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In this study, the effects of five different concentrations of silver nanoparticles (Ag-NPs) (0, 
25, 50, 75, 100 mg l-1) application on two different tomato cultivars grown at three different 
irrigation levels (25%, 50% and 100%) were investigated. Yield and quality characteristics 
of tomato fruits were investigated. The level of Ag-NPs that reduces the effects of arid 
stress on the plant genotypes physiologically and morphologically and their effects on the 
yield and fruit quality characteristics were also evaluated. Ag-NPs of 50 mg l-1 application 
was found to be more effective than the other applications in protecting tomato plants 
against the negativities caused by drought stress. In general, the total yield showed a 
decrease in AgNPs+stress applications according to Chlorophyll (SPAD) and Water use 
efficiency. In total yield Ag-NPs, Ag-NPs+50% stress and Ag-NPs+25% stress applications, 
the highest doses were found for Ag-NPs 25 mgl-1 (5489.66 g m2) and Ag-NPs 25 mg l-1 
(4896.00 g m2), respectively. This study provides results that may be used by producers in 
places where tomato plants grown in arid regions. Silver nanoparticles can be used at ppm 
levels to produce quality tomato fruits by providing drought resistance of the plant. 
 

ÖZET 

Bu çalışmada, 3 farklı sulama seviyesinde (%25, %50, %100) yetiştirilen 2 farklı domates 
çeşidine 5 farklı konsantrasyonda gümüş nanopartiküllerin (Ag-NPs) (0, 25, 50, 75, 100 mg 
l-1) uygulamasının etkileri incelenmiştir. (Ag-NPs) uygulaması  ppm bazında kullanılarak 
domates meyvesinin verim ve kalite  özelliklerini incelenmiştir. Ag-nanopartiküllerin 
domates genotiplerinde bitki üzerindeki kurak stresin etkilerini fizyolojik ve morfolojik 
olarak hangi düzeyde azalttığı belirlenirken, uygulamaların verim ve meyve kalite özellikleri 
üzerindeki etkileri de incelenmiştir. Denemede uygulanan Ag-NPs 50 mg l-1 uygulamasının 
domates bitkisini; kuraklık stresinden kaynaklanan olumsuzluklara karşı korumada diğer 
uygulamalara göre daha etkili olduğu görülmüştür. Genel olarak toplam verim, meyve 
uzunluğu ve meyve çapına göre Ag-NPs+stres uygulamaları bir düşüşe neden olmuştur. 
Toplam verimde Ag-NPs, Ag-NPs+%50 stress ve Ag-NPs+%25 stress uygulamalarında en 
yüksek dozlar sırasıyla Ag-NPs 25 mg l-1 (5489,66 g m2) ve Ag-NPs 25 mg l-1 (4896,00 g m2) 
olarak bulunmuştur. Bu çalışma, üreticilerin hemen kullanabilecekleri pratik kısa vadeli 
sonuçlar sunmaktadır. Bu çalışma, özellikle kurak bölgelerde domates yetiştiriciliğin 
yapıldığı alanlarda üreticilerin kısa vadede pratik olarak kullanabilecekleri sonuçlar 
sunmaktadır. Gümüş nanopartiküller, bitkinin kuraklığa dayanıklılığını sağlayarak kaliteli 
domates meyveleri üretmek için ppm düzeylerde kullanılabilir. 
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INTRODUCTION 

 

Tomato (Solanum lycopersicum) is one of the main field and greenhouse vegetable crops grown all over the world 

(Quinet et al., 2019). Tomatoes contain many health-promoting compounds and are easily integrated as a nutritious 

part of a balanced diet (Martí et al., 2016). Nanotechnology is developing rapidly in many sectors including 

agriculture. Nanoparticles differ from bulk products due to their physical and chemical properties. Different 

responses have been reported regarding commercial and scientific applications of nanoparticles (Oberdorster et 

al., 2005; Akhoundnejad & Karakaş, 2021). The word nano means very small in Greek and refers to a billionth of 

any physical size (Tegart, 2003). Silver is used in different stages of plant growth and development due to its 

nanomaterial and antibacterial properties (Kim et al., 2007; Soylu et al., 2022). Nanotechnology is an applied science 

field that deals with biological or non-biological particles smaller than 100 nm in diameter (Cıracı et al., 2005). 

Nanotechnology is the study and use of materials at atomic and molecular sizes (on a scale ranging from 10 to 100 

nm) (Kaphleet al., 2018). Nanoparticles can be in the form of organic and inorganic materials. Organic nanoparticles 

contain carbon while inorganic nanoparticles contain titanium, zinc, silver, gold and copper (Xu et al., 2006). 

Nanoparticles (NPs) are materials with their unique nanoscale size between 1 and 100 nm (Graf et al., 2003), 

chemical and physical properties, size and high surface area (Dakal et al., 2016). Among the nanoparticles used in 

plants, silver nanoparticles (Ag-NPs) are used more effectively and importantly in different applications (Firdhouse 

&  Lalitha, 2015). 

