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Abstract 

Characterization of fault zones plays an important role for earthquake studies, geothermal and mineral resource exploration. This 
problem can be achieved by optimizing parameters of a defined synthetic model iteratively using gravity, gravity gradients or 
magnetic data. Curvature gradients indicate deviations of an equipotential surface from a spherical surface, therefore, reflecting 
deviations of mass distributions from a source point. In this study, differential curvature gradient is used as it identifies linear 
structures such as dip-slip faults and geological contacts.  Curvature gradients are computed from gravity gradient observations which 
are derived from the high-resolution Earth Gravitational Model 2008. Estimating the fault parameters from gravity gradients is a 
complex nonlinear geophysical inverse problem that requires finding the minimum of a multi-variable cost function. A global 
optimization technique called simulated annealing (SA) is used to estimate location, dip angle and some depth parameters of the faults 
located in southwest side of the Thrace basin in Türkiye. In the optimization technique, a straight solution is inevitably applied to 
calculate the theoretical anomaly to be compared with the observed anomaly in each search step. In this case, the problem requires 
constructing a mathematical or geophysical interpretation model. Such a model is designed as a dip-slip fault model. The results show 
that dip angle estimates indicate high-angle faults which are found to be consistent with the seismic studies. 
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Öz 

Fay zonlarının tanımlaması, deprem çalışmaları, jeotermal ve mineral kaynakların araştırılmasında önemli bir rol oynar. Bu problem 
tanımlanmış bir sentetik modelin parametrelerinin gravite, gravite gradyentleri ya da manyetik verilerden  iteratif olarak optimize 
ederek çözülebilir. Eğrilik gradyentleri, bir eşpotansiyelli yüzeyin küresel bir yüzeyden sapmalarını ifade eder ve bu nedenle kütle 
dağılımlarının kaynak noktadan sapmalarını yansıtır. Bu çalışmada, eğim atımlı  faylar ve jeolojik dokanaklar gibi doğrusal yapıları 
tanımlayan diferansiyel eğrilik gradyentleri kullanılmıştır. Eğrilik gradyentleri yüksek çözünürlüklü Yer Gravite Modeli 2008’ den 
türetilen gravite gradyentlerinden hesaplanmıştır. Gravite gradyentlerinden fay parametrelerinin kestirimi çok değişkenli hata 
fonksiyonunun minimum değerini bulmayı gerektiren kompleks doğrusal olmayan bir jeofiziksel ters çözüm problemidir. Benzetimli 
tavlama olarak adlandırılan bir global optimizasyon yöntemi, Türkiyede Trakya havzasının güneybatısındaki fayların eğim açısı, 
konumu ve bazı derinlik parametrelerinin kestirimi için kullanılmıştır. Optimizasyon tekniğinde, her bir arama adımında gözlenen 
anomali ile karşılaştırılacak olan kuramsal anomaliyi hesaplamak için kaçınılmaz olarak düz çözüm de uygulanmaktadır. Bu durumda 
problem bir matematiksel veya jeofiziksel yorum modelinin kurgulanmasını gerektirir. Böyle bir model eğim atımlı fay modeli olarak 
tasarlanmıştır. Sonuçlar eğim açısı tahminlerinin sismik çalışmalarla uyumlu bulunan yüksek eğim açılı faylara işaret  ettiğini 
göstermektedir.   

Anahtar Kelimeler: Gravite gradyanları, Benzetimli tavlama, Fay parametreleri  

 

1. Introduction 

A triangular shape Thrace basin located in northwest side of 
Turkey is bordered by Strandja massif to the north, Rhodope 
massif to the west and Menderes massif to the south. Since the 
region is important for hydrocarbon and coal potential, many 
geological studies have been carried out from borehole, seismic 
and gravity data. [1] studied geometry of the faults in the 
northeast side of the basin and defined three major fault zones, 
Kirklareli, Babaeski and Lüleburgaz, mostly defined by strike-slip 
faults. These faults are characterized as a northern extend of the 
North Anatolian Fault Zone (NAFZ). [2] investigated basin 

