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Abstract: Rice is known to be one of the most essential crops in Türkiye, as well as many other countries 

especially in Asia, whereas paddy rice cropping systems have a key role in many processes ranging from 

human nutrition to environment-related perspectives. Therefore, determination of cultivation area is still a hot 

topic among researchers from various disciplines, planners, and decision makers. In present study, it was 

aimed to evaluate performances of three classifications algorithms among most widely used ones, namely,  

maximum likelihood (ML), random forest (RF), and k-nearest neighborhood (KNN), for paddy rice mapping 

in a mixed cultivation area located in Biga District of Çanakkale Province, Türkiye. Visual, near-infrared, and 

shortwave-infrared bands of Landsat 9 acquired on July 04, 2022 was utilized. The classification scheme 

included six classes as dense vegetation (D), sparse vegetation (S), agricultural field (A), water surface (W), 

residential area – base soil (RB), and paddy rice (PR).  The performances were tested using the same training 

samples and accuracy control points. The reliability of each classification was evaluated through accuracy 

assessments considering 150 equalized randomized control points. Accordingly, RF algorithm could identify 

PR areas with over 96.0% accuracy, and it was followed by KNN with 92.0%. Using one-date Landsat 9 

imagery seemed to have potential for PR area determination at high accuracy levels. In conclusion, RF 

algorithm is strongly suggested for reliable distinction of PR areas from neighbor classes under similar 

climate, soil and terrain conditions with comparable cultivation patterns, whereas Landsat 9 presents valuable 

data set for similar studies by being free of charge. 

 

 

Landsat 9 Kullanılarak Çeltik Alanlarının Haritalanması için Farklı Kontrollü Sınıflandırma 

Algoritmalarının Karşılaştırılması 
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Kelimeler 
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Öz: Asya’ da bulunan birçok ülkede olduğu gibi Türkiye’ de de çeltik esansiyel bitkilerden biri olup, tava 

üretim sistemleri insan beslenmesinden çevresel perspektifte bir çok süreç için kilit role sahiptir. Bu nedenle, 

üretim alanlarının belirlenmesi farklı disiplinlerden birçok araştırmacı, planlayıcı ve karar vericiler yönünden 

hala önemli bir konu teşkil etmektedir. Çalışmada Çanakkale ili Biga ilçesinde konumlanan karışık üretim 

alanların içerisindeki çeltik alanlarının belirlenmesinde en çok kullanılan sınıflama algoritmaları arasından en 

büyük olabilirlik (ML), rastsal orman (RF) ve k-en yakın komşu (KNN)’ nun performans değerlendirilmesi 

amaçlanmıştır. 04 Haziran 2022 tarihinde çekilen Landsat 9 görüntüsünün görünür, yakın kızılötesi ve kısa 

dalgaboylu kızılötesi bantlarından yararlanılmıştır. Sınıflama, yoğun vejetasyon (D), seyrek vejetasyon (S), 

tarım alanları (A), su yüzeyi (W), yerleşim alanı – çıplak toprak (RB) ve çeltik (PR) olmak üzere 6 sınıfı 

içermektedir.  Performanslar, aynı eğitim örnekleri ve aynı doğruluk kontrol noktaları ile test edilmiştir. Her 

bir sınıflamanın güvenilirliği doğruluk analizleri ile 150 rastgele eşit dağılımlı noktanın kontrolü ile 

yapılmıştır. Buna göre RF algoritması çeltik alanlarını %96.0’ nın üzerinde doğrulukla ve ardından gelen KNN 

ise %92.0 doğrulukla belirleyebilmiştir. PR alanlarının yüksek doğrulukta belirlenmesinde tek tarihli Landsat 

9 görüntüsünün kullanım potansiyeli olduğu görülmüştür. Sonuç olarak, benzer iklim, toprak ve arazi koşulları 

ile kıyaslanabilir ürün deseni koşulları altında PR alanlarının komşu sınıflardan güvenilir şekilde ayrıştırılması 

için RF algoritması kuvvetle önerilmekte olup, ücretsiz olması sebebiyle benzer çalışmalar için Landsat 9 

önemli bir veri seti teşkil etmektedir.  
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1. INTRODUCTION 

 