Plants face adverse conditions due to fluctuations of environmental conditions. These changes include abiotic 

nutrient imbalance, stresses such as high or low temperature, salinity and drought affecting plant growth and 

development (Due et al., 2008). Many researchers extensively studied the drought stress on many plant varieties 

(Farooq et al., 2009; Dasgan et al., 2018; Laxa et al., 2019, Akhoundnejad & Dasgan, 2020; Akhoundnejad et al., 

2022). Drought stress causes biochemical, physiological and morphological changes in plants (Ortiz et al., 2015; 

Bırgın et al., 2021). Although plants can develop defense and resistance mechanisms, these measures are 

sometimes insufficient (Cruz de Carvalho, 2008). In recent years, nanotechnology has received increasing attention 

in the fields of electricity, medicine, food and agriculture. It is widely used, especially because it shows quick results 

in plants.  

The aim of this study was to examine the tomato yield and quality under the application of silver nanotechnology 

and drought stress. Different doses of Ag-NPs, drought stress, plant growth, effects and toxicities were investigated. 

In addition, both beneficial and harmful limitations of Ag-NPs application were examined. 

 

MATERIALS and METHODS 

 

The tomato genotype (cv. Fereng) used in the research was widely cultivated in Idil/Sirnak region (Akhoundnejad, 

2020). The study was carried out in the research and application garden of Sirnak University. Three different water 

levels (100%, 50% and 25%) were used in the experiment (Akoundnejad, 2020). The amount of water to be given 

was calculated according to the formula given below. The amount of water given per plant was shown in Figure 1. 

Ag-NPs were applied to tomato plants at 0, 25, 50, 75 and 100 mg l-1 doses which were chosen according to previous 

studies (Akhoundnejad et al., 2022). The characteristics of the Ag-NPs, obtained from Sigma Aldrich company, are 

as follows: AB202468 and 4-7 APS 4-7 micron; 99.9% (metalsbasis). The experiment was set up in a factorial 

randomized block design with three replications and 10 tomato plants in each replication. Tomato seeds were 

planted on rows with a distance of 120 cm between rows and 50 cm in rows. In the experiment, seed planting was 

done on March 15, 2019 according to the weather conditions. The planting of the seedlings was carried out on April 

17, 2019. Drought stress onset time was applied after the first flowering in the experiment. Ag nanoparticles (Ag-
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NPs) was applied approximately 30 days after planting and every two weeks at doses of 0, 25, 50, 75 and 100 mg l-

1 from the leaf until the end of the experiment (as a foliar spray). 

 

IR (Amount of Water Used, m3) = A (Parcel size, decare) * E PAN (Evaporation amount, mm) * KCP (Coefficient of 

tomato fruit, 0.80) * P (Vegetation, %) 

 

 
Figure 1. The amount of water used in the experiment (Liter plant-1) 

Şekil 1. Denemede kullanılan su miktarı (Litre bitki-1) 

 

Membrane damage index in leaf cells (%) 

In the trial, 1 cm diameter leaf disc was taken by counting 5-6 leaves from the top of the tomato plant during the 

harvest period and falcon tubes were placed with 20 ml distilled water and measured with an EC meter after 4 

hours. In addition, after measuring, the samples were kept at 100 °C for 10 minutes and after they come to room 

temperature, they were measured again with an EC meter and the following Formula was applied to calculate the 

membrane damage index in leaf cells (Dlugokecka & Kacperska-Palacz, 1978; Fan & Blake, 1994): 

Membrane damage index in leaf cells = (Lt-Lc) / (1-Lc)x100 

Lt: EC measurement of stress application in trial before autoclave/ Ec measurement after autoclave 

Lc: EC measurement of the control application in the trial EC before/after autoclaving 

 

Determination of the amount of chlorophyll (SPAD) 

Chlorophyll amount was measured from six leaves from the top of the tomato plants by using chlorophyll meter 

(Minolta SPAD-502Plus). 

 

Determination of fresh and dry weight of tomato leaves (%) 

During the harvest period, samples were taken from the leaves and weighed. The weights of the samples were also 

measured after drying in an oven for 72 hours and at 65 °C. 

 

Determination of leaf relative water content (LRWC) (%) 

In the experiment, leaves were taken as samples during the harvest period and their fresh weights were measured. 

In addition, the leaf samples were kept in pure water for 4 hours and the turgor weights were measured again. In 

addition, after drying in an oven for 48 hours and at 65 °C, the weights were measured again and calculated 

according to the method of Sanchez et al. (2004). 
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Potassium and calcium element analyzes of tomato fruits and green parts (mg l-1 and %)  

After drying samples, 200 mg of the samples weighed and burned in the ash oven at 550 °C for 6 hours. In addition, 

the blue band filter was taken by dissolving with 3.3% HCl solution. The concentrations of K and Ca elements were 

determined by reading the filters in an Atomic Absorption Spectrophotometer (Model: FS220, Varian) device in 

emission mode. 

 

Determination of vitamin C in tomato juice (mg g-1)  

After taking the juice sample of 1 g of tomato fruits, 45 ml of 0.4% oxalic acid was added, 1 ml was taken after 

passing through filter paper, 9 ml of dye solution was added, and reading was made according to Özdemir and 

Dündar (2001) at 502 nm wavelength. 

 

Determination of lycopene (mg kg-1)  

After the tomato fruits were set, 0.5 g pulp was weighed, 0.3 g starch was added to it, 20 ml acetone was added, 

and then shaken in a shaker for 20 minutes and centrifuged for 3 minutes. In addition, measurements were made 

at 503 nm in the spectrophotometer. 