development and hydrocarbon potential of the basin from well 
and seismic data. [3] investigated lignite potential of the basin. 
[4] investigated hydrocarbon potential of the northwest side of 
the basin using well and seismic data across strands of NAFZ. [5] 
studied stratigraphic model of the Thrace basin from well, 
seismic and outcrop data and provide sedimentary thickness 
map of the basin. [6] constructed 2D and 3D gravity model of the 
basin to investigate subsurface structures and geometry of the 
basin across the strike of the faults in northeast side of the basin. 
[7] firstly mapped faults in the southwestern of the Thrace basin 
and reported that the faults lying in this area include several 
normal faults and mostly strike-slip faults according to their field 
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observations. [8] have determined lineaments in the 
southwestern of the Thrace basin using Hough transform from 
gravity data. 

While previous studies have focused on stratigraphy, geometry 
of the faults, structural and tectonic evolution to evaluate 
hydrocarbon potential from well and seismic data, this study 
focuses on estimating parameters of the faults located in 
southwestern of the Thrace basin from gravity gradients. To this 
end, curvature gradients have been used to identify linear 
structures masked in the gravity anomalies. Previously, [9] tried 
to estimate fault parameters from gravity data using genetic and 
particle swarm optimization in the region.  

In this study, a Monte Carlo inversion technique called simulated 
annealing (SA) is used to estimate fault parameters such as dip 
angle, location and depth parameters. The purpose of the paper 
is to show that gravity gradients generated from EGM08 data is 
indicative of linear structures and these data can be inverted to 
estimate parameters related to fault geometry. 

2. Materials and Methods 

Estimation of the fault parameters from the gradients, a 
corresponding forward model needs be constructed. The fault 
model is defined as a horizontal dip-slip fault infinitely extended 
in the strike direction.  Figure 1 shows the fault model and its 
parameters in a local (x-y-z) coordinate system. Here, the 𝑥-axis 
is orthogonal to the strike of the fault, the 𝑧-axis is defined in 
positive upward and the 𝑦-axis is parallel to the strike of the fault. 
The location parameter is defined with respect to a fixed origin 
where the fault plane intersects the Earth surface. 

The observations are curvature gradients generated from Earth’s 
gravitational model (EGM08). EGM08 is a spherical harmonic 
model of Earth’s gravitational potential constructed from 
satellite, terrestrial, airborne gravity and satellite altimetry data. 
The model is complete to degree 2190 and order 2160. Its spatial 
resolution is about 9km at the equator [10].  

Disturbing gravitational gradients are second order symmetric 
tensor of second order derivatives of disturbing potential. In a 

local cartesian coordinate system, the gradient disturbances are 
given by [11] 

Γ = [

Γ𝑥𝑥 Γ𝑥𝑦 Γ𝑥𝑧
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                           (1) 

where the disturbing potential, 𝑇 is defined as difference between 
actual gravity potential W and normal gravity potential U [12]. 

𝑇 = 𝑊 − 𝑈                       (2) 

The unit of gradients are given in Eotvos, 1𝐸 = 1 × 10−9𝑠−2. The 
sum of the diagonal elements of the gradient tensor Γ satisfies 
Laplace’s equation in free space, 

Γ𝑥𝑥 + Γ𝑦𝑦 + Γ𝑧𝑧 = 0                           (3) 

The relation of the difference in radii of curvatures of an 
equipotential surface with differential curvature gradient is given 
by [13] 

Γ𝐶 = 𝑔3 (
1

𝜁′2
−

1

𝜁′1
) = √(Γ2,2 − Γ1,1)

2
+ (2Γ1,2)

2
 

(4)                 

where 𝑔3 is vertical gravitational acceleration, 𝜁′1 and 𝜁′2 are 
minimum and maximum principal radii curvatures of the 
equipotential surface. Therefore, differential curvature gradient 
for the model is defined by  

Γ𝐶 = √(Γ𝑦𝑦 − Γ𝑥𝑥)
2
+ (2Γ𝑥𝑦)

2
     

                      (5) 

Since the 𝑦-axis is parallel to the strike of the fault, Γ𝑥𝑦 = 0 and 

Γ𝑦𝑦 = 0. From Laplace’s equation, Γ𝑧𝑧 = −Γ𝑥𝑥. Therefore, the 

resultant curvature gradient in equation 5 also becomes Γ𝐶 =
|Γ𝑧𝑧|. 

