967; Esen, 2021a; Esen, 

2021b): 

𝑃 = 𝑃0(𝑃−1𝑇
−1 + 1 + 𝑃1𝑇 + 𝑃2𝑇

2 + 𝑃3𝑇
3) (1) 

 

As presented in Table 1, the symbols of P0, P-1, P1, P2, and P3 are experimentally defined 

characteristic material constants based on degrees of temperature T. Because of the nano-size, a 

uniform temperature rise case is only managed with a stress-free state at (T0 = 300 K), where ΔT=T-

T0. 
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Figure 1. An FGM porous nanoplate in a thermal field 

2.2 Porosity patterns and effective properties 

The plate's effective material properties can be defined by the volume fractions (Vc and Vm) and 

properties (Pc and Pm) of ceramic and metal components, according to a power-law grading with the 

following formula (Najafi et al., 2017; Esen 2019): 

 

𝑃𝑒𝑓 = 𝑉𝑐𝑃𝑐 + 𝑉𝑚𝑃𝑚 

(2) 

𝑉𝑐 = (
𝑧

ℎ
+
1

2
)
𝑝

 , 𝑉𝑚 = 1 − 𝑉𝑐            0 ≤ 𝑛 < ∞            

where p is the material grading (power-law) constant. According to Equation (2), the density, 

modulus of elasticity, Poisson's ratio, and thermal expansion coefficient of an FGM plate without 

porosity are obtained as follows. (Reddy and Chin, 1998): 

 

𝑃(𝑧) = [𝑃𝑐 − 𝑃𝑚]𝑉𝑐 + 𝑃𝑚 (3) 

In this study, four types of porosity distribution across the thickness are considered as given in 

Figure 2. Accordingly, the effective material properties are obtained by substituting the total volume 

fraction (α) of porosity in Equation (2). Thus, by using Equation (2), Equations (4-7) are obtained for 

uniform, symmetric, asymmetric top and asymmetric bottom porosity patterns, respectively (Esen et 

al., 2022; Esen and Özmen 2022a). 

𝑃(𝑧) = [𝑃𝑐 − 𝑃𝑚]𝑉𝑐 + 𝑃𝑚 −
𝛼

2
[𝑃𝑐 + 𝑃𝑚] (4) 

𝑃(𝑧) = {[𝑃𝑐 − 𝑃𝑚]𝑉𝑐 + 𝑃𝑚} {1 − 𝛼 𝑐𝑜𝑠 [𝜋
𝑧

ℎ
]} (5) 
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𝑃(𝑧) = {[𝑃𝑐 − 𝑃𝑚]𝑉𝑐 + 𝑃𝑚} {1 − 𝛼 𝑐𝑜𝑠 [
𝜋

2
(
𝑧

ℎ
+
1

2
)]} (6) 

𝑃(𝑧) = {[𝑃𝑐 − 𝑃𝑚]𝑉𝑐 + 𝑃𝑚} {1 − 𝛼 𝑐𝑜𝑠 [
𝜋

2
(
𝑧

ℎ
−
1

2
)]} (7) 

 

Figure 2. Porosity distribution patterns across the thickness 

 

2.3 Constitutive Relations 

Using the HSDT, the displacement field is in the form (Aghababaei and Reddy 2009; Akavci, 

2014) 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑦, 𝑡) − 𝑧𝑤0,𝑥 + 𝑓(𝑧)𝜙𝑥(𝑥, 𝑦, 𝑡) 

𝑣(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣0(𝑥, 𝑦, 𝑡) − 𝑧𝑤0,𝑦 + 𝑓(𝑧)𝜙𝑦(𝑥, 𝑦, 𝑡) 

𝑤(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤0(𝑥, 𝑦, 𝑡) 

(8) 

Here, 𝑢, 𝑣, and 𝑤 are the displacements and 𝑢0(𝑥, 𝑦, 𝑡) 𝑣0(𝑥, 𝑦, 𝑡) and 𝑤(𝑥, 𝑦, 𝑡) represent the 

mid-plane displacements, and 𝜙𝑥(𝑥, 𝑦, 𝑡) and 𝜙𝑦(𝑥, 𝑦, 𝑡) are the cross-section's rotations, and (. ),𝑥 and 

(. ),𝑦 imply the partial derivatives for x and y. Finally, the parabolic shape function 𝑓(𝑧) is assumed as 

(Reddy 1984; Aghababaei and Reddy, 2009):  

 

𝑓(𝑧) = 𝑧 −
𝐻𝑡
𝜋
𝑠𝑖𝑛 (

𝜋𝑧

𝐻𝑡
) (9) 

{
 
 

 
 
𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦
𝛾𝑦𝑧
𝛾𝑥𝑧}
 
 

 
 

=

{
 
 

 
 

𝑢0,𝑥 − 𝑧𝑤0,𝑥𝑥 + 𝑓(𝑧)𝜙𝑥𝑥
𝑣0,𝑦 − 𝑧𝑤0,𝑦𝑦 + 𝑓(𝑧)𝜙𝑦𝑦

𝑢0,𝑦 + 𝑣0,𝑥 − 2𝑧𝑤0,𝑥𝑦 + 𝑓(𝑧)(𝜙𝑥,𝑦+𝜙𝑦,𝑥)