Paddy rice (PR) production has a vital role in food 

security, and it is a significant crop for over half of 

global population, whereby almost 20% of energy per 

capita sourced from rice consumption [1-3]. A great 

majority is growing in Asian countries, and the produced 

amount corresponds to 80% of world’s total production 

and consumption rates [4-5]. However, many countries 

import rice due to their supply amount is not sufficient to 

meet the demands of the living population [6]. As it was 

cited by Semerci and Everest [7], rice production meets 

80% of rice demand in Türkiye according to latest 

reports, whereby the gaps in the supply is met by import 

of approximately 150 thousand tons. Thence, prediction 

of rice production before harvest became an important 

point for forecasting the gap between production and 

expected consumption. On the other hand, identification 

of paddy rice cultivation areas is not important only in 

terms of nutrition or economic views, but also for 

controlling cropping system related environmental 

issues. The primary effect of paddy rice cultivation on 

the environment comprises from the large amount of 

irrigation water requirement since it is the main water 

intensive crop, and reported to consume almost one-

fourth of world’s freshwater resources [8].  In another 

point of view, it is one of the major contributors of 

anthropogenic greenhouse gas emissions, in particular, 

methane, whereby it is declared to be responsible for the 

11% of methane emissions [9]. Therefore, up-to-date and 

reliable monitoring of rice planting areas has great 

importance in policies of food and environmental 

sustainability. In this context, remotely sensing data 

provides rapid, accurate, and relatively economic 

analysis of rice plantation.  

 

Several studies have been conducted for paddy rice 

determination starting from 80s through different 

sensors, ranging from Landsat series to synthetic 

aperture radar data. Different techniques have developed 

for PR mapping in different regions of the world 

including particularly Asia [10], Mediterranean countries 

[11] and Australia [12], within the last decades [13]. 

Recent studies have dealt with comparison of varietal 

machine learning algorithms for classification of various 

LULC classes, as well as PR [14]. For instance, Mishra 

et al. [15] used knowledge-based decision tree approach, 

Onojeghuo et al. [16] considered support vector 

machines (SVM) and random forest (RF) algorithms, 

and Karkee et al. [17] utilized artificial neural networks. 

Present study focused on evaluation of different 

classification algorithms for paddy rice distinction using 

Landsat 9 imagery. Performances of three most widely 

used algorithms; maximum likelihood (ML), RF, and k-

nearest neighborhood (KNN) were evaluated in the test  

site located within Biga District of Çanakkale Province, 

Türkiye. Although there are studies on comparison of 

different classifiers in the literature for different LULC 

types or a specific crop, they mostly based on at least a 

set of imageries or time series that covering different 

phenological stages of plants. However, it usually 

presents a limitation for many Landsat-based studies due 

to relatively low temporal resolution, whereas cloud 

cover may reduce the number of imageries within the 

growing season. Therefore, the study aimed to compare 

the performances of ML, RF and KNN algorithms, and 

investigate the potential of using one-date Landsat 9 

imagery instead of multi-temporal imageries acquired in 

certain intervals during the growth period, for distinction 

of PR from other land use/land cover (LULC) classes. . 

To achieve this aim, the area was separated into six main 

LULC class including PR, the same training samples 

from each class were used in ML, RF, and classification 

steps, and accuracy of the same reference points were 

controlled to ensure that different performances are 

sourced from the properties of used algorithms.   

 

2. MATERIAL AND METHOD 

 

2.1. Study Area 

 

The study was conducted within the specified area in 

Biga District of Çanakkale Province (40°20’12’’ N - 

27°17’24’’ E).  Figure 1 represents the location of the 

study area within Biga, Çanakkale and Türkiye. The 

2021 year reports of Turkish Statistical Institute have 

revealed that Çanakkale Province includes 9.35% of 

Türkiye’ s paddy rice cultivation areas with 121091 

hectares (ha), while Biga takes the first place among 12 

districts with 96341 ha, corresponding to 79.7% of 

whole province paddy rice areas [18]. The specified area 

was selected due to its complex surface properties, 

which represents a mixture of different LULC types that 

can give similar signatures with each other especially for 

irrigated fields, and covers an area of approximately 

16380 ha.  