 

Figure 1. The geometrical representation for semi-infinite fault model. The fault parameters are the location, 𝑥0 with respect to a fixed 
origin, the dip angle, 𝜒, lower depth of left and right layers, 𝑧1, 𝑧2, upper depth of left and right layers, 𝑧3, 𝑧4 and density contrasts of 
left and right layers, Δ𝜌1, Δ𝜌2.

Here, the disturbing gravitational gradients are computed from 
EGM08 model. Spherical harmonic expansion of the disturbing 
potential 𝑇 is given by (14) 

𝑇(𝑟, 𝜃, 𝜆) =
𝐺𝑀

𝑎
∑ (

𝑎

𝑟
)
𝑛+1

∑ 𝛿𝐶𝑛𝑚𝑌𝑛𝑚
̅̅ ̅̅ ̅(𝜃, 𝜆)𝑛

𝑚=−𝑛
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                      (6) 
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where 𝑟, 𝜃, 𝜆 is spherical polar coordinates, radius, co-latitude, 
longitude, respectively, 𝐺𝑀 is the product of Newton’s 
gravitational constant and Earth’s total mass, 𝛿𝐶𝑛𝑚 is spherical 
harmonic coefficients being difference between coefficients for 
actual and normal gravitational potentials, 𝑎 is the spherical 
radius being set to the semi-major axis of an Earth-fitting 
ellipsoid and 𝑌𝑛𝑚

̅̅ ̅̅ ̅(𝜃, 𝜆) is surface spherical harmonics. Spherical 
polar coordinates, in terms of cartesian coordinates are 
expressed as [14] 

𝜑 = 𝑡𝑎𝑛−1 𝑧

√𝑥2+𝑦2
                           

(7.a) 

𝑟 = √𝑥2 + 𝑦2 + 𝑧2     
                      

(7.b) 

𝜆 = 𝑡𝑎𝑛−1
𝑦

𝑥
 

                      
(7.c) 

where 𝜑 is geocentric latitude, co-latitude, 𝜃 is 90𝑜 − 𝜑. 

The relationship of the disturbing gradients given in eq. (1) with 
respect to spherical coordinates is given by (15). For example, the 
diagonal elements of Γ is given by 

𝛤𝑧𝑧 =
𝜕2𝑇

𝜕𝑟2
                           

(8.a) 
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1
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𝑐𝑜𝑡𝜃
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1
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1
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𝜕2

𝜕𝜆2                          
(8.c) 

By applying analytical derivatives to the equation (6), the 
disturbing gravity gradients are computed directly from EGM08 
model. For example, Γ𝑧𝑧, disturbing gradient is computed from 
equation 8.a, 

𝛤𝑧𝑧 =
𝜕2𝑇

𝜕𝑟2
=

𝐺𝑀

𝑎
∑ ∑

(𝑛+1)(𝑛+2)

𝑎2
(
𝑎

𝑟
)
𝑛+3

𝛿𝐶𝑛𝑚𝑌𝑛𝑚
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(9) 

Forward model generated curvature gradient is computed from 

𝛤𝐶 = |𝛤𝑧𝑧
(𝐿)

+ 𝛤𝑧𝑧
(𝑅)

|      (10)                       

with Γ𝑧𝑧
(𝐿)

 is the gradient generated by the density contrast on the 

left of the fault and Γ𝑧𝑧
(𝑅)

is the gradients generated by the density 
contrast on the right of the fault [16]. 

𝛤𝑧𝑧
(𝐿)

(𝑥, 𝑧) = 2𝐺𝛥𝜌(𝐿)(𝐴(𝐿)𝑐𝑜𝑠𝜒 − 𝐷(𝐿)𝐸)𝑠𝑖𝑛𝜒                            

𝛤𝑧𝑧
(𝑅)