�́�(𝑧)𝜙𝑦

�́�(𝑧)𝜙𝑥 }
 
 

 
 

 (10) 

Here, 

𝑔(𝑧) = 1 −
𝑑𝑓(𝑧)

𝑑𝑧
 (11) 
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Including the thermal effect, the constitutive relationships of the HSDT and NSGT for the porous 

FGM nanoplate can be stated as follows (Lim et al., 2015; Jalaei and Thai 2019): 

{
 
 

 
 
𝜎𝑥𝑥
𝜎𝑦𝑦
𝜏𝑥𝑦
𝜏𝑦𝑧
𝜏𝑥𝑧}

 
 

 
 

[1 − ( 𝑒𝑎 )
2
 ∇2] =

[
 
 
 
 
𝑄11
𝑄12
0
0
0

𝑄12
𝑄22
0
0
0

0
0
𝑄66
0
0

0
0
0
𝑄44
0

0
0
0
0
𝑄55]

 
 
 
 

{
 
 

 
 
𝜀𝑥𝑥 − 𝛼𝑥𝑥∆𝑇
𝜀𝑦𝑦 − 𝛼𝑦𝑦∆𝑇

𝛾𝑥𝑦
𝛾𝑦𝑧
𝛾𝑥𝑧 }

 
 

 
 

[1 − 𝑙𝑚
2 ∇2] (12) 

where 𝜀 and 𝛾 are the normal and shear strains, and the stiffnesses 𝑄𝑖𝑗  are: 

𝑄11 = 𝑄22 =
𝐸(𝑧)

1 − 𝜐2
, 𝑄12 =

𝑣𝐸(𝑧)

1 − 𝜐2
,   𝑄44 = 𝑄55 = 𝑄66 =

𝐸(𝑧)

2(1 + 𝜐)
 (13) 

And the resultants of the force and moment can be defined as; 

{
𝑁
𝑀
𝑃
} = [

𝐴𝑖𝑗 𝐵𝑖𝑗 𝐶𝑖𝑗
𝐵𝑖𝑗 𝐷𝑖𝑗 𝐸𝑖𝑗
𝐶𝑖𝑗 𝐸𝑖𝑗 𝐺𝑖𝑗

] {

𝜀
𝜅
𝜅𝜙
} , (𝑖, 𝑗 = 1,2,6) (14) 

 

{𝑅} = [𝐹𝑖𝑗]{𝜙}, (𝑖, 𝑗 = 4,5) (15) 

where, 

𝑁 = {

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦

} , 𝑀 = {

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

} , 𝑃 = {

𝑃𝑥
𝑃𝑦
𝑃𝑥𝑦

} , 𝑅 = {
𝑅𝑥
𝑅𝑦
}, 

𝜀 = {

𝑢0,𝑥
𝑣0,𝑦

𝑢0,𝑦 + 𝑣0,𝑥
} , 𝜅 = {

𝑤0,𝑥𝑥
𝑤0,𝑦𝑦
2𝑤0,𝑥𝑦

} , 𝜅𝜙 = {

𝜙𝑥,𝑥
𝜙𝑦,𝑦

𝜙𝑥,𝑦 +𝜙𝑦,𝑥

} , 𝜙 = {
𝜙𝑥
𝜙𝑦
} 

(16) 

and the stiffness coefficients are described by: 

(𝐴𝑖𝑗, 𝐵𝑖𝑗, 𝐶𝑖𝑗 , 𝐷𝑖𝑗 , 𝐸𝑖𝑗 , 𝐺𝑖𝑗) = ∫ (1, 𝑧, 𝑓(𝑧), 𝑧2, 𝑧𝑓(𝑧), 𝑓(𝑧)2)𝑄𝑖𝑗𝑑𝑧
ℎ/2

−ℎ/2

      (𝑖, 𝑗 = 1,2,6),

𝐹𝑖𝑗 = ∫ (𝑔(𝑧))2𝑄𝑖𝑗𝑑𝑧
ℎ/2

−ℎ/2

    𝑖, 𝑗 = 4,5 

(17) 

Thermally-induced force and moment are described by (Kiani, 2017): 

[
𝑁𝑥𝑥
𝑇 𝑀𝑥𝑥

𝑇

𝑁𝑦𝑦
𝑇 𝑀𝑦𝑦

𝑇 ] = ∫ [
𝑄11 𝑄12
𝑄12 𝑄22

] [
𝛼𝑥𝑥(𝑧, 𝑇)
𝛼𝑦𝑦(𝑧, 𝑇)

] ∆𝑇(1, 𝑧)𝑑𝑧
ℎ/2

−ℎ/2

 (18) 

Strain energy 

𝑈 =
1

2
∫(𝜎𝑥𝑥𝜀𝑥𝑥 + 𝜎𝑦𝑦𝜀𝑦𝑦 + 𝜏𝑥𝑦𝛾𝑥𝑦 + 𝜏𝑥𝑧𝛾𝑥𝑧 + 𝜏𝑦𝑧𝛾𝑦𝑧)𝑑𝑉
𝑉

 (19) 
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Kinetic energy 

𝑇 =
1

2
∫ ∫ ∫ 𝜌(𝑧)[(�̇�2 + �̇�2 + �̇�2)]