 

Water use efficiency (g l-1) 

In the experiment, the amount of water given to tomatoes in different arid stress applications was recorded. In 

addition, the yield amount of the tomato genotype was recorded at each harvest. Water use efficiency was 

calculated by dividing the tomato yield recorded at the end of the experiment by the amount of water we gave 

(reference) using the formula given below: 

Water Use Efficiency (g / L) = yield per plant (g / plant) / amount of water given to the plant (L / plant) 

 

Total tomato fruit harvest (g/m2) 

After the start of the harvest in the experiment, the harvest of tomato fruits was recorded in each harvest. One 

harvest was made each week with a total of 5 harvests. At the end of the experiment, the total harvest amount was 

calculated. In addition, the amounts of tomatoes per unit area were calculated as g per m2. 

 

Recording of climate data 

The climate data during the trial period were taken from the Sirnak Meteorology Station Directorate. The climate 

data (temperature and precipitation) recorded in the experiment are given in Figure 2 and Figure 3. 

 

 
Figure 2. Temperature (oC) data near the experiment site 

Şekil 2. Deney sahasına yakın sıcaklık (oC) verileri 
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Figure 3. Total precipitation (L) data near the experiment site 

Şekil 3. Deney sahasına yakın alanda toplam yağış (L) verileri 

 

Statistical analysis 

The data in the experiment were subjected to analysis of variance by using JMP statistic package program (Version 

13) and the significance levels of the differences between the means were evaluated according to the LSD test. 

 

RESULTS and DISCUSSIONS 

 

The changes in the total yield was observed the lowest in Ag-NPs, Ag-NPs+50% stress and Ag-NPs+25% stress 

applications: Ag-NPs 100 mg l-1 +100% (5205 g m2), Ag-NPs 100 mg l-1 + 50% stress (4162.00 g m2) and Ag-NPs were 

determined as 100 mgl l-1 + 25% stress (3849.83 g m2). In general, the total yield showed a similar decrease in 

AgNPs+stress applications according to Chlorophyll ( SPAD) and Water use efficiency. In Ag-NPs, Ag-NPs+50% stress 

and Ag-NPs+25% stress applications, the highest doses were found for Ag-NPs 25mgl-1 (5489.66 g m2) and Ag-NPs 

25 mg l-1 (4896.00 g m2), respectively. Accordingly, when the average values were examined, it was seen that the 

total harvest decreases by -19.43% on average in 50% irrigation application compared to their own controls, and 

the total harvest decreases by -10.32% in 25% irrigation application (Table 1). Considering the total yield according 

to the data in Table 1, the lowest tomato harvests in different applications were Ag-NPs 100 mg l-1 5205.0 (g m2), 

Ag-NPs 100 mg l-1 +50% irrigation 4162.0 g m2 and Ag and -NPs+25% stress 3849.8 g m2 were reached. In Ag-NPs 

application, plants develop different defense mechanisms together with stress applications (Ag-NPs+stress). 

Accordingly, it causes many physiological and biochemical changes in plants by negatively affecting growth and 

yield. Accordingly, when Ag-NPs are applied, stomata are closed and a more effective water use is realized in stress 

(drought) mechanisms, especially at 25 mg l-1 doses. Therefore, it has an effect on the total yield. As Ag-NP doses 

increase, its negative effects are observed (Levard et al., 2012). The effects of Ag-NPs on crop harvest are common, 

especially on edible crops (Kumari et al., 2009; Lee et al., 2012; Qian et al., 2013). 

As shown in Table 1, the amount of chlorophyll was seen between 72.4% and 61.1%. In the experiment, the amount 

of chlorophyll was determined at the lowest level in the two stress trials, Ag-NPs 100 mg l-1 + 50% irrigation 66.5and 

Ag-NPs 100 mg l-1 +25% irrigation 61.1 Accordingly, the least affecting chlorophyll amount in the experiment was 

determined as Ag-NPs 50 mg l-1+ 50% irrigation 71.3 and Ag-NPs 25 mg l-1+25% irrigation 65.8 level in the stress 

trial. Depending on the Ag-NPs and Ag-NPs+Stress conditions, the amount of chlorophyll decreased with varying 

amounts of AgNPs doses (Table 1). Ag-NPs 50 mg l-1, Ag-NPs 50 mg l-1 + Stress 25% and Ag-NPs25 mg l-1 + Stress 25% 

showed the closest development to the control plants in terms of chlorophyll amount. As the concentration of Ag-

NPs increased, the chlorophyll amount decreased. Accordingly, the effect of silver nanoparticles (Ag-NPs), a 

decrease in total chlorophyll content in Arabidopsis thaliana (Qian et al., 2013) and Oryza sativa (Nair & Chung, 

2014) plants has been reported in previous studies in parallel with our study results.. This chlorophyll amount 
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causes inhibition in photosynthesis. In addition, it is generally determined as a result of lipid peroxidation as a result 

of the production of reactive oxygen species such as O2 and H2O2.  

 

Table 1. Effect of Ag-NPs on the total yield and chlorophyll content of tomato under drought stress 

Çizelge 1. Ag-NPs'lerin kuraklık stresi altındaki domatesin toplam verimi ve klorofil içeriğine etkisi 

Treatment 100%  Ir. 

L. (T.Y) 

100% Ir. 

L. (Ch.) 

50% Ir. L. 