(𝑥, 𝑧) = −2𝐺𝛥𝜌(𝑅)(𝐴(𝑅)𝑐𝑜𝑠𝜒 − 𝐷(𝑅)𝐸)𝑠𝑖𝑛𝜒                             
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2
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Monte Carlo inversion technique is called simulated annealing 
(SA) depending on Metropolis algorithm (1953) [17] that 
generates sequences of parameters from a Markov chain until it 
reaches equilibrium condition at a given temperature T. Then the 
temperature is reduced between subsequent Markov Chains. The 
SA algorithm can be considered as an implementation of 
Metropolis algorithm evaluated at decreasing values of the 
temperature. The equilibrium condition is identified by the 
Gibbs-Boltzman distribution. The Gibbs-Boltzman distribution 

defines the probabilities of being in a state 𝜉 with energy 𝜙(𝜉) 
[18] 

𝑃(𝜉 = 𝜉)~𝑒−
𝜙(𝜉)̂

𝑘𝑇      
                    (11) 

where 𝑘 is Boltzman constant, 𝑇 is the temperature, 𝜉 denotes 
current state of the system. 

In optimization problem, energy of the state of the system is 
associated with a cost function. The cost function is defined as the 
sum of squared differences between differential curvature 
gradients, Γ𝐶 , generated from EGM08 model and the 
corresponding gradients computed from the forward fault model.  

𝜙(𝜉) = ∑ (𝛤𝐶
𝐸𝐺𝑀08(𝑥𝑖; 𝜉) − 𝛤𝐶

𝑚𝑜𝑑𝑒𝑙(𝑥𝑖; 𝜉))
2

𝑖                          (12) 

The parameter vector 𝜉 having size of 𝑚 × 1 includes the location 
of the fault, 𝑥0 relative to northwestern end point of the profile, 
the dip angle of the fault, 𝜒, and upper depths of the left and right 
layers, 𝑧3, 𝑧4 and  𝑥𝑖  denotes the ith location point along the profile. 

The aim is to find best estimated parameters that minimizes this 
cost function. This is achieved by stages of reducing temperatures 
sequentially. Each stage is performed to reach intermediate 
equilibrium and best parameters related to intermediate 
equilibrium. The equilibrium condition is reached when the 
average cost function does not change after a certain number of 
iterations performed at a fixed temperature. 

At a given initial temperature, the SA algorithm starts some 
chosen initial arbitrary state 𝜉0 within predefined search space 

𝜉𝐿
ℎ < 𝜉 < 𝜉𝑈

ℎ          ℎ = (1,… . ,𝑚)                        (13) 

where [𝜉𝐿
ℎ, 𝜉𝑈

ℎ] is lower and upper search space boundaries for 
the parameters. And the corresponding cost function of the initial 
state 𝜙(𝜉0) is computed. New state is generated from perturbing 
given initial state by 

𝜉𝑘
ℎ = 𝜉𝑗

ℎ + 𝑟 ∙ 𝛥𝜉ℎ   𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝜉𝐿
ℎ < 𝜉 < 𝜉𝑈

ℎ                          (14) 

where 𝑟 is a randomly generated number from a uniform 
distribution between [-1,1] and Δ𝜉ℎ is the hth component of 
defined step length factor. The corresponding cost function of the 
next state is computed. At each step in the chain, new candidate 
state is accepted as current state with probability one if Δ𝜙 =
𝜙𝑘 − 𝜙𝑗 ≤ 0. If ∆𝜙 > 0, then the new state is accepted with 

probability according to metropolis acceptance ratio [19] 
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𝛼 = 𝑚𝑖𝑛 (1,
𝑃𝑘

𝑃𝑗
) = 𝑚𝑖𝑛 (1, 𝑒−

𝜙(𝑘)−𝜙(𝑗)

𝑇 )                        (15) 

where 𝑃𝑗 is the probability of the state, 𝜉𝑗 , 𝑃𝑘 is the corresponding 

probability of the consequent state of the system. This procedure 
is repeated until there is no change in the cost function.  