ℎ/2

−ℎ/2

𝑏

0

𝑎

0

𝑑𝑧𝑑𝑦𝑑𝑥 (20) 

The external potential energy of transverse 𝑞(𝑥, 𝑦, 𝑡) and thermal loads 

𝑉𝑞𝑇 = ∫[𝑞(𝑥, 𝑦, 𝑡)𝑤0 − 𝑁𝑥𝑥
𝑇
𝜕2𝑤0
𝜕𝑥2

− 𝑁𝑦𝑦
𝑇
𝜕2𝑤0
𝜕𝑦2

]

Ω

𝑑Ω (21) 

Using the Hamilton principle (Reddy, 2007) 

∫ (𝛿𝑇 − 𝛿𝑈 + 𝛿(𝑉𝑞𝑇)𝑑𝑡
𝑡2

𝑡1

= 0 (22) 

By substituting Equations (19), (20) and (21) into Equation (22) and after performing the 

integration, setting each coefficient of 𝛿𝑢0, 𝛿𝑣0, 𝛿𝑤0, 𝛿𝜙𝑥 and 𝛿𝜙𝑦 to zero, the equations of motion 

are: 

(1 − 𝑙𝑚
2
𝜕2

𝜕𝑥2
)

[
 
 
 
 
 

𝑁𝑥,𝑥 + 𝑁𝑥𝑦,𝑦
𝑁𝑥𝑦,𝑥 + 𝑁𝑦,𝑦

𝑀𝑥,𝑥𝑥 +𝑀𝑦,𝑦𝑦 + 2𝑀𝑥𝑦,𝑥𝑦

𝑃𝑥,𝑥 + 𝑃𝑥𝑦,𝑦 − 𝑅𝑥
𝑃𝑥𝑦,𝑥 + 𝑃𝑦,𝑦 − 𝑅𝑦 ]

 
 
 
 
 

= (1 − (𝑒𝑎)2
𝜕2

𝜕𝑥2
)

[
 
 
 
 
 
𝐼1�̈�0 − 𝐼2�̈�0,𝑥 + 𝐼4�̈�𝑥

𝐼1�̈�0 − 𝐼2�̈�0,𝑦 + 𝐼4�̈�𝑦
𝑆 + Ψ

𝐼4�̈�0 − 𝐼5�̈�0,𝑥 + 𝐼6�̈�𝑥

𝐼4�̈�0 − 𝐼5�̈�0,𝑦 + 𝐼6�̈�𝑦]
 
 
 
 
 

 (23) 

With, 

𝑆 = 𝐼1�̈�0 + 𝐼2(�̈�0,𝑥 + �̈�0,𝑦) − 𝐼3(�̈�0,𝑥𝑥 + �̈�0,𝑦𝑦) − 𝐼5(�̈�𝑥,𝑥 + �̈�𝑦,𝑦) 

Ψ = −𝑞 − 𝑁𝑥𝑥
𝑇 𝑤0,𝑥𝑥 + 𝑁𝑦𝑦

𝑇 𝑤0,𝑦𝑦 

(24) 

And the inertia coefficients: 

(𝐼1, 𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5, 𝐼6) = ∫ 𝜌(𝑧)(1, 𝑧, 𝑧2𝑓(𝑧), 𝑧𝑓(𝑧), [𝑓(𝑧)]2)𝑑𝑧
ℎ/2

−ℎ/2

 (25) 

The boundary conditions are described using edge displacements and forces as: 
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(

 
 
 
 
 

at 𝑥 edges:
𝑒𝑖𝑡ℎ𝑒𝑟 𝑢 𝑜𝑟 𝑁𝑥
𝑒𝑖𝑡ℎ𝑒𝑟 𝑣 𝑜𝑟 𝑁𝑥𝑦

𝑒𝑖𝑡ℎ𝑒𝑟 𝑤 𝑜𝑟 𝑀𝑥,𝑥 + 2𝑀𝑥𝑦,𝑥

𝑒𝑖𝑡ℎ𝑒𝑟 𝑤,𝑥 𝑜𝑟 𝑀𝑥

𝑒𝑖𝑡ℎ𝑒𝑟 𝜙𝑥 𝑜𝑟 𝑃𝑥
𝑒𝑖𝑡ℎ𝑒𝑟 𝜙𝑦  𝑜𝑟 𝑃𝑥𝑦 )

 
 
 
 
 

,

(

 
 
 
 