(T.Y) 

50% Ir. L. 

(Ch.) 

25% Ir. L. 

(T.Y) 

25% Ir. L. 

(Ch.) 

50% 

Cha. 

(T.Y) 

50% 

Cha. 

(Ch.) 

25%  

Cha. 

(T.Y) 

25% 

Cha. 

(Ch.) 

Control 6436.0 b 70.60 c 5332.6 ab 68.78 b 4663.6 b 64.37 b -17.14 -2.58 -12.55 -6.41 

25 mg l-1 6687.3 a 71.67 b 5489.6 a 67.41 bc 4896.0 a 65.79 a -17.91 -5.94 -10.81 -2.40 

50 mg l-1 6731.6 a 72.36 a 5132.6 b 71.29 a 4862.0 a 65.14 ab -23.75 -1.48 -5.27 -8.63 

75 mg l-1 5943.0 c 66.50 e 4854.6 c 67.01 bc 4102.6 c 61.99 c -18.31 0.77 -15.49 -7.49 

100 mg l-1 5205.0 d 67.45 d 4162.0 d 66.49 c 3849.8 d 61.07 cd -20.04 -1.42 -7.50 -8.15 

Mean 6200.6 69.716 4994.3 68.196 4474.8 63.672 -19.43 -2.13 -10.32 -6.62 

LSD0,05 139 0.603 222 1.841 155 1.108 - - - - 

Ir. L.: Irrigation level, T.Y.:Total Yield, Ch.: Chlorophyll ( SPAD), Chan.: Change 

 

Effect of Ag-NPs on the Brix and chlorophyll content of tomato under drought stress is shown in Table 2. Considering 

the averages of the brix values of the tomato genotype in the study, AgNPs and 100%, 50% and 25% irrigation 

applications, respectively; Considering the averages of 6.412, 6.838 and 7.108 and % change, it was determined as 

6.65 in 50% irrigation and 7.1 in 25% irrigation. Accordingly, as the stress increased, the brix values increased due 

to the increase in the amount of lots of lots. It is given in Table 2 that different Ag-NPs and drought stress 

applications are affected by the tomato genotype according to their own controls. Considering the average values, 

an increase is observed in 50% and 25% irrigation applications compared to brix 's own controls. When we look at 

the data in Table 2 the brix values in drought stress reached 6.92 in Ag-NPs 50 mg l-1+50% irrigation and 7.19 in Ag-

NPs 50 mg l-1 +25% irrigation in tomato juice. In general, the brix value increases when the plants are under drought 

stress. The amount of Water-Soluble Dry Matter (brix) was determined between 4 and 6 in tomato fruit (Cramer et 

al., 2001). Changes in the components of TSS were observed in the glucose / fructose ratio and organic acids after 

tomato harvest (Javanmardi & Kubota, 2006).  

Considering the averages of the green parts dry weight values of the tomato genotype in the study, AgNPs and 

100%, 50% and 25% irrigation applications, respectively; Considering the averages of 11.41%, 9.20% and 8.25% and 

% change, it was determined as -19.30% in 50% irrigation and -10.40% in 25% irrigation. It is given in Table 2 that 

different Ag-NPs and drought stress applications are affected by the green part dry weight values of the tomato 

genotype compared to their own controls. According to this, when the average values are examined, it is seen that 

the dry weight values of green parts decrease in 50% and 25% irrigation applications compared to their own 

controls. Looking at the data in Table 2, the dry weight values of green parts under drought stress are the highest 

in 100% irrigation Ag-NPs 50 mg l-1 12.67%, Ag-NPs 0 mg l-1+50% irrigation 10.21% and Ag-NPs 0 mg l-1 +25% 9.30% 

irrigation values. dry weight of green parts in tomato juice reached. In addition, the lowest value among the 

applications was determined as 100 mg l-110.32% in 100% irrigation, Ag-NPs100 mg l-1 +50% irrigation 8.35% and 

Ag-NPs100 mg l-1 +25% irrigation 7.34%. In general, when the plants are under drought stress, the water use 

efficiency value decreases.    
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Table 2. Effect of Ag-NPs on the Brix and dry weight of tomato under drought stress 

Çizelge 2. Ag-NPs'lerin kuraklık stresi altındaki domatesin Brix ve kuru ağırlığına etkisi 

Treatment 100% Ir. 

L. (BRIX) 

100% Ir. 

L. (DW) 

50% Ir. L. 

(BRIX)  

50% Ir. 

L. (DW) 

25% Ir. 

L. (BRIX) 

25% Ir. 

L. (DW) 

50%  

Chan. 

(BRIX) 

50% 

Chan. 

(DW)  

25%  

Chan. 

(BRIX) 

25% 

Chan. 

