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Abstract

Applying character analogue of the Euler—MacLaurin summation formula to certain
functions, we define sums which generalize character Hardy—Berndt sums sz, (b, c: ) and
Ssp(b,c:x), and prove the corresponding reciprocity formulas. We also obtain integral
representations for these sums.

Keywords: Dedekind sum, Hardy-Berndt sum, Bernoulli polynomial, Euler-MacLaurin
summation formula.

Baz Karakter Hardy—Berndt Toplamlarimin Resiprosite Formiilii Uzerine
Oz

Euler-MacLaurin toplama formiiliiniin karakter benzerini bazi fonksiyonlara
uygulayarak, s3,(b,c:y) and s,,(b,c:y) Kkarakter Hardy-Berndt toplamlarmin
genellestirmeleri olan toplamlar tanimladik ve karsilik gelen resiprosite formiillerini ispatladik.
Ayrica, bu toplamlar i¢in integral gosterimleri elde ettik.

Anahtar kelimeler: Dedekind toplami, Hardy-Berndt toplami, Bernoulli polinomu, Euler-
MacLaurin toplama formiilii.

Introduction

c-1
sa(d,c) = Y (~Dlne
For the logarithms of the classical oy
theta functions, Berndt [2] and Goldberg [7] c-1

. . — (d
derived transformation formulas. In these =—4) B, (_n>
formulas, six different arithmetic sums arise ne1 2c
that are known as Berndt’s arithmetic sums where B, (x) are the Bernoulli functions
or Hardy-Berndt sums. Two of these sums given by
are defined for ¢ > 0 by

c-1 d Bn(x) =() Bn(X - [X]); 'nt> 1,
— n — , X Integer,
— _ n P =
s3(d, €) = z =1 Bl( c )’ B1(®) {Bl(x — [xD), otherwise.
n=1

Here, [x] denotes the largest integer < x
and B,(x) are the Bernoulli polynomials
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defined by means of the generating function

[1]

Z By (el < 2m)

and B (O) = B are the Bernoulli numbers

with By =1, B; =-1/2 and

1
an—l (E) = BZTL+1 = 0 fOI’ n 2 1

These sums also obey reciprocity
formulas. For instance, for coprime positive
integers d and ¢ we have ([2, 7])

d
2s5(d,c) —su(c,d) =1 — = if ¢ is odd.

The generalizations of these sums in the

sense of Apostol have been given in [4] by
c—-1

s bm
ssal0,0) = D, DB, ()
m=1
c—1
— (bm
sp0,0)==4 ) By(5c)
m=1

which satisfy certain reciprocity formulas

(see [4]).
The character generalization of
these sums has been given in [5] by

S3p(b,¢:2) = 25y (—1)"x(M)By,, (2),
(1.1)
X(Byy (),
(1.2)
where B,,(x) are the generalized
Bernoulli functions defined by Berndt [3] as

k-1
— _ Jj+x
By (x) = kP 12 X(I)B ( )
]_
for p>1 . Also, the -corresponding
reciprocity formula is established in [5].

S4,p(b! C:X) = Z?C"Lk=1

The reciprocity formulas are proved
by employing various techniques and
theories such as transformation formulas,
residue theory, Franel integral and
arithmetic methods.
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Recently, the authors in [6]
systematically generalize the Dedekind sum
sp(b,c:x) (analogues of Hardy-Berndt
sums) to sums involving two primitive
characters and prove the corresponding
reciprocity formulas applying the character
analogue of the Euler-MacLaurin
summation formula, which is presented
here in the following form.

Theorem 1 ([3, Theorem 4.1]) Let f €
CHD[a,B], —0 < a < f§ < oo. Then,

),

asnsf

x(m)f(n)
(—1)/+
— G+ 1)!

x Bz ®rO®
~Baz@f @)

=x(—1)
j

_1)!
+(1)()

B
(1l + 1)|f Bl+1,7(u)f(l+1)(u)du,

where the dash indicates that if n = a or
n =/, then only %X(a)f(a) or
% x(B)f(B) is counted, respectively.