 

at 𝑦 edges:
𝑒𝑖𝑡ℎ𝑒𝑟 𝑣 𝑜𝑟 𝑁𝑥𝑦
𝑒𝑖𝑡ℎ𝑒𝑟 𝑢 𝑜𝑟 𝑁𝑥𝑦

𝑒𝑖𝑡ℎ𝑒𝑟 𝑤 𝑜𝑟 𝑀𝑦,𝑦 + 2𝑀𝑥𝑦,𝑥

𝑒𝑖𝑡ℎ𝑒𝑟 𝑤,𝑦 𝑜𝑟 𝑀𝑦

𝑒𝑖𝑡ℎ𝑒𝑟 𝜙𝑥 𝑜𝑟 𝑃𝑥𝑦
𝑒𝑖𝑡ℎ𝑒𝑟 𝜙𝑦 𝑜𝑟 𝑃𝑦 )

 
 
 
 
 

 (26) 

 

2.4 Navier's solution for rectangular plates with simply supports 

The simply supported boundary conditions applied to the plate satisfy the following equations: 

𝑎𝑡 𝑥 = 0, 𝑎: 𝑁𝑥 = 𝑣 = 𝑤 = 𝑀𝑥 = 𝑃𝑥 = 𝜙𝑦 = 0 

𝑎𝑡 𝑦 = 0, 𝑏: 𝑁𝑦 = 𝑢 = 𝑤 = 𝑀𝑦 = 𝑃𝑦 = 𝜙𝑥 = 0 
(27) 

However, non-classical boundary conditions controlled by: 

𝑎𝑡 𝑥 = 0, 𝑎:
𝜕

𝜕𝑥
(𝑁𝑥, 𝑣, 𝑤,𝑀𝑥 , 𝑃𝑥, 𝜙𝑦) = 0 

𝑎𝑡 𝑦 = 0, 𝑏:
𝜕

𝜕𝑦
(𝑁𝑦, 𝑢, 𝑤,𝑀𝑦 , 𝑃𝑦, 𝜙𝑥) = 0 

(28) 

For the given boundary conditions, to solve Equation (24), the following Fourier series is used 

for the displacements: 

 

𝑢0(𝑥, 𝑡) =∑∑𝑈𝑚𝑛 cos(𝛼𝑥) sin(𝛽𝑦) 𝑒
𝑖𝜔𝑚𝑛𝑡

𝑛𝑚

 

𝑣0(𝑥, 𝑡) =∑∑𝑉𝑚𝑛 sin(𝛼𝑥) cos(𝛽𝑦) 𝑒
𝑖𝜔𝑚𝑛𝑡

𝑛𝑚

 

𝑤0(𝑥, 𝑡) =∑∑𝑊𝑚𝑛 sin(𝛼𝑥) sin(𝛽𝑦) 𝑒
𝑖𝜔𝑚𝑛𝑡

𝑛𝑚

 

𝜙𝑥(𝑥, 𝑡) =∑∑X𝑚𝑛 cos(𝛼𝑥) sin(𝛽𝑦) 𝑒
𝑖𝜔𝑚𝑛𝑡

𝑛𝑚

 

𝜙𝑦(𝑥, 𝑡) =∑∑Y𝑚𝑛 sin(𝛼𝑥) cos(𝛽𝑦) 𝑒
𝑖𝜔𝑚𝑛𝑡

𝑛𝑚

 

(29) 

where 𝛼 = (
𝑚𝜋

𝑎
) , 𝛽 = (

𝑛𝜋

𝑏
), 𝑖 = √−1, and 𝜔𝑚𝑛 is the natural vibration frequency of the mode 

(m, n). 𝑈𝑚𝑛, 𝑉𝑚𝑛 𝑊𝑚𝑛, X𝑚𝑛 and Y𝑚𝑛 are arbitrary coefficients. Substituting Equation (29) into 

Equation (23) the following eigenvalue equation is achieved. 

(K − 𝜔𝑚𝑛
2 M)d = 0 (30) 
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Here, d = {𝑈𝑚𝑛 𝑉𝑚𝑛 𝑊𝑚𝑛 𝑋𝑚𝑛 𝑌𝑚𝑛}𝑇 are the vectors of the unknown coefficients. 

Additionally, K and M are the stiffness and mass matrices given in the Appendix Section with the 

coefficients. The following is used for the 𝜆𝑚𝑛  dimensionless frequency parameter: 

𝜆𝑚𝑛 = 𝜔𝑚𝑛(𝑎
2/ℎ)√𝜌𝑚(1 − 𝑣𝑚2 )/𝐸𝑚   

(31) 

 

 

 

3. RESULTS AND DISSUSSION 

3.1 Validation 

The proposed approach was validated by comparing the dimensionless frequencies of an FGM 

plate made of ZrO2 / Ti-6Al-4V reviewed in Ref. (Huang and Shen, 2004). The dimensions of the 

square plates are assumed as 𝑎 = 𝑏 = 0.2 𝑚 and ℎ = 0.025 𝑚 and with the material properties 

presented in Table 1. In the analyses, the dimensionless frequency parameter is specified by 𝜆𝑚𝑛 =

𝜔𝑚𝑛(𝑎
2/ℎ)√𝜌𝑚(1 − 𝑣𝑚2 )/𝐸𝑚, (𝑇0 = 300𝐾) equation. The obtained results, presented in Table 2, 

imply that the findings of the current methodology are in good correlation with the analytical solution 

of (Huang and Shen, 2004). Where the properties are defined at 𝑇0 = 300𝐾, with 𝜌𝑚 =

4429 𝑘𝑔/𝑚3, 𝑣𝑚 = 0.3, 𝐸𝑚 = 122.56 𝐺𝑃𝑎.   