3. Results and Dicussion 

The study area, southwest side of the Thrace basin, is shown in 
Figure 2a. [7] describe several fault zones in the region, 
Pehlivankoy-Yenicegore fault zone, Karabürçek-Ibriktepe fault 
zone and Karaidemir-Karatepe fault zone trending NE-SW and 
Subasi-Kozyoruk fault zone trending NW-SE. It is interested in 
estimating parameters of two faults which are located in east side 

of Karabürçek-Ibriktepe fault zone and south side of Karaidemir-
Karatepe fault zone. (Figures 4a-4b). Faults lying east side of 
Karabürçek-Ibriktepe fault zone are represented several parallel 
segments lying in the area of 10 km wide between Harmanli-
Beykonagi-Karabürçek. East side segments of Karabürçek-
Ibriktepe fault zone which consists of two step faults lie between 
Gazimehmet and Beykonagi. From seismic studies done by [7], 
the dip angle of the fault residing in southeast side of these two 
step faults was reported between 73 and 81o. Karaidemir-
Karatepe fault zone also contains several fault segments, one of 
which lies between Esetce and Sarpdere. Field observations 
performed by [7] on the southwest side of this fault indicate dip 
angle of 76o. It is tried to model these two faults and estimate 
their parameters from the curvature gravity gradients. 

 

Figure 2. a) Faults in the southwest of the Thrace basin adapted from [7]. b) Differential curvature gradients , Γ𝐶  computed from 
EGM08 model up to 𝑛𝑚𝑎𝑥 = 1728 . Fault lines are transcribed from Figure 2a.

Full resolution of EGM08 model up to harmonic degree 2160 
represents complete gravitational field including the effect of 
topography. Figures 3a-b indicate topography map of the region 
computed from SRTM (Shuttle Radar Topography Mission) data 
and Bouguer gravity anomalies Δ𝑔𝐵 computed from EGM08 
model and DTM2006 spherical harmonic topographic expansion 
model [10]. Free air gravity anomaly is given by [14] 

∆𝑔(𝑟, 𝜃, 𝜆) = 

=
𝐺𝑀

𝑎2
∑ (𝑛 − 1) (

𝑎

𝑟
)
𝑛+1

∑ 𝛿𝐶𝑛𝑚𝑌𝑛𝑚
̅̅ ̅̅ ̅(𝜃, 𝜆)𝑛

𝑚=−𝑛
𝑛𝑚𝑎𝑥
𝑛=2      

   (16) 

The Bouguer gravity anomaly is defined by Δ𝑔𝐵 = Δ𝑔 − 2𝜋𝜌𝐺ℎ, 
where density is 𝜌 = 2.67𝑔/𝑐𝑚3 and ℎ is topographic height 
generated from DTM2006. 

Figures 4a-b) illustrate differential curvature gradients, Γ𝐶  
computed from EGM08 model using equation 5 for two different 
resolutions. One way to remove topography is to use lower 
resolution of the EGM08 model. Lower resolutions of EGM08 
model up to maximum degree and order 1728 and 1440 are used 
to estimate fault parameters in this study. The relationship 
between 𝑛𝑚𝑎𝑥  and resolution ∆𝜙 being half-wavelength, is given 
by 𝑛𝑚𝑎𝑥 = 𝜋𝑅/∆𝜙 at the equator. In the study area, east-west 
resolution of EGM08 model for 𝑛𝑚𝑎𝑥=1728 is about 8.4 km. and 
𝑛𝑚𝑎𝑥=1440 is about 10.5km. 

As can be seen from Figures 4a-b, fault segment of Gazimehmet-
Beykonagi is not completely visible in the lower resolution of the 
EGM08 model. Therefore, this fault parameters are not tried to 
estimate from lower resolution of the EGM08 model. Cross-strike 
profiles and faults used in the estimation process are shown in 
Figures 4a-b. 

Parameters of one fault segment of Gazimehmet-Beykonagi and 
the fault lying between Esetce and Sarpdere are tried to estimate 
from curvature gradients along profiles, 𝐸𝐸′ and 𝐴𝐴′ , which are 
computed from  EGM08 model up to maximum harmonic 
degrees, 𝑛𝑚𝑎𝑥=1728 and 𝑛𝑚𝑎𝑥=1440. The length of the profiles, 
𝐸𝐸′ and  𝐴𝐴′ is 26.2 km and 14.8 km, respectively. 

For implementation of the optimization, search spaces of the fault 
parameters have to be defined. For this purpose, fault geometry 
and geologic information of the basin have been considered. 
Search space of the location parameter is set to the length of the 
data profiles, 𝐸𝐸′and 𝐴𝐴′. The search spaces of the other 
parameters are determined from based on some known fault 
data, geologic information and previous seismic studies. 
According to [5], maximum thickness of the basin reaches up to 9 
km. [7] reported that the dip angle of the faults lying in the 
southwest part of the basin is between 60-83o. Therefore, the 
search spaces for the other parameters are defined as in Table 1.  