 

 
Figure 1. Location of study area 

 

2.2. Data Collection, Image Processing, and 

Supervised Classification 

 

Landsat 9 imagery has 11 bands covering different 

channels in between visible and thermal infrared regions 

of electromagnetic spectrum. Even though the band 

properties of Landsat 8 and Landsat 9 are near-identical 

to each other, enhancements in radiometric resolution led 

to better identification of dark surfaces, such as; water 

bodies. In present study, Landsat 9 imagery acquired on 

04 June, 2022 is downloaded freely from United States 

Geological Survey website [19], and the path/row 

number of the imagery is 181/32 to determine paddy rice 

fields in the area. Level-2 production that has been 

geometrically, radiometrically, and atmospherically 

corrected was used (UTM Zone 35). The imagery was A 

total of six bands (6B) visible, near-infrared and 

shortwave-infrared bands were stacked prior to subset of 

the study area. 
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A classification scheme was composed depending on the 

variations in LULC types in the specified area. 

Accordingly, six main LULC class determined including 

dense vegetation (D), sparse vegetation (S), agricultural 

field (A), water surface (W), residential area – base soil 

(RB), and paddy rice (PR). The D class was consisted of 

dense tree cover. The S class included all types of 

shrubs, bushes, and harvested crop residues. The A class 

covered all types of agricultural production fields, except 

paddy rice. The W class represents water surfaces of sea 

or stream or open channels. The RB class covered 

residential areas together with bare lands, which were 

spectrally similar. The PR class includes the paddy rice 

within the specified area. 

 

Training sample polygons from each LULC class were 

collected manually for the classification process 

depending on visual interpretation of high-resolution 

images from closest date of Google Earth. Supervised 

classification procedures were applied using three 

different algorithms of ML [20], RF [21], and KNN [22]. 

The ML algorithm calculates the likelihood allocations 

of classes [23]. The RF known to be a common machine 

learning algorithm for classification studies [24], and it’s 

capable of increasing classification accuracy by creating 

multiple decision trees. The KNN classifies the unknown 

data by finding K-closest data from the image with the 

help of Euclidean distance [25]. Different parameters 

have tested and the most appropriate LULC maps were 

selected to be exposed to accuracy assessment 

procedures. 

 

2.3. Accuracy Assessment 

 

Finally, accuracy assessments were conducted 

subsequent to image classification to evaluate 

reliabilities of the LULC maps (LULCML, LULCRF, and 

LULCKNN). High-resolution Google Earth imagery with 

closest date was used as the reference image. In this 

process, accuracies of 150 randomized control points, 

with 25 points for each LULC class were assessed by 

transferring on Google Earth application (Figure 2). The 

well-known measures for accuracy assessment, overall 

accuracy (OA, %) (1), overall kappa (K) coefficient ( 2), 

user’s accuracy (UA, %) (3), and producer’s accuracy 

(PA, %) (4), that obtained from error matrices were 

evaluated for each LULC map to state the classification 

performances of considered algorithms. The 

methodological workflow is given in Figure 3. 

 

𝑂𝐴 =
∑𝑁𝑜𝐶𝐶𝑃

∑𝑁𝑜𝑅𝑃
× 100                 (1) 

𝑈𝐴 =
∑𝑁𝑜𝐶𝐶𝑃𝐿𝑈𝐿𝐶

∑𝑁𝑜𝑅𝑃𝐿𝑈𝐿𝐶
× 100                 (2) 

𝑃𝐴 =
∑𝑁𝑜𝐶𝐶𝑃

∑𝑁𝑜𝐶𝑃𝐿𝑈𝐿𝐶
× 100                 (3) 

𝐾 =
𝑃0−𝑃𝐶

1−𝑃𝐶
                 (4) 

Where, ΣNoCCP represents total number of correctly 

classified pixels, ΣNoRP total number of reference pixels, 

ΣNoCCPLULC total number of correctly classified pixels 

in a certain LULC class, ΣNoRPLULC total number of 

reference pixels in the same class, ΣNoCPLULC total 

number of classified pixels in the same class, PO 

probability of correct classification, PC probability of 

change agreement. 