 

Table 1. Temperature-dependent coefficients of the properties (Reddy and Chin 1998) 

Material Property P-1 P0 P1 P2 P3 

Ti-6Al-4V 

E (Pa) 0 122.56e9 -4.586e-4 0 0 

ρ (kg/m3) 0 4512 0 0 0 

υ 0 0.2884 1.121e-4 0 0 

α (1K-1) 0 7.5788e-6 6.638e-4 -3.147e-6 0 

ψ (W/mK) 0 1 1.704e-4 0 0 

       

ZrO2 

E (Pa) 0 244.27e9 -1.371e-3 1.214e-6 -3.681e-10 

ρ (kg/m3) 0 5680 0 0 0 

υ 0 0.2882 1.133e-4 0 0 

α (1/K) 0 12.766e-6 -1.491e-3 1.006e-5 -6.778e-11 

ψ (W/mK) 0 1.700 1.276e-4 6.648e-8 0 

 

Table 2. The frequency parameter 𝜆𝑚𝑛 = 𝜔𝑚𝑛(𝑎
2/ℎ)√𝜌𝑚(1 − 𝑣𝑚

2 )/𝐸𝑚 comparisons for ZrO2/Ti-6Al-4V plate 

 Huang. et al. (Huang and Shen, 2004)  Present HSDT 

Mode (1,1) (1,2) (2,2) (1,3) (2,3) 
 

(1,1) (1,2) (2,2) (1,3) (2,3) 

p           

0.0 8.273 19.261 28.962 34.873 43.07  7.690 17.973 27.155 32.809 40.732 

0.5 7.139 16.643 25.048 30.174 37.288  6.688 15.630 23.615 28.532 35.422 

1 6.657 15.514 23.345 28.12 34.747  6.237 14.577 22.024 26.610 33.036 

2 6.286 14.625 21.978 26.454 32.659  5.812 13.584 20.524 24.797 30.785 

∞ 5.4 12.571 18.903 22.762 28.111  5.042 11.784 17.764 21.463 26.646 

 

3.2 Free Vibration Analyses 

A small-scale simply supported square plate is treated for the free vibration behavior of the 

FGM nanoplate, with the sizes of a=1nm, b=a, and h=a/10. The plate assumed as made of ceramic 

(ZrO2) and metal (Ti-6Al-4V) components based on the temperature-dependent material properties 
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provided in Table 2. The plate's frequencies 𝜔𝑚𝑛 for the (m, n) modes are calculated using the 

eigenvalue Equation (31). Later the dimensionless frequency parameters are obtained with 𝜆𝑚𝑛 =

𝜔𝑚𝑛(𝑎
2/ℎ)√𝜌𝑚(1 − 𝑣𝑚2 )/𝐸𝑚 equation. Here ρm, Em, and vm are the metal component's material 

properties at room temperature. 

 

  

a) b) 

  

  

c) d) 

Figure 3. The dimensionless frequency λ1,1 variation of nanoplate with different porosity patterns depending on the material 

grading constant (p=0.2-5) and porosity rate (α=0, 0.2, 0.4 and 0.6), for nonlocal e0a=0 and material size lm=0 parameters, 

and temperature rise ∆T=0 

Considering the four porosity patterns, the λ1,1 dimensionless frequency variations are depicted 

in Figure 3 depending on the material grading (power-law) constant p for the various porosity rates 

(α=0, 0.2, 0.4, and 0.6). Here, the temperature rise ∆T, and the nonlocal e0a and material size lm 

parameters are zero. As illustrated in Figure 3, the λ1,1 dimensionless frequency of the nanoplate 

decays rapidly for 𝑝 ≤ 2. Afterwards, except for the uniform porosity α=0.6 case, the declining trend 

decelerates and approaches the limit for larger p values. This indicates that the nanoplate's metal 
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content is higher, and the entire composition tends towards a homogeneous metal structure. The main 

tendencies of the curves demonstrate that the dimensionless frequencies will drop as the stiffness of 

the plate is lowered for greater material grading constant values. However, as the porosity rate 

increases, the dimensionless frequency of the nanoplate also declines. Consequently, rising the 

porosity rate from 0 to 0.4 for the value of material grading constant p=2 reduced the calculated 

dimensionless frequency from 5.385 to 5.168, 5.294, 5.318, and 5.255 in uniform, symmetrical, 

asymmetrical bottom, and asymmetrical top porosity patterns, respectively. Accordingly, the 

influence of the porosity rate on the dimensionless frequency is in the order from the largest to the 

smallest as uniform, asymmetrical bottom, symmetrical, and asymmetrical top porosity patterns, 

respectively. Finally, as can be seen from Figure 3, due to the stiffness variation, both the porosity 

and its distribution function change the nanoplate's free vibration (Esen and Özmen, 2022a). 