(DW) 

Control 6.45 a 11.98 b 6.88 ab 10.21 a 7.14 ab 9.30 a 6.67 -14.77 3.78 -8.91 

25 mg l-1 6.35 a 11.53 b 6.90 a 9.39 b 7.09 bc 8.56 b 8.66 -18.56 2.75 -8.84 

50 mg l-1 6.47 a 12.67 a 6.92 a 9.57 b 7.19 a 8.35 c 6.96 -24.47 3.90 -12.75 

75 mg l-1 6.30 a 10.56 c 6.70 b 8.49 c 7.15 ab 7.69 d 6.35 -19.60 6.72 -9.42 

100 mg l-1 6.49 a 10.32 c 6.79 ab 8.35 c 6.97 c 7.34 e 4.62 -19.09 2.65 -12.10 

Mean 6.412 11.41 6.838 9.20 7.108 8.25 6.65 -19.30 3.96 -10.40 

LSD0,05 0.309 0.545 0.178 0.483 0.083 0.197 - - - - 

Ir. L.: Irrigation level, DW: Dry weight, Chan.: Change 

 

Membrane damage index Ag-NPs+50 stress was most affected by Ag-NPs+ 25 stress Ag-NPs 75 mg l-1 and Ag-NPs 

100 mg l-1 (22.26%) and (38.36%) respectively. In addition, control and Ag-NPs 50 mg l-1 + 25% stress (17.86%) and 

(31.85%) were recorded, respectively, in the environments of Ag-NPs + 50% stress and Ag-NPs + 25% stress, 

respectively (Table 3). However, drought stress caused damage to cells in all applications. It is known to reduce 

photosynthesis by decreasing the photosynthetic rate per Memberan damage index. In both stress and AgNPs 

conditions, plants take different measures to protect their water content, and these measures lead to changes in 

their morphology. Reducing the defense mechanisms created to protect the intracellular water balance (Dasgan et 

al., 2018). Ag-NPs are known to be absorbed by plants and interact with intracellular parts causing water 

imbalances, cell damage and decreased photosynthesis have been detected (Kumari et al., 2009; Qian et al., 2013). 

 

Table 3. Effect of Ag-NPs on membrane damage index content under drought strees 

Çizelge 3. Ag-NPs’lerin kuraklık stresi altında membran hasar indeksi içeriğine etkisi 

Treatment 50% Ir. L. 25% Ir. L. 

Control 17.86 c 33.84 bc 

25 mg l-1 18.44 c 34.35 b 

50 mg l-1 18.08 c 31.85 c 

75 mg l-1 22.26 a 38.24 a 

100 mg l-1 20.54 b 38.36 a 

Mean 19.44 35.33 

LSD0,05 1.445 2.088 

Ir. L.: Irrigation level 

 

Considering the averages of the water use efficiency values of the tomato genotype in the study, Ag-NPs and 100%, 

50% and 25% irrigation applications, respectively; Considering 19.90 (g l-1), 24.39 (g l-1) and 33.65 (g l-1) and % change 

averages, it was determined as 22.46% in 50% irrigation and 38.73% in 25% irrigation. It is given in Table 4 that 

different Ag-NPs and drought stress applications are affected by the water use efficiency values of the tomato 

genotype according to their own controls. Considering the average values, it is seen that the water use efficiency 

values increase in 50% and 25% irrigation applications compared to their own controls. When we look at the data 

in Table 4, the water use efficiency values in drought stress are the highest in terms of Ag-NPs 29.47 (g l-1) in 100 

mg l-1+50% irrigation and 39.80 (g l-1) in Ag-NPs 100 mg l-1 +25% irrigation. utilization efficiency. In general, when 

the plants are under drought stress, the water use efficiency value increases. According to previous studies, Cahn 

et al. (2001) recommended deficit irrigation up to 70-85% of total patients as a compromise between tomato yield 

and quality, while Patane et al. (2011) recommended 50% of total patients during the entire growing season. They 
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suggest incomplete irrigation, water saving, water use efficiency increase and tomato fruit quality as a balance 

between the determined. 

In both applications, there was a decrease in the leaf relative water content of the leaves under Ag-NPs+ stress 

(50% and 25%) conditions. However, this decrease showed differences between Ag-NPs+ stress (Table 4). It was 

determined as 1+50% stress (64.31%). Between 50% and 25% applications of Ag-NPs, the water losses decreased 

between -31.41% and -37.81% compared to the control. However, Ag-NPs + control drought stress caused damage 

to cells at varying rates in all genotypes. Leaf relative water content value, which is one of the most effective 

parameters that can be used to screen plants for drought tolerance, can also be considered as a value showing the 

balance between transpiration rate and water supplied to the leaf. Due to this effect, the more water the plant can 

provide, the more it can save itself from stress (Dixit et al., 2001). Okunlola et al. (2017) state that leaf relative water 

content is an important indicator in determining drought tolerance, and a decrease in leaf proportional water 

content values occurs with drought stress. 

 

Table 4. The effect of Ag-NPs on water use efficiency and leaf relative water content under drought stress 

Çizelge 4. Ag-NPs'lerin kuraklık stresi altında su kullanım etkinliği ve yaprak nispi su içeriği üzerindeki etkisi 

Treatment 100% 

Ir. L. 

(Wa. 

us. 

eff.) 

100% Ir. 

L. (Le. 

rel. Wa. 

Con.) 

50% Ir. 

L. (Wa. 

us. eff.) 

50% Ir. L. 

(Le. rel. 

Wa. 

Con.) 

25% 

Ir. L. 

(Wa. 

us. 

eff.) 

25% Ir. L. 

(Le. rel. 

Wa. 

Con.) 

50%  

Chan. 

Wa. 

us. 

eff.) 

50% 

Chan. Le. 

rel. Wa. 

Con.) 

25% 

Chan. 

Wa. 

us. 

eff.) 

25% Chan. 

Le. rel. Wa. 