 

 
Figure 2. Distribution of accuracy check points 
 

 
Figure 3. Flowchart for the supervise classification and performance 

comparison 
 

3. RESULTS AND DISCUSSION 

 

3.1. LULC Classifications 

 

Classification of LULC is known to be one of the most 

widely used analyses within the frame of remote sensing, 

whereas Landsat imageries have long been used in 

several studies particularly for identification of various 

plants [26]. One of the main challenges for obtaining 

confidential LULC maps is the duration of processing 

time especially dealing with medium resolution 

imageries likewise Landsat series, which are available 

free of charge [27-28]. The produced maps of LULCML, 

LULCRF, LULCKNN are given in Figure 4, Figure 5, and 

Figure 6, respectively. Areas of the LULC classes were 

calculated in hectares (ha) and percentages (%) (Table 

1), and compared to each other. Accordingly, the area 

was predominantly covered by A and PR class in all 

classifications, whereby total area of mentioned classes 

corresponds to at least 55% of whole study area. 

Furthermore, water surface area differed slightly due to 

discrimination capabilities of considered algorithms for 
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the limited number of wet pixels on stream lines. 

Depending on LULCML, A areas seemed to cover major 

part of the area (29.3%), and it was followed by PR class 

(27.9%). Other vegetation types including dense and 

sparse vegetation were found as 3.5% and 19.0%, 

respectively, whereby the proportion of RB class was 

9.6%. In comparison with LULCML, investigation of the 

class areas obtained from LULCRF has shown that PR 

class areas were quite higher than A class areas with a 

difference of 6.6%. Moreover, sparse and dense 

vegetation coverages calculated as 20.7 and 4.3%, which 

were both higher than LULCML classification. 

Conversely, classification of RB areas through RF 

resulted in 4% lower coverage than ML. On the other 

hand, the class area coverages were more consistent for 

LULCRF and LULCKNN when compared with LULCML. 

Based on LULCKNN, it was seen that majority of the 

study area was classified as PR (31.2%), while A class 

has the lowest share within all classifications (24.7%). 

The coverage of sparse vegetation showed highest value 

with 22.8% among all classifications. Dense vegetation 

was slightly lower than LULCRF and calculated as 

(4.9%).  It was denoted that most effective components 

of supervised classification of LULC are training 

samples and classifiers, as well as ancillary of 

supplementary datasets when they are available [29]. In 

present study, the same training samples were utilized 

for all classifications for a systematic assessment of 

performances by avoiding the differences sourced from 

use of variant datasets. Therefore, the differences 

between LULC maps are only resulted from the 

discrimination properties of different classifiers, 

whereby the performances were determined through 

accuracy assessment procedures. Visual interpretations 

have revealed that, the RB area was overestimated 

especially for LULCML, and led to underestimation of PR 

class area, as well as A class. Similar situation was seen 

in LULCKNN for the misclassifications between RB and 

A classes, but the PR classification seemed more 

accurate in comparison with LULCML. Conversely, the 

LULCRF gave more precise results in all LULC types. 

Moreover, it was noticed that there were observable 

confusions between S and A classes in all classifiers in 

different rates.  

 

 
Figure 4. The distribution of classes from LULCML 

 

 

 
Figure 5. The distribution of classes from LULCRF 

 

 
Figure 6. The distribution of classes from LULCKNN 

 

Table 1. Areas (ha, %) of LULC classes based on LULCML, LULCRF, 

and LULCKNN 

LULC 

CLASS 

LULCML LULCRF LULCKNN 

Area Area Area 

ha % ha % ha % 

D 569.3 3.5 706.2 4.3 680.6 4.2 

S 3106.0 19.0 3388.5 20.7 3732.3 22.8 

A 4805.0 29.3 4265.0 26.0 4053.2 24.7 

W 1754.6 10.7 1760.5 10.7 1768.4 10.8 

RB 1565.5 9.6 919.3 5.6 1041.3 6.4 

PR 4577.4 27.9 5338.3 32.6 5102.0 31.2 

Total 16377.8 100.0 16377.8 100.0 16377.8 100.0 

 

3.2. Accuracy Assessments 

 

The performances of different algorithms were identified 

through accuracy assessments. Using random sampling, 

the randomized points from each class were distributed 

over the study area to guarantee the uniform and 

appropriate representation of the classes [30].  