In the present paper, by the same
motivation of [6], the character Hardy—
Berndt sums involving primitive characters
x1 and y, of modulus k are defined by

3, (b, C: X1, X2)
k

= i (—1)")(1(71)§p,)(2 (b_n)}

n=1

bn
S (b, C: 1, 22) = Z 1B,y (30

n=1

which are the natural generalizations of the
sum sz (b, c:x) and s,,(b,c:x) given
by (1.1) and (1.2), i.e., s3,(b,cix,x) =
s3p(b,c: x) and Sap(b,ciy, x) =
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Sap(b,c: ).

Utilizing the power of the character
analogue of the Euler-MacLaurin
summation  formula, the following
reciprocity formula is derived.

Theorem 2 Let b and ¢ be coprime
positive integers with odd c. For odd p >
1, we have

(0 + D{x2(=1c(2b)Ps4,(c, b: X, X,)
+)_(1(—2)bcp53,p (b, c: X1:Xz)}

p
=2y (7 1) (—1)ibJcPri-i
j
=1

x{)_(z(Z) 2/}B 7%, Bp+1-j,xz
—(p + 1)¥, (—2)bckP1
k-1 k-1

>3 @E,0E, (L +2)

h=1 j=1

Secondly, we define sums
Ssp(b,cix1,x2) and S, (b, c: xy, x2) for
primitive characters y; and y, having
modulus k; and k,, which need not to be
same, by

S3p(b, ¢ X1, X2)

Cklkz
— bn
= > DB, (=)
n=1
ckik,
. — bn
S4,p(b:C:X1:X2) = Z X1(n)Bp,)(2 (Z);
n=1

which reduce to s;,(b,c:x;,x2) and
Sap(b, c: x1, Xx2) for ky = k.

Finally, for primitive characters y;
and y, having modulus k; and k,, we
consider following sums

ISSN: 2536-4383

S~3,p(b’C:X1'X2)

Ck1

= 2, CORFy (Z2)

Sup (b. C: X1, X2)

Ckl

= 1 )

which generalize the previous sums. More

clearly, S3p(b,cix1,x2) =
S3,p(bi C:XI!XZ)r S4-,p(b' C:X]JXZ) =
54‘p (b, C:XI’XZ) fOI’ kl = kz, and

§3,p(bk11 cky: X1'X2~) = -§3p (b, c: x1, X2)
and Sap(bky, cky: x1, x2) =
Sap (b, c x1,x2). We obtain the following
reciprocity formula for these sums.

Theorem 3 Let b, ¢ be positive integers
with gcd(b,c) =1 and p > 1. Let y;
and y, be non-principal primitive
characters of modulus k, and k,,
respectively. For

(—1D)P*y, (=D x,(—1) = 1 the following
reciprocity formula holds

X2 (_1)Ck1(2bk2)p S~4-,E)(CF b: )_{2' )_{1)
+x,(=2)bk;(ck,)P S3,(b, c: x1, X2)

14
2 +1 . )
o572 () v ek
j=1

x {x,(2) - Zf}B]-,le

p+1-jx2
—%,(=2)bck,k?
ki k»
| bh
Z zmh)xzo)B (Z+7)
=1 j= 1

The reciprocity formula  for

-§3,p(b, C:X1,X2) and §4,p(br C: X1, X2)
follows as a result of Theorem 3 as

X2(=1)ck;(2bk;)P §4,p(C. b: )_(2;)_(1)
+x,(=2)bk;(ck,)P S3,(b,c: x1, x2)

p
2 +1 ) )
=12, (0] ) ok ek
j=1
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x {x,(2) = Zj}BJ',YlBPH—LXz'

Before establishing the proofs, we
recall some properties that we need in the
sequel.

d

Tx m(x) =mBp_1(x),m=1
EBm,X(x) =mBp_1,(x)m=1
EEm.X(x) = mEm_LX(x),m > 2

andfor m>0

Bm,)((k) = Bm,}((o) = Bm»X’
Bm,)((_x) = (_1)mX(_1)Bm,X(x)-
(1.3)
The Gauss sum G(z, ) is defined
by

Gzx) = Z x(m)e?mimelk,

If n isan integer, then [1, p. 168]

G(n,x) = x(M)G (),
where G(x) = G(1, y).