 

   



DEU FMD 26(76) (2024) 156-166  

 160 

  

Figure 3. a) Topography map of the Thrace basin. Faults are transcribed from figure 2a. b) Bouguer gravity anomaly map, 
Δ𝑔𝐵 generated from EGM08 and DTM2006 models. 

 

Figure 4. a) Profile 𝐸𝐸′ along the fault and differential curvature gradient map generated from EGM08 model up to degree 
𝑛𝑚𝑎𝑥 =1728. b) Profile 𝐴𝐴′ along the fault and differential curvature gradient, Γ𝐶  map generated from EGM08 model up to degree 
𝑛𝑚𝑎𝑥 =1440.

Table 1. Upper 𝜉𝑈  and lower 𝜉𝐿 boundaries of search space for 
the parameters. 

Parameters Profile 𝐸𝐸′ Profile 𝐴𝐴′ 

𝑥0 [km] 0 ≤ 𝑥0 ≤ 17 0 ≤ 𝑥0 ≤ 15 

𝜒[o] 10 ≤ 𝜒 ≤ 90 10 ≤ 𝜒 ≤ 90 

𝑧3 [km] −12 ≤ 𝑧3 ≤ −0.5 −12 ≤ 𝑧3 ≤ −0.5 

𝑧4  [km]       −10 ≤ 𝑧4 ≤ −0.5 −7 ≤ 𝑧4 ≤ −0.5 

In this algorithm, length of the Markov chain is a fixed number 
defined by user. The length of the Markov chain is defined by 

𝑛 = 𝑁𝑇 ∙ 𝐿𝛿  . After 𝐿𝛿 ∙ 𝑚 iterations, the step length is dynamically 
adjusted 𝑁𝑇 times so that 40-60% of perturbed states are 
accepted [21]. After n realizations of m Markov chains, the 
temperature is reduced. Temperature reduction is given by  
𝑇𝑘+1 = 𝜏 ∙ 𝑇𝑘, where, 𝜏  is    temperature reduction rate between 
[0,1]. Reasonable slow cooling rate could be chosen between 0.5 
and 0.95. 

Figure 5 shows simulated differential curvature gradient 
observations along the profile 𝐸𝐸′  based on forward model given 
in Figure 1. Nominal parameter values of the forward model are 
defined by, 𝑥0 =13 km, 𝜒 =75o, 𝑧1 = −12 km, 𝑧2 = −10 km, 𝑧3 =
−5 km, 𝑧4 = −3 km, Δ𝜌1 =500 kg/m3, Δ𝜌2 =100 kg/m3. It is 
assumed that observation profile is at zero elevation (z=0).  
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Figure 5. Simulated differential curvature gradient, Γ𝐶  
observation (sought signal). 

In this case, the length of the Markov Chain is set to  𝑛 = 𝑁𝑇 ∙
𝐿𝛿 =20∙20=400. The lower 𝜉𝐿 and upper 𝜉𝑈 boundaries of the 
parameter space are defined by 

0 ≤ 𝑥0 ≤ 25 km; 10 ≤ 𝜒 ≤ 90o; 

 −12 ≤ 𝑧3 ≤ −0.5 km; −10 ≤ 𝑧4 ≤ −0.5 km 

−15 ≤ 𝑧1 ≤ −8 km;  −12 ≤ 𝑧2 ≤ −8 km 

After several test run of the SA algorithm, initial temperature is 
set to T=1000 and the temperature reduction rate is set to 𝜏=0.85. 
Convergence rate of the parameters based on different initial 
parameter values, different initial temperatures and temperature 
reduction rates are given in Figure 6.  In addition, to test the 
success of the SA optimization on estimating fault parameters, 
some noise added to the simulated signal given in Figure 5. The 
results are provided in Table 2. As the noise level of the simulated 
signal increases, estimated parameters in comparison to real 
model parameter values deteriorate. For the last test case, the 
initial temperature is 𝑇 =100000, and 𝑁𝑇=50. The lower depth 
parameter estimate, 𝑧2 reaches its allowed search limit while the 
other parameter estimates are reasonable in comparison to real 
fault model parameters. 