Determination of rice via using satellite images usually 

face with difficulties due to the confusions between 

plantations with similar color and texture [31]. The error 

matrices representing confusions between the classes are 

given in Table 2, Table 3 and Table 4 for LULCML, 

LULCRF, and LULCKNN classifications, respectively. 

Due to the fact that the study area was composed of 

different types of agricultural fields, the spectral 

signatures were highly mixed. Furthermore, relatively 

small sizes of the mentioned fields were also present a 

handicap for the study against relatively low resolution 

of imagery. Thus, there were confusions between in all 
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LULC maps in different rates. The overall accuracies 

(OA) of LULCML, LULCRF, and LULCKNN were 84.7%, 

93.3% and 88.0%, respectively. Furthermore the overall 

kappa (OK) values were calculated as 0.816, 0.920, and 

0.856 with the same order. Even though all the 

classifications seemed reliable since they were over the 

threshold kappa coefficient value, it can be clearly seen 

that the lowest classification performance was obtained 

from LULCML not only for PR, but also for A 

classification based on the tables. The UA and PA were 

calculated as 80.0% and 86.9% for PR class, whereas the 

values were found to be 72.0% and 75.0% for A class. 

The confusions were occurred particularly between PR 

and RB class, where the water level, the height and 

coverage of the plants were considerably low. Moreover, 

there were also misclassifications in A and S classes, as 

well as A and RB classes. The confusions may seem 

relatively low due small size of study area, and thus, 

limited number of control points. However, greater size 

of test areas together with higher number of considered 

LULC types expected to reduce the accuracy of ML 

classifications in areas with similar properties. 

 

The LULCRF classification gave the most reliable results 

for all LULC types, and accuracy indicators have shown 

that the distribution of classes was strongly close to real 

situation (93.3%). However, the most observable finding 

among the selected LULC types was the near-perfect 

classification of PR class, which was correctly classified 

(100%), one out of twenty six reference points was 

accurate, which means that and only one control point 

from W class was misclassified as PR. Depending on the 

finding, in can be confidently said that the RF can be 

used for PR classifications within complex areas due to 

considerably low error rates, which may not be 

significantly affected from increase of the sampling size 

dependent to its discrimination capability. 

 

The investigation of error matrices for LULCKNN has 

revealed that, although the general classification were 

highly accurate with high OA and OK values (88.0% and 

0.856), some misclassifications in PR class, in addition 

to low performance of classifying complex structured A 

class areas. Nevertheless, the use of the algorithm 

instead of ML is probable to give more satisfactory 

results in the further studies, but seemed to be less 

confident in comparison with RF algorithm for such 

purposes with 92.0 % UA and PA values for PR, and 

76.0% UA and PA for A classes, respectively. 

 

Previous studies conducted in different locations have 

shown that paddy rice phenology mapping is the most 

effective method for optical remote sensing related PR 

mapping with high OA [32].  Different machine learning 

algorithms were utilized for PR mapping, namely SVM, 

decision trees (DT), and RF, while advanced algorithms 

were also developed for obtaining classifications with 

higher accuracies, as it is mentioned by Zhang et al. [33] 

In present study, the PR determination through RF and 

was also prosperous with high UA and PA. In fact, as it 

was cited by Phan et al. [34], Mahdianpari et al. [35] and 

Xia et al. [36] have declared that various studies have 

agreed on the view of RF is considered as one of the 

most preferred LULC classifier over the last 20 years 

due to many capabilities of such as performance of 

higher accuracy in comparison with SVM, KNN or MLC 

[37-38], and rapid processing by selection of significant 

variables [339]. On the other hand, Zhu et al. [40] 

proposed a combination method consisting of phenology 

and machine learning approaches for determination of 

PR areas, and succeed with 88.8% OA, which was quite 

lower from the RF and KNN accuracies of present study. 

Furthermore, crops were identified through RF algorithm 

by Yao et al. [41] with OA and K values of 87.0% and 

0.82, respectively, whereby the accuracies were 

significantly improved by combining RF and deep neural 

networks. In the lights of above mentioned situations, 

findings of the study were coherent with the literature, 

and believed to present a basis for further researches. 