Con.) 

Control 20.43a 81.31 ab 20.42 d 56.79 c 31.82 c 38.03 a -0.05 -30.16 55.83 -33.03 

25 mg l-1 18.76b 81.27 b 23.48 c 62.39 b 28.56d 33.90 c 25.16 -23.23 21.64 -45.66 

50 mg l-1 18.38b 82.98 a 22.04cd 64.31 a 31.92 c 35.88 b 19.91 -22.50 44.83 -44.21 

75 mg l-1 21.15a 82.00 ab 26.52 b 58.36 c 36.15b 36.34 b 25.39 -28.83 36.31 -37.73 

100 mg l-1 20.77a 77.15 c 29.47 a 36.76 d 39.80a 26.31 d 41.89 -52.35 35.05 -28.43 

Mean 19.90 80.94 24.39 55.72 33.65 34.09 22.46 -31.41 38.73 -37.81 

LSD0,05 1.481 1.662 1.853 1.795 1.802 0.743 - - - - 

Ir. L.: Irrigation level, Wa. us. eff.: Water use efficiency, Le. rel. Wa. Con.: leaf relative water content, Chan. : Change 

 

Considering the average potassium (K)  values of the green parts of the tomato genotype in the study, Ag-NPs and 

100%, 50% and 25% irrigation applications, respectively; 7.008 (%), 6.594 (%) and 4.882 (%) and their % change 

averages were determined as -3.56% in 50% irrigation and -26.16% in 25% irrigation. It is given in Table 5 that 

different Ag-NPs and drought stress applications are affected by K in the green parts of tomato genotype according 

to their own controls. According to this, when the average values are examined, it is seen that the K in green parts 

decreases by -3,56% on average in 50% irrigation application compared to its own controls, and it decreases by -

26.16% on average in green parts in 25% irrigation application (Table 5). Looking at the data in Table 5, K Ag-NPs in 

50 mg l-1+50% irrigation 7.48 (%) and Ag-NPs in 25 mg l-1 +25% irrigation 5.64 (%) in average green parts under 

drought stress reached the highest K in tomato green parts. In addition, the lowest value in both applications was 

Ag-NPs 5.45 (%) in 100 mg l-1+50% irrigation and 3.68 (%) in Ag-NPs 100 mg l-1 +25% irrigation. Considering the 

averages of K values in tomato fruit of the tomato genotype in the study, Ag-NPs and 100%, 50% and 25% irrigation 

applications, respectively; Considering the 9.66 (%), 7.01(%) and 6.71 (%) and % change averages, it was determined 

as -27,46% in 50% irrigation and -4,20% in 25% irrigation. It is given in Table 5 that different Ag-NPs and drought 

stress applications are affected by K in tomato genotypes compared to their own controls. According to this, when 

the average values are examined, it is seen that the K in tomato fruit decreases by -27.46% in 50% irrigation 

application compared to its own controls, and it decreases by -4.20% in average of K in tomato fruit in 25% irrigation 

application (Table 5). When we look at the data in Table 5, K in the average tomato fruit under drought stress is K 
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Ag-NPs 7.62 (%) in 25 mg l-1+50% irrigation and 7.70 (%) in Ag-NPs 25 mg l-1 +25% irrigation. reached. In addition, 

the lowest value in both applications was 5.96 (%) for Ag-NPs 75 mg l-1+50% irrigation and 6.04 (%) for Ag-NPs 100 

mg l-1 +25% irrigation. One of the osmotic adaptation mechanisms is the accumulation of K with active absorption, 

increasing the osmotic potential in the cell and ensuring the intracellular water balance (Jaleel et al., 2007; Dasgan 

et al., 2018). In addition, one of the most important factors that negatively affect plant growth and development is 

the disruptions in the ion balance. Dasgan et al. (2018), on the other hand, stated that K+ ion uptake was limited 

due to salt and drought stress in their study on tomatoes. 

 

Table 5. Effect of Ag-NPs on potassium (K) content in green parts and fruit under drought stress 

Çizelge 5. Ag-NPs'lerin kuraklık stresi altındaki yeşil kısımlarda ve meyvelerde potasyum (K) içeriğine etkisi 

Treatment 100% Ir. L. 

(Gre. pa.) 

100% 

Ir. L. 

(Fr.) 

50% Ir. 

L. (Gre. 

pa.) 

50% Ir. 

L. (Fr.) 

25% Ir. 

L. (Gre. 

pa.) 

25% Ir. 

L. (Fr.) 

50% 

Chan. 

(Gre. 

pa.) 

50% 

Chan. 

(Fr.) 

25% 

Chan. 

(Gre. 

pa.) 

25% 

Chan. 

(Fr.) 