Figure 4a shows the frequency variation of the nanoplate with uniform porosity distribution 

depending on material grading constant and temperature rise for the constant value of porosity rate 

α=0.25 and e0a=lm=0. If the composition of the material is rich in ceramics, i.e., p ≤ 1, the effect of the 

temperature increase is small due to the better temperature behavior of the ceramic in the composition. 

However, for all patterns, the increase in the metal component rapidly decreases the frequencies because 

of the softening influence of the temperature rise, as well as the lower strength compared to the ceramic-

rich composition. In Figure 4b, the dimensionless frequency alterations of the nanoplate are presented 

for the different porosity patterns with the application of ∆T=50 K temperature rise. Accordingly, in 

each porosity pattern, the dimensionless frequency of the nanoplate decreased with the temperature rise. 

The effect of porosity patterns on dimensionless frequency in a ceramic-rich plate was also lower 

compared to a metal-rich plate. In other words, for a constant material grading constant, the 

dimensionless frequency differences between the porosity patterns increase as the metal ratio of the 

nanoplate is increased. Accordingly, in a nanoplate with a fully ceramic composition (p=0), the 

dimensionless frequency of the nanoplate decreased from 5.736 to 5.434 in uniform porosity, from 

5.695 to 5.396 in symmetrical porosity, from 5.695 to 5.396 in asymmetric bottom porosity, and from 

5.695 to 5.396 in asymmetric top porosity by increasing the temperature ∆T=50 K. 

 

  

a) b) 

Figure 4. a) The dimensionless frequency 𝜆1,1 variation of nanoplate with uniform porosity pattern dependent on the material 

grading constant (p=0-6) and temperature rise (∆T=0, 10, 25 and 50 K) for porosity rate α=0.25, a/h=10, and e0a =lm =0. b) 
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Comparisons of uniform (UP), symmetric (SP), asymmetric bottom (BP), and asymmetric top (TP) porosity patterns 

dependent on the temperature rise ∆T=50 K 

  
a) b) 
  

  
c) d) 

Figure 5. The dimensionless frequency 𝜆(1,1) variations of of nanoplate with different porosity patterns dependent on the 

material grading constant (p=0, 0.5, 1, and 2) and temperature rise ∆T for porosity rate α=0.2, and a/h=10 and e0a=lm=0 

Considering different porosity patterns, Figure 5 illustrates the impact of material grading 

constant on buckling temperatures for a porosity rate of α=0.2. In general, up to a temperature rise of 

approximately ∆T=120 K, increasing the material grading constant decreased the dimensionless 

frequencies in all porosity patterns. After the ∆T=120 K temperature rise, increasing the material 

grading constant slowed down the decrease rate of dimensionless frequency. According to the power 

law, at the value of material grading constant p=0, the plate is completely made of ZrO2, and at p=2, 

approximately 83% of the plate is metal, and the remaining part is ZrO2. Since the thermal expansion 

coefficient and density of Ti-6Al-4V (αb=6.9414x10-6 1/K and ρb= 4512 kg/m3) at room temperature 

are lower than the thermal expansion coefficient and density of ZrO2 (αt=1.8590x10-5 1/K and ρt= 5680 

kg/m3), the buckling temperature of the plate increased as the metal (Ti-6Al-4V) ratio in the plate 

increased. Therefore, as the metal composition in the nanoplate improved, the buckling temperature of 

the plate shifted towards higher temperature values. When comparing the porosity patterns, the buckling 

temperatures of the nanoplate at p=0 were calculated as 345.5 K, 355 K, 355 K, and 355.1 K in the 

uniform, symmetrical, asymmetrical bottom, and asymmetrical top porosity patterns, respectively. By 
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increasing the material grading constant to p=2, these temperature values, in turn, increased to 732 K, 

637 K, 618 K, and 668.25 K in uniform, symmetrical, asymmetrical bottom, and asymmetrical top 

porosity patterns. Accordingly, the increase rates were obtained as 112%, 79.43%, 74.08%, and 

88.23%, respectively. 

 

  
a) b) 
  

  
c) d) 

Figure 6. The dimensionless frequency 𝜆(1,1) variations of nanoplate with different porosity patterns dependent on the 

porosity rate ( α=0, 0.2, and 0.4) and temperature rise ∆T for porosity rate α=0.25, and a/h=10 and e0a=lm=0 

Figure 6 displays the effect of porosity rate on buckling temperatures for four porosity patterns. 

In general, in all porosity patterns, the dimensionless frequencies decreased by increasing the porosity 

rate up to a temperature rise of approximately ∆T=140 K. However, increasing the porosity rate after 

∆T=140 K temperature rise difference slowed down the decrease rate of dimensionless frequency. 

Therefore, the buckling temperatures of the nanoplate increased. When comparing the porosity 

patterns, the buckling temperatures of the nanoplate, which was computed as 478 K at α=0, increased 

to 597 K, 564 K, 516 K, and 573K in uniform, symmetrical, asymmetrical bottom, and asymmetrical 

top porosity patterns, respectively, by increasing the porosity rate of the nanoplate from 0 to 0.5. 