                         Table 2. The fault parameter estimates for the profile, EE′ .  

Noise level 𝑥0 [km] 𝜒 [o] 𝑧3 [km] 𝑧4 [km] 𝑧1 [km] 𝑧2 [km] Cost function [E2] 

0E 13.00 75.0 -5000 -3000 -12000 -10000 3.030×10-7 

0.1E 13.21 73.74 -4978 -2935 -12000 -10008 8.48×10-1 

0.5E 13.65 71.28 -4875 -2676 -12320 -12000 21.24 
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Figure 6. Convergence rates of the fault parameters for different initial temperatures and temperature reduction rates.  

Similar analyses have been performed for real data case. In this 
case, the length of the Markov chain is 𝑛 = 𝑁𝑇 ∙ 𝐿𝛿 =20 ∙ 20=400. 
The lower 𝜉𝐿 and upper 𝜉𝑈 boundaries of the parameter space are 
given in Table 1. The initial temperature is set to 𝑇=10000 and 

temperature reduction rate is set to 𝜏=0.85 after several runs of 
the SA algorithm. Convergence rates of the parameters based on 
different initial temperatures, different initial parameters and 
fixed 𝜏 = 0.85 are given in Figures 7a-b for two profiles.
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Figure 7. a)  Convergence rates of the parameters for different initial temperatures using profile 𝐸𝐸′ for case 1 

 

Figure 7. b)  Convergence rates of the parameters for different initial temperatures using profile 𝐴𝐴′ for case 2 

Estimated parameters of the faults are listed in Table 3. These 
results are obtained at least 10 independent runs of the SA 
algorithm. Estimated dip angles are found to be consistent with 
seismic studies done by [7]. While estimated location of the fault 
along profile 𝐸𝐸′ (Figure 8a) agrees with the seismically defined 
location of the fault, there is a difference between estimated and 
mapped location of the fault along profile 𝐴𝐴′ (Figure 9a). Two 

reasonable solutions are obtained from the profile, 𝐸𝐸′. 
According to stratigraphic cross section of the area made by [20], 
either side of the fault is set to the different density contrasts. It 
is noted that changing the density contrasts does not lead to 
significant change on the dip angle and the location estimates, but 
results in the left upper depth estimate to be adjusted to a lower 
depth value. From Bouguer gravity anomaly map, the area has the 
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lowest positive anomaly, probably due to deeper geologic 
structures. According to [5], thickness of the area is around 7km 
which agrees with the fault geometry found in case I. A plot that 
compares the fitted fault model with EGM08 profile for case I is 
given in Figure 8b. 

Similarly, two reasonable solutions are obtained from the profile, 
𝐴𝐴′. In this case, the dip angle estimate is computed to be around 
72o.Similarly, changing the density contrasts does not lead to 
significant change on the dip angle and the location estimates, but 

results in the upper depth of the left layer to be adjusted to a 
lower depth value. From stratigraphic cross section [20], it is 
inferred that the density contrasts for left and right layers of the 
fault can be set to different values. From previous studies [5-9], it 
is inferred that the thickness of the area is around 4-5km. It is 
concluded that case II agrees with the geologic information 
provided in the area and is considered as an appropriate solution 
for this profile. A plot that compares fitted fault model with 
EGM08 profile for case II is given in Figure 9b. 

 

Figure 8. a)The location estimate is shown black dot along profile 𝐸𝐸′ with EGM08 differential curvature gradient map, Γ𝐶 , 
(𝑛𝑚𝑎𝑥 =1728). b) A comparison of fitted fault model with EGM08 differential curvature gradients along profile 𝐸𝐸′ . 

 

Figure 9. a) The location estimate is shown black dot along profile 𝐴𝐴′ with EGM08 differential curvature gradient map, Γ𝐶 , 
(𝑛𝑚𝑎𝑥=1440). b) A comparison of fitted fault model with the EGM08 differential curvature gradients along profile 𝐴𝐴′. 
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Table 3. Parameter estimates along profiles, 𝐸𝐸′ and 𝐴𝐴′. Bold values are not estimated. 