Control 8.64 a 9.45 b 6.33 bc 6.84 ab 5.01 ab 5.91 b -26.74 -27.62 -20.85 -13.60 

25 mg l-1 5.38 c 9.77 ab 6.86 ab 7.62 a 5.64 a 7.70 a 27.51 -22.01 -17.78 1.05 

50 mg l-1 7.48 b 9.99 a 7.48 a 7.59 a 5.55 a 7.49 a 0.00 -24.02 -25.80 -1.32 

75 mg l-1 6.87 b 9.44 b 6.85 ab 5.96 b 4.53 bc 6.41 ab -0.29 -36.86 -33.87 7.55 

100 mg l-1 6.67 b 9.67 ab 5.45 c 7.08 ab 3.68 cd 6.04 ab -18.29 -26.78 -32.48 -14.69 

Mean 7.008 9.664 6.594 7.018 4.882 6.71 -3.56 -27.46 -26.16 -4.20 

LSD0,05 0.840 0.357 1.046 1.517 0.623 1.277 - - - - 

Ir. L.: irrigation level, Gre. par.: Green parts, Fr.:Fruit, Chan.:Change 

 

Considering the averages of Calcium (Ca) values in the green parts of the tomato genotype in the study, Ag-NPs and 

100%, 50% and 25% irrigation applications, respectively; 24.56 (%), 9.86 (%) and 4.97(%) and the % change averages 

were determined as -59.73% in 50% irrigation and -50.00% in 25% irrigation. It is given in Table 6 that different Ag-

NPs and drought stress applications are affected by Ca in green parts of tomato genotype compared to their own 

controls. Looking at the average values, it is seen that the Ca in the green parts decreases by an average of -59.73% 

in 50% irrigation application compared to their own controls, and the Ca in the green parts decreases by -50.00% 

in 25% irrigation application (Table 6). Looking at the data in Table 6, Ca in the average green parts under drought 

stress was 12.19 (%) in control + 50% irrigation, and Ca in tomato green parts was the highest in terms of Ag-NPs 

50 mg l-1 +25% irrigation 7.23 (%). In addition, the lowest value in both applications was 7.78 (%) for Ag-NPs 100 

mg l-1+50% irrigation and 2.87 (%) for Ag-NPs 100 mg l-1 +25% irrigation. Considering the averages of Ca values in 

tomato fruit of the tomato genotype in the study, Ag-NPs and 100%, 50% and 25% irrigation applications, 

respectively; 30.60 (%), 14.83 (%) and 6.65 (%) and % change averages were determined as -51.47% in 50% irrigation 

and -54.26% in 25% irrigation. It is given in Table 6 that different Ag-NPs and drought stress applications are affected 

by Ca in tomato fruit of tomato genotype compared to their own controls. According to this, when the average 

values are examined, it is seen that the Ca in tomato fruit decreases by an average of -51.47% in 50% irrigation 

application compared to its own controls, and the Ca in tomato fruit decreases by an average of -54.26% in 25% 

irrigation application (Table 6). Average tomato fruit under drought stress reached 16.88 (%) at 25 mg l-1+50% 

irrigation and Ag-NPs reached 8.47 (%) at 75 mg l-1 +25% irrigation. In addition, the lowest value of Ag-NPs in both 

applications reached 13.02 (%) in 75 mg l-1+50% irrigation and 4.64 (%) in control +25% irrigation. Drought stress 

caused a decrease in the green part Ca+2 concentration of tomato plant. The lack of water causes a decrease in the 

flow of nutrients to other tissues and organs, starting from the stem cells, thus causing nutrient deficiencies in 

different tissues. 
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Table 6. Effect of Ag-NPs on calcium (Ca) content in green parts and fruit under drought stress 

Çizelge 6. Ag-NPs'lerin kuraklık stresi altında yeşil kısımlarda ve meyvelerde kalsiyum (Ca) içeriğine etkisi 

Treatment 100% Ir. L. 

(Gre. pa.) 

100% Ir. 

L. (Fr.) 

50% Ir. L. 

(Gre. 

pa.) 

50% Ir. L. 

(Fr.) 

25% Ir. L. 

(Gre. 

pa.) 

25% Ir. 

L. (Fr.) 

50% 

Chan. 

(Gre. 

pa.) 

50% 

Chan. 

(Fr.) 

25% 

Chan. 

(Gre. 

pa.) 

25% 

Chan. 

(Fr.) 

Control 26.82 a 32.39 ab 12.19 a 15.15 ab 5.24 b 4.64 b -54.55 -53.23 -57.01 -69.37 

25 mg l-1 24.37 ab 34.65 a 9.91 b 16.88 a 4.63 bc 5.56 b -59.34 -51.28 -53.28 -67.06 

50 mg l-1 29.5 a 30.03 bc 10.63 a 14.80 ab 7.23 a 8.38 a -63.97 -50.72 -31.98 -43.38 

75 mg l-1 23.44 ab 28.55 c 8.81 bc 13.02 b 4.88 b 8.47 a -62.41 -54.40 -44.61 -34.95 

100 mg l-1 18.7 b 27.37 c 7.78 c 14.31 ab 2.87 d 6.22ab -58.40 -47.72 -63.11 -56.53 

Mean 24.56 30.60 9.86 14.83 4.97 6.65 -59.73 -51.47 -50.00 -54.26 

LSD0,05 7.181 2.662 1.863 2.615 1.432 2.259 - - - - 

Ir. L.: irrigation level, Gre. par.: Green parts, Fr.:Fruit, Chan.:Change 

 

Considering the averages of vitamin C values in fruit juice of the tomato genotype in the study, Ag-NPs and 100%, 