Accordingly, the increment rates were obtained as 24.89%, 17.99%, 7.94%, and 19.87%, 

respectively. 
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a) b) 

Figure 7. a) The dimensionless frequency 𝜆(1,1) variations of a nanoplate with uniform porosity distribution dependent on 

the material grading constant (p=0.2-5) and nonlocal parameter (e0a=0, 1, 2 and 4 nm2); for porosity rate α=0.2, and lm=∆T= 

0. b) Comparisons of different porosity patterns for α=0.2, e0a=1nm2, and lm=0. 

  

a) b) 

Figure 8. a) The dimensionless frequency λ1,1 variations of a nanoplate with uniform porosity distribution dependent on the 

material grading constant (p=0-6) and material size parameter (e0a=0, 1, 2 and 4 nm2); for porosity rate α=0.2, and lm=∆T= 

0. b) Comparisons of different porosity patterns for α=0.2, e0a=1nm2, and lm=0. 

 

In case of uniform porosity distribution, Figure 7a shows the λ1,1 frequency variation for several 

nonlocal parameters (e0a=0, 1, 1.141 and 2 nm2) and depending on the material grading constant 

(p=0-6). Figure 7b presents a comparison of the results of the porosity patterns for a constant nonlocal 

parameter value of e0a=1 nm2. In all analyses, the porosity rate is taken as α=0.2 and the temperature 

rise, and material size parameter are assumed to be zero. Due to the softening effect on the nanoplate 

(Eringen 1983; Talebizadehsardari et al. 2020; Esen and Özmen 2022b), the rise of the nonlocal 

parameter declines the frequencies inversely proportional to the size of the parameter. But the opposite 

results are witnessed in Fig 8, as a result of the material size parameter's stiffness-enhancing effect of 

the frequencies increase depending on its amount (Lim, Zhang, and Reddy 2015; Esen et al., 2021a). 

Here, for comparison, the amounts of nonlocal and dimensional parameters are considered the same in 

this study but may differ. The real values of these can be described by molecular dynamics simulations 
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(Giannopoulos et al., 2008) and experimental studies (Li and Hu, 2016). When an evaluation is made 

for the effects of porosity patterns for a fixed nonlocal and material size parameters, given in Figure 

7b and Figure 8b, the dimensionless frequencies are obtained in the order of asymmetric bottom, 

symmetric, asymmetric top, and uniform porosity distribution patterns from higher to lower, 

respectively. As a result, while the nonlocal and material size parameters' stiffness-changing effects, 

in turn, caused only a decrease or increase in the dimensionless frequencies to a certain extent, the 

effect of the porosity patterns on the dimensionless frequencies did not change. 

 

  

a) b) 

Figure 9. a) The dimensionless frequency 𝜆1,1 variations of a nanoplate with uniform porosity distribution depending on the 

nonlocal parameter (e0a=0, 1, 2 and 4 nm2) and temperature rise for porosity rate α=0.2 and lm=0, b) Comparisons of different 

porosity patterns for α=0.2, p=1, e0a=1nm2, and lm=0. 

 

  

a) b) 

Figure 10. a) The dimensionless frequency 𝜆1,1 variations of a nanoplate with uniform porosity distribution depending on 

the material size parameter (lm=0, 1, 2 and 4 nm2), and temperature rise for porosity rate α=0.2 and e0a=0, b) Comparisons 

of different porosity patterns for α=0.2, p=1, lm =1nm2, and e0a =0. 

In case of uniform porosity distribution, Figure 9a shows the frequency and buckling 

temperature variations depending on the several nonlocal parameter values (e0a=0, 1, 1.141 and 2 
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nm2) for a constant porosity rate (α=0.2) and material grading constant (p=1). Figure 9b presents a 

comparison of the porosity patterns for a constant nonlocal parameter value of e0a=1 nm2, α=0.2, and 

p=1. Due to the nonlocal parameter's softening effect on the nanoplate, the rise of this parameter 

decreases the dimensionless frequencies and buckling temperatures of the nanoplate reciprocally 

proportional to the size of the parameter (Esen and Özmen 2022a). But the opposite findings are 

observed in Figure 10a, because of the material size parameter's stiffness-enhancing effect, the 

frequencies and buckling temperatures increase depending on its amount. When an evaluation is made 

for the effects of porosity patterns for a fixed nonlocal and material size parameter, given in Figure 

9. and Figure 10b, the buckling temperatures of the plate are obtained in the order of uniform, 

asymmetric top, symmetric, asymmetric bottom porosity distribution patterns from largest to 

smallest, respectively. In connection with this, buckling temperatures were calculated as 481 K, 474 

K, 464 K, and 452.5 K in uniform, asymmetric top, symmetric, and asymmetric bottom porosity 

distribution patterns, with the inclusion of the nonlocal parameter, respectively. However, 

considering the material size parameter, these values were obtained as 576 K, 565 K, 553 K, and 542 

K, respectively. 

 

4. CONCLUSIONS 

This study used the HSDT and NGST to pattern and analyze the free vibration behavior of an 

FGM porous nanoplate under thermal fields. Additionally, the effects of porosity distribution on the 

free vibration behavior of the plate are considered with four porosity patterns; uniform, symmetrical, 

asymmetric bottom, and up distribution patterns. Navier's method is employed for the solving of 

motion equations. Finally, the factors influencing the free vibration behavior of the porous FGM 

nanoplate are examined individually to get the results given below. 