 
Table 2. Error matrix of LULCML 

Class D S A W RB PR Total UA 

(%) 

PA 

(%) 

D 24 0 1 0 0 0 25 96.0 100.0 

S 0 21 2 0 2 0 25 84.0 91.3 

A 0 2 18 0 4 1 25 72.0 75.0 

W 0 0 0 21 2 2 25 84.0 100.0 

RB 0 0 2 0 23 0 25 92.0 66.1 

PR 0 0 1 0 4 20 25 80.0 86.9 

Total 24 23 24 21 35 23 150   

OA  84.7% 

OK 0.816 

 
Table 3. Error matrix of LULCRF 

Class D S A W RB PR Total UA 

(%) 

PA 

(%) 

D 24 0 1 0 0 0 25 96.0 96.0 

S 0 22 2 0 1 0 25 88.0 96.0 

A 1 1 20 0 3 0 25 80.0 87.0 

W 0 0 0 24 0 1 25 96.0 100 

RB 0 0 0 0 25 0 25 100.0 86.2 

PR 0 0 0 0 0 25 25 100.0 96.0 

Total 25 23 23 24 29 26 150  

OA  93.3% 

OK 0.920 

 
Table 4. Error matrix LULCKNN 

Class D S A W RB PR Total UA 

(%) 

PA 

(%) 

D 23 0 2 0 0 0 25 92.0 85.2 

S 3 20 2 0 0 0 25 80.0 95.2 

A 1 1 19 0 3 1 25 76.0 76.0 

W 0 0 0 24 0 1 25 96.0 92.0 

RB 0 0 2 0 23 0 25 92.0 88.5 

PR 0 0 0 2 0 23 25 92.0 92.0 

Total 27 21 25 26 26 25 150  

OA  88.0% 

OK 0.856 
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4. CONCLUSIONS 

 

Determination of PR areas has great importance in 

various terms, such as, yield forecast, maintenance of 

resources, water management, and reducing gas 

emissions for mitigation of climate change effects. In 

comparison with traditional methods, remote sensing is 

known to be a valuable tool for gathering information on 

land surface properties, whereby generation of LULC 

maps including different classes, comprises rapid and 

reliable assessment of PR areas and their effects within 

the concepts agricultural or environmental perspectives. 

On this account, along with the properties of utilized 

remotely sensed data; collection of training dataset, 

selection of appropriate classifier, and implementation of 

validation procedures are the most essential points of 

supervised classification techniques. Thereby, the major 

objective of present study was to compare some of the 

most widely used classification algorithms, namely, ML, 

RF, and KNN, for identifying the best performing 

classifier for PR detection in specified area with complex 

spectral structure due to spatial characteristics. Accuracy 

assessment procedures were conducted through the same 

randomized control points for LULCML, LULCRF, and 

LULCKNN that collected equally from each LULC 

classes. Depending on the magnitude of area, a total of 

150 points from the six classes were concluded to 

adequate and representative for evaluation of the 

reliability. Using the same control points in comparison 

step of the actual statuses with classified ones have 

enabled identification of best performed classification 

since the control points were mutual, as well as training 

samples, for all LULC maps. Thence, the differences 

between accuracies guaranteed to source from the 

algorithms. Findings have revealed that the most 

successful classification was obtained from LULCRF in 

terms of OA, K, UA, and PA with values of 93.3%, 

0.920, 100.0%, and 96.0%, respectively. It was followed 

by KNN classifier 88.0%, 0.856, 92.0% and 92.0% with 

the same order, whereby the ML algorithm gave the less 

accurate results in all categories. The use of ML 

classifier in larger areas seemed probable to led reduced 

level of accuracy with the increment in control points 

and complexity level of the LULC. In present study only 

six LULC classes were taken into account. On the other 

hand, the classification scheme can be modified in 

different locations depending on climatic and geographic 

circumstances in respect to properties of land surface 

within the studied areas, data quality, and availability of 

supplementary satellite-based, aerial or ground truth 

data. Therefore, a further study is planned for exploring 

the accuracy of classification considering more LULC 

classes with higher number of training samples in a 

wider area of interest by using high-resolution datasets 

and derived vegetation indices. In conclusion,  findings 

of the study findings believed to serve as a basis for 

future researchs by designating appropriate algorithm for 

the most recent Landsat data.  
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