Proofs of Theorems 2 and 3

We apply character analogue of the
Euler—MacLaurin summation formula to
generalized Bernoulli function in order to
obtain identities involving integrals for
ssp(b,cixy,x2)  and sy, (b, cixy, x2)-
These identities lead the reciprocity formula
given by Theorem 2.

In view of (1.3), it is easy to see that

S3p(b, C: X1, X2)

= (=P (=Dx (_1)53,p (b, c: X1, X2)
and

Sap(b,c: x1,X2)

= (—1)p+1)(1(_1))(2 (_1)54,p (b, c: X1, x2),

which entails s,,(b,c: x1,x2) =0 (r=
3,4) for (=1)P** ;1 (-Dx2(-1) = -1.
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Let f(x) = Ep,x(xy), y € R. The
property ([3, Corollary 3.3])

Em,x(x) = mEm_LX(x),m > 2

dx
entails that
d/ _
oy o Fe) = X(xy)
p!
_yj (p ])' p ])((xY)

for 0<j<p-—1and feCcPV[qa,}p].
Proof of Theorem 2

We consider the following three

cases;

) y=b/c, a =0 and B = ck,

I) y=b/(2c), a=0 and B =
ck,

) y=2b/c, a=0 and B =
ck/2,

where ¢ > 0, separately.

For a=0, B=ck and 1 <[+
1 < p —1, Theorem 1 can be written as
ck

2 $1( B, (ny)

X1( 1) p+1 _1\j+1.,])
p+1 J°(]+1)( Dy

X {Bp—jz, (cky) — Bp—j.Xz}BjH.%l
—nEDENT( )
k — —
X foc Bl+1,71(u)Bp—l—LXz(}’u)du-
2.1)

) Let y=b/c,
ck. Then, (2.1) becomes

Czk 1B, (2)
=00 (1)(-g)

X Iy Bisag, WBp-1-1, (Zu) du
(2.2)

a=0 and B =

e If b =c, using the fact that [6,
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Remark 71]: we have, for odd b,
ck-1
— bn
2, 1By () By () = By (5
~ ¢ p-ix\7 ) = Pr-ix\3
=—£ P <E>p_1 - {2]+1_p)((2) - 1}Bp—j,x-
(2P \c (2.3)
X G(b, x1)G (¢, x2)L(p, x1x2) Therefore, (2.1) becomes
for gcd(b,c)=1 with ¢>0, (2.2) Sap(b, c: X1, X2)
becomes with b = ¢ =1 as ck b
p B —
_ _ - Z Xl(n)Bp,Xz (2_Cn>
f By 7 (1B, (W)du =
1 11~ p+1y( b\
— — _21-p - —
_ rim! (_1)rX1(_1)kp‘1 =2 p+1 ( m )< c)

(2mi)P
X G(x)GO)L(r x1x2),

by setting [ + 1 =r, p —r = m. Here
=14+ (DPx1(—Dxz(—1)

and y;yx, is a Dirichlet character modulo
k, and L(p, x1x,) stands for the Dirichlet
L —function.

e If b = ck, itfollows from the fact
Yek , x(n) = 0 and (2.2) that

k

§l+1,fl (u)Ep—l—l,Xz (ku)du = 0.
0

e Now assume that (b,c)=1.
Then, it follows from [6, Remark 7] and
(2.2) that

k
f §l+1,fl (Cu)Ep—l—l,Xz (bu)du
0

1, DD e p k
( p ) b1 (2mi)P
[+1 L .