50% and 25% irrigation applications, respectively; 21.14 (mg/100 g), 23.84 (mg/100 g) and 25.42 (mg/100 g) and % 

change averages were determined as -13.10 in 50% irrigation and 6.65 in 25% irrigation. It is given in Table 7 that 

different Ag-NPs and drought stress applications are affected by tomato genotype vitamin C in Fruit Juice compared 

to their own controls. Accordingly, when the average values are examined, it is seen that in 50% irrigation 

application, vitamin C in Fruit Juice increased by 13.10% on average compared to its own controls, and in 25% 

irrigation application, it increased by 6.65% on average in fruit juice (Table 7). As seen in Table 7, The highest vitamin 

C, Ag-NP values under drought stress were in 75 mg l-1+50% irrigation 24.93 (%) and Ag-NPs 75 mg l-1 + 25% irrigation 

25.78 (%) in tomato juice. In addition, the lowest value of Ag-NPs in both applications was 22.93 (%) in 50 mg l-

1+50% irrigation and 24.63 (%) in control +25% irrigation. Exposure of the sunflower plant to 150 mg kg-1 Ag-NPs 

and Ag+ caused a significant increase in vitamin C. Accordingly, Ag-NPs were determined to be higher than normal 

Ag and vitamin C compared to the control (Ag-NPs > Ag + > control), (Shimada et al., 2008). Considering the average 

values of tomato Lycopene content of the tomato genotype in the study, Ag-NPs and 100%, 50% and 25% irrigation 

applications, respectively; 31.72 (mg g-1), 31.72 (mg g-1) and 32.86 (mg g-1) and % change averages were determined 

as 0.89 at 50% irrigation and 3.47 at 25% irrigation. It is given in Table 7 that different Ag-NPs and drought stress 

applications are affected by tomato genotype, tomato Lycopene content values according to their own controls. 

Accordingly, when the average values are examined, it is seen that the values of the Lycopene content of tomatoes 

in 50% irrigation application increase by 0.89% on average compared to their own controls, the average of the 

values of Lycopene content of tomatoes in 25% irrigation application increases by 3.47% (Table 7). When we look 

at the data in Table 7, the average values of Lycopene content of tomatoes under drought stress are 33.43 (mg g-1) 

in 25 mg l-1+50% irrigation and 35.38 (mg g-1) Ag-NPs in 25 mg l-1 +25% irrigation. The highest tomatoes reached the 

values of Lycopene content in tomatoes. In addition, the lowest value in both applications was 28.63 (mg g-1) for 

Ag-NPs at 100 mg l-1+50% irrigation and 28.46 (mg g-1) for Ag-NPs at 100 mg l-1+25% irrigation. Nair and Chung 

showed different responses of total chlorophyll and carotenoids at significantly different doses in rice (Oryza sativa 

L.) seedlings after exposure to Ag-NPs for one week (Nair & Chung, 2014). In addition, ascorbic acid, carotenoids 

and other antioxidants play a role in the antioxidant defense responses of plants to Ag-NPs (Chew & Park, 2004; He 

et al., 2011). 
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Table 7. Effect of Ag-NPs on vitamin C and lycopene content under drought stress 

Çizelge 7. Ag-NPs’lerin kuraklık stresi altında C vitamini ve likopen içeriğine etkisi 

Treatment 100% Ir. 

L. (Vit. 

C) 

100% Ir. 

L. (Ly. 

Con.) 

50% Ir. 

L. (Vit. 

C) 

50% Ir. 

L. (Ly. 

Con.) 

25% Ir. 

L. (Vit. 

C) 

25% Ir. L. 

(Ly. 

Con.) 

50% 

Chan. 

(Vit. C) 

50% 

Chan. 

(Ly. 

Con.) 

25% 

Chan. 

(Vit. C) 

25% 

Chan. 

(Ly. 

Con.) 

Control 21.56 b 31.52 c 23.72b 32.92a 24.63b 34.64 ab 10.02 4.44 3.84 5.22 

25 mg l-1 20.71 c 33.16 a 23.96b 33.43a 25.67a 35.38 a 15.69 0.81 7.14 5.83 

50 mg l-1 22.61 a 32.46 b 22.93 c 32.21b 24.65b 33.52 bc 1.42 -0.77 7.50 4.07 

75 mg l-1 20.09 c 30.50 d 24.93 a 31.41 c 25.78a 32.29 c 24.09 2.98 3.41 2.80 

100 mg l-1 20.71 c 29.52 e 23.67b 28.63d 26.36a 28.46 d 14.29 -3.01 11.36 -0.59 

Mean 21.14 31.43 23.84 31.72 25.42 32.86 13.10 0.89 6.65 3.47 

LSD0,05 0.652 0.550 0.300 0.703 0.978 1.288 - - - - 

Ir. L.: irrigation level, Vit. C: Vitamin C, Ly. Con.: Lycopene content, Chan.:Change 

 

According to the findings of the experiment, Ag-NPs applications applied to the Fereng tomato genotype under 

different drought stress levels had statistically different effects on the tomato plant. Ag-NPs 50 mg l-1 application 

applied in the experiment was found to be more effective than other applications in protecting tomato plants 

against the negativities caused by drought stress. Ag-NPs 100 mg l-1 application caused toxic effects on plants. Ag-

NPs have different effects in plants at each concentration. As their concentration increases, they affect the intake 

of nutrients. Ag-NPs are also known to have biochemical effects on the growth of roots and shoots in plants. It has 

been concluded that the data obtained as a result of the study will contribute significantly to breeders and 

researchers in arid and semi-arid regions. 
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