 

 The porosity and its distribution pattern alter the nanoplate's free vibration behavior. 

Additionally, the effect of porosity patterns on dimensionless frequency in a ceramic-rich 

plate is lower compared to a metal-rich plate. 

 In all porosity patterns, the dimensionless frequencies decreased by increasing the porosity 

rate up to a temperature rise of approximately ∆T=140 K. After that, increasing the porosity 

rate slowed down the decrement rate of dimensionless frequency, thus increasing the buckling 

temperatures of the nanoplate. The buckling temperatures of the nanoplate, which was 

computed as 478 K at α=0, increased to 597 K, 564 K, 516 K, and 573K in uniform, 

symmetrical, asymmetrical bottom, and asymmetrical top porosity patterns, respectively, by 

increasing the porosity rate of the nanoplate from 0 to 0.5. Besides, rising the porosity rate 

from 0 to 0.4 for p=2 reduced the calculated dimensionless frequency from 5.385 to 5.168, 

5.294, 5.318, and 5.255 in uniform, symmetrical, asymmetrical bottom, and asymmetrical top 

porosity patterns, respectively. 

 The nanoplate's material content significantly influences the free vibration response and 

buckling temperatures. 

 An increase in temperature softens the nanoplate, thus reducing its dimensionless frequencies. 

 The nonlocal and material size parameters, in turn, cause the nanoplate to behave softer and 

stiffer depending on their size. Thus, the nonlocal parameter decreases the dimensionless 

frequencies and buckling temperatures while the material size parameter increases them. In 

this context, the buckling temperature was calculated as 481 K in a uniform porosity 
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distribution pattern, including the nonlocal parameter, respectively. However, this value was 

obtained as 576 K, including the material size parameter. 
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8. APPENDIX 

K11 = (𝐴11𝛼
2 + 𝐴66𝛽

2)𝑐2 K12 = (𝐴12 + 𝐴66)𝛽𝛼𝑐2 

A1 

  

K13 = −𝐵11𝛼
3𝑐2 K14 = (𝐶11𝛼

2 + 𝐶66𝛽
2)𝑐2 

  

K15 = (𝐶12 + 𝐶66)𝛽𝛼𝑐2 K21 = K12 
  

K22 = (𝐴66𝛼
2 + 𝐴22𝛽

2)𝑐2 K23 = −𝐵22𝛼
3𝑐2 

  

K24 = K15 K25 = (𝐶66𝛼
2 + 𝐶22𝛽

2)𝑐2 
  

K31 = K13 K32 = K23 
  

K33 = (𝐷11𝛼
4 + 2𝐷12𝛼

2 𝛽2 + 4𝐷66𝛼
2 𝛽2 + 𝐷22𝛽

4)𝑐2  + (−𝑁𝑥𝑥
𝑇 𝛼2 − 𝑁𝑦𝑦

𝑇 𝛽2)𝑐1 

  

K34 = −(𝐸11𝛼
3 + (𝐸12 + 2𝐸66)𝛼𝛽

2)𝑐2 K43 = K34 
  

K35 = −(𝐸22𝛽
3 + (𝐸12 + 2𝐸66)𝛼

2𝛽)𝑐2 K53 = K35 
  

K44 = (𝐹55 + 𝐺11𝛼
2 + 𝐺66𝛽

2 )𝑐2 K41 = K14 
  

K45 = (𝐺12 + 𝐺66 )𝛼𝛽𝑐2 K42 = K24 
  

K51 = K15 K52 = K25 
  

K53 = K35 K54 = K45 
  

K55 = (𝐹44 + 𝐺66𝛼
2 + 𝐺22𝛽

2 )𝑐2  
 

M11 = 𝐼1𝑐1 M12 = 0 M13 = −𝛼𝐼2𝑐1 M14 = 𝐼4𝑐1 M15 = 0 

A2 

     
M21 = 0 M22 = 𝐼1𝑐1 M23 = −𝛽𝐼2𝑐1 M24 = 0  M25 = 𝐼4𝑐1 
     

M31 = −α𝐼2𝑐1  M32 = −𝛽𝐼2𝑐1 
 M33

= 𝐼3(𝛼
2 + 𝛽2)𝑐1

+ 𝐼1𝑐1 
M34 = −𝛼𝐼5𝑐1 M35 = −𝛽𝐼5𝑐1 

     
M41 = M14 M42 = 0 M43 = −𝛼𝐼5𝑐1 M44 = 𝐼6𝑐1 M45 = 0 
     
M51 = 0 M52 = 𝐼4𝑐1 M53 = −𝛽𝐼5𝑐1  M54 = 0 M55 = 𝐼6𝑐1 
     

𝑐1 = 1 + (𝑒𝑎)
2(𝛼2 + 𝛽2)   𝑐2 = 1 + 𝑙𝑚

2 (𝛼2 + 𝛽2) 
 