Profile Case 𝑥0 [km] 𝜒 [o] 𝑧3 [km] 𝑧4 [km] 𝑧1 [km] 𝑧2 [km] 
𝛥𝜌1 

[kg/m3] 
𝛥𝜌2 

[kg/m3] 
Cost function [E2] 

𝐸𝐸′ I 13.17 78.04 -5838 -2839 -12000 -10000 500 100 90.054 

 II 13.29 77.52 -2920 -2720 -12000 -7000 500 500 85.338 

𝐴𝐴′ I 12.98 72.22 -5026 -4361 -12000 -7000 500 500 9.909 

 II 13.07 71.88 -6049 -4334 -12000 -7000 500 300 9.660 

Finally, all model parameters are estimated from two profiles. In 
this case, the length of the Markov chain is 𝑛 = 𝑁𝑇 ∙
𝐿𝛿=60∙20=1200. The initial temperature is 𝑇=100000 for case I. 
Upper 𝜉𝑈  and lower 𝜉𝐿 boundaries of the search space are defined 
by 

0 ≤ 𝑥0 ≤ 17 km; 10 ≤ 𝜒 ≤ 90o; 

 −10 ≤ 𝑧3 ≤ −0.5 km; −7 ≤ 𝑧4 ≤ −0.5 km 

−15 ≤ 𝑧1 ≤ −12 km;  −13 ≤ 𝑧2 ≤ −8 km 

100 ≤ ∆𝜌1 ≤ 600kg/m3;100 ≤ ∆𝜌2 ≤ 500 kg/m3. 

The results are listed in Table 4. As can be seen from Table 4, the 
SA algorithm is not able to find global minimum of the cost 
function in case I. In case II, the solution is not robust since 
different initial parameter values lead to different estimates but 
converge to the same cost function. 

 

Table 4. All fault parameter estimates using SA optimization along profiles, 𝐸𝐸′ and 𝐴𝐴′.  

Profile Case 𝑥0 [km] 𝜒 [o] 𝑧3 [km] 𝑧4 [km] 𝑧1 [km] 𝑧2 [km] 
𝛥𝜌1 

[kg/m3] 
𝛥𝜌2 

[kg/m3] 
Cost function [E2] 

𝐸𝐸′ I 13.45 77.67 -1742 -1569 -14300 9906 553.1 500 60.092 

 II 15.00 70.13 -6778 -6996 -13610 -9452 566.5 477.7 70.116 

𝐴𝐴′ I 14.74 66.80 -7491 -5088 -12830 -7352 600 323 7.79 

 II 14.81 66.58 -7351 -5270 -12820 -7307 600 397.6 7.80 

 

4. Conclusions 

This study presents a gravity gradient analysis of the Thrace 
basin based on high resolution EGM08 data. Curvature 
differential gradient is used in modelling faults since it identifies 
lineaments of linear features in the gravitational field and are also 
useful for delineating geologic structures.  Due to the near surface 
inhomogeneities, truncated EGM08 data are used to compute the 
fault parameters in the region. It is concluded that the dip angle 
estimates of the faults are found to be high angle which agree 
with previously conducted geologic studies. The location of the 
fault lying southeast side of Gazimehmet-Beykonagi is consistent 
with the seismically mapped fault location. As indicated in 
seismic studies, the fault lying southwest side of the Karaidemir-
Karatepe fault zone are found to be having south block rising dip-
slip fault. However, the location of the fault is found to be 
different from seismically mapped location. This could be due to 
geologic complexity that are not included in the fault model. 
However, according to seismic studies, between Ipsala, Kesan 
and Sahin, the slickenlines of the faults are not exposed to the 
surface. The fault surfaces in the region are either deteriorated or 
buried in Ergene formation. 

To estimate the location, the dip angle and the upper depth 
parameters, some constraints are added to the SA inversion by 
fixing the density contrasts and the lower depth parameters 
based on seismic studies. It is noted that the fault parameters are 
estimated from using only gravity gradient data which is known 
to be an ill-posed problem. In addition to gravity gradient data, 
other seismic, magnetic or geodetic data can be incorporated into 

inversion problem to improve solutions on these parameter 
estimates. 
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