X G(b')(l)G(C'XZ)L(p'XlXZ)-

p—-1

I) Let k and b be odd and
consider y = b/2c with (b,c) = 1. From
the fact that [5, Eq. (3.13)]

r—1
s = Jk
x(@)rt™B,, (rx) = Z By (x + 7),
j=0

137

m=p-l

X {Xz (2) - Zm}Bm,)(zBp+1—m,71

e ) (o)

k= - b
X [y Birg,(CW)Bp i1,

(E u) du
(2.4)
by setting j = p — m.
For [ =0 we have the following
integral representation

)_(1(_1)54,p (b, c: x1, x2)
k

pb [ — — b
= 7J Biz, (cu)Bp_1,y, (E u) du

0
_{Zl_pXZ (2) - Z}Bp,XZBl,)_(l .
(2.5)

e Let p be odd and put [+ 1 =
p—1in(2.4). Then,

X, (=1 (p + 1Db(2¢)Ps4, (b, c: X1, X2)
P

— p+1 _1\ympp+l-m, .m
=2 z ( m ) (-1D™b c

m=2

X {XZ (2) - zm}Bm,)(zBp+1_mr)_(1

—2cbPp(p + 1)c
k — —
X fo Bp-17,(cw)By,, (Su) du.
(2.6)

1) Let k and ¢ be odd and
consider y=2b/c, a=0, p=ck/2
with (b, c) = 1. Then, from Theorem 1 and
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Eqg. (2.3) we have

— 2b
X1 (n)Bp,)(z (? Tl)

0snsck/2
(ck-1)/2

Y, 1y (Zn)

DO (p+1y, b
p+1 ( J )( c)

X {XZ(Z) }

p+1—j,)(2
l+1

(7)) (1)3

k — —
X fo Bl+1,71 (gu) Bp—l—l,)(z (bu)(du)
2.7

j-1

Now consider the sum s3 ,,(b, c: x1, X2)-
S3p(b, C: X1, X2)
= b
=3, (-1 (W) Byy, (2)

ck-1

=2x1(2) Zn y X1(MBy y, (212")

Zn 1 Xl(n)Bp)(z( )
(2.8)

eletpbeodd Putl+1=p—-1
in (2.7). Then, (2.7), (2.8) and [6, Eq. (21)]
yield

)_(1( 2)(27 + 1)bcps3p(b C: X1, X2)

= zz (p+ 1)( 1)ibicp+i=i

x {)(2(2) 2/}B;5
—2P71pPc2p(p + 1)
k

x]§p 17, (2 )Buz(bu)du

—(p + DF,(~2)bck?™!
X DA RIS (W, (DB, (2

X1 p+1_]!X2

(2.9)

Putting [ =0 in (2.7) gives an integral
representation for s; ,(b, c: x1, x2):

bh).
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1
—)_(1(—2)53p(b C: X1, X2)
X1( 2) (E)p !

Cc
1 -1

x Z > a®r,68, (L+2)

h=1 j=1
k

= bp.l- El_
0

~{x,(@ -

u) Ep—l,)(z (bu)du
2}B1r71 BplXZ '
(2.10)

Combining (2.5) and (2.9), we arrive at the
reciprocity formula

XZ(_l)C(Zb)pS4,p(Cﬁ b: )_(zl )_(1)
+x,(=2)bcP sz, (b, c: x1, X2)

p
ptlsy

X {7(2 (2) — ZJ'}BJ-’ZB
—)_(1(—2)bckp‘1

x Z}((h))(z(l)3< o).

Proof of Theorem 3

p+1—j‘)(2

We first note that similar to
S3,p(biC:X11X2) and S4,p(bJC:X1JX2) the

sums S3p(b, c: x4, X2) and
Sap(b, c: X1, X2) vanishes when
D" ) (-Dx (-1 = - Let

gcd(b,c) =1 with ¢ > 0. Let y = bk,/
cky, y=bk,/2ck, and y = 2bk,/ck,
instead of y=b/c, y=b/2c and y =
2b/c in 1), 11) and I11) respectively. Then
adopting the arguments in the proof of
Theorem 2, and using [6, Eq. (22)] instead
of [6, Eq. (21)], the desired result follows.
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