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Abstract—— Collagen is one of the most abundant proteins
in the body. It is essential for the structure, functionality, and
strength of the connective tissue such as skin, bone, tendon,
and cornea. It is known that a change in the arrangement
or morphology of these fibrillar structures relates to multiple
dysfunctions including corneal diseases and various cancer types.
Due to their critical roles in wide-range abnormalities, there
is an increasing interest in the pattern analysis of collagen
arrangements. In recent years, Second Harmonic Generation
(SHG) microscopy is proven to be an efficient imaging modality
for visualizing unstained collagen fibrils. There are plenty of
studies in the literature on the analysis of collagen distribution
in SHG images. However, the majority of these methods are
limited to detecting simple, statistical and non-local properties
such as pixel intensity and orientation variance. There is a
need for a method to detect the local structural properties of
collagen bundles. This paper is to introduce an automated method
to detect collagen bundles in 3-dimensional SHG microscopy
images. The origin of the proposed method is based on multiscale
directional representation systems. The proposed method detects
the collagen bundles by measuring the dominant orientation
of local regions and an orientation-based connected component
analysis. Through more local analysis and the detection of
collagen bundles separately, the proposed method would lead to
the extraction of more detailed structural information on collagen
bundle distribution.

Index Terms—collagen detection, cornea analysis, image anal-
ysis, machine learning, SHG.

I. INTRODUCTION

CORNEA is the transplant front region of the outer casing
of the eye [1]. Although one of the main functions as

protecting the interior content, the cornea has multiple roles
in maintaining the human vision system properly. The highly
complex and organized structure of the cornea is critically im-
portant for satisfying transparency and refraction [2]. Cornea
is dominantly formed by structures called collagen. Collagen
gives the cornea the ability to be strength required to fulfill its
role of producing a tough container for the inner contents of
the eye with precise curvature and a high level of transparency
to visible wavelengths. The collagen fibers are arranged in
parallel bundles called fibrils. These fibrils are packed in layers
or lamellae. The stroma of the human eye contains 200–250
distinct lamellae, each layer arranged at right angles relative
to fibers in adjacent lamella [3]. It is known that a change in
the arrangement or morphological properties of these fibrils
relates to dysfunction in the vision system [4]. Since collagen
is one of the main structural proteins found in connective

tissues, besides the vision system, collagen structures are
known to be related to various abnormalities such as breast and
ovarian cancer [5], [6]. Due to this critical relationship between
collagen structures and wide-range abnormalities, there is an
increasing interest in the pattern analysis of images of collagen
arrangements [4], [5], [6].

Multiphoton microscopy is recently recognized as a power-
ful imaging technique to visualize unstained samples. With
no need for staining and advantages for diagnostic proce-
dures, Multiphoton microscopy and its variants have been
used increasingly in biomedical imaging [7]. Multiphoton
microscopy includes Second Harmonic Generation (SHG)
microscopy which is based on an absorption-free process [8].
In recent years, SHG microscopy is proven to be an efficient
imaging modality for visualizing unstained collagen fibrils.
The Type I collagen which is found on tendons, skin, and
cornea is visualized bright in SHG images without any staining
[9]. Besides, it produces a better visualization of collagen
structures than fluorescent imaging of stained samples [10],
[11]. As a result of these advantages, SHG microscopy has
become the most preferred imaging modality for the analysis
of collagen structures.

There are plenty of studies in the literature on the analysis
of collagen distribution in SHG images. When we focus on
the computational method papers, majority of these methods
work in 2-dimensional space and their abilities are limited
to detect basic properties such as pixel value or non-local
statistical properties. Some of these studies focus on global or
windowed texture analysis like directional variance [12], [13],
[14], Fourier Transform and grey level co-occurrence matrix
(GLCM) [15]. However, these methods are unable to detect
the significant morphological features like fiber size or number
[16]. Ogura et al. [17] used Fourier transform to quantify 2-
dimensional SHG corneal collagen images. Fourier transform
is widely used in texture analysis and gives successful results
[18]. However, due to the nature of this method, local in-
formation about the morphology of collagen fibers cannot be
detected. Therefore, such a technique will not be sufficient to
characterize the detailed structure of collagen fibrils. In another
study, Hu et al. [19] used the co-occurrence matrix method
to distinguish different collagen tissues from each other. The
co-occurrence matrix is a statistical method to measure the
texture complexity of the given image [20]. This method,
which does not give detailed information about individual
collagen fibers and only looks at the general image texture, will
not be sufficient to measure the features of collagen bundles
individually. Besides these non-local analysis studies, there is
a limited number of attempts conducted to detect collagen
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fibers and extract more local properties. Yong Park et al. [21]
used an automatic thresholding method to detect individual
collagen fibers. Although this method aims to collect local
information despite the previous ones, the thresholding method
fails in many object segmentation tasks and does not give an
efficient result in complex and low-contrasted images such as
an SHG image of collagen. After separating the fibers from
the background with thresholding, the authors applied texture
analysis to several predetermined patches. However, the failure
of the segmentation obtained by thresholding, as well as the
analysis of small patches instead of the whole image, makes
this method unreliable. Besides, this analysis was applied in 2-
dimensional images instead of 3-dimensional images, so, there
is a loss of information.

Liu et al. [13] aimed to detect the 3-dimensional structure
of collagen bundles. However, since 3-dimensional analysis is
computationally expensive, they applied the method referred
to as 2.5 convolutions in the literature to reduce the computa-
tional load. This method aims to calculate the 2-dimensional
projections of 3-dimensional images on three perpendicular
planes, and then work with these three 2-dimensional images.
Although this technique is suitable for plain images (for
example, a single neuron cell image, a single isotropic object
image, etc.), it can cause significant information to be lost in
the collagen image by detecting separate bundles as a whole.
This causes miscalculation of quantification, and creates a
possible bias between images and misleads the data analysis.

In a recent study [22] SHG quantitative properties are used
to distinguish morphological changes in collagen distribution
in different basal cell carcinoma sub-types. For the Quan-
titative analysis the study focuses on the texture and the
directional distribution of collagen bundles. For that purpose,
beside the non-local frequency-based analysis, CurveAlign and
CT-FIRE methods were used [23], [24]. Curve Align aims to
quantify all fiber angles within a specified region [25]. On
the other hand, CT-Fire performs a local directional analysis.
CT-Fire aims to determine vessel-like structures in the input.
As a result, CT-Fire is theoretically applicable for the current
collagen bundle detection purpose, and this method forms a
comparable alternative for the presented method. However CT-
Fire is very sensitive to the contrast in the images. As a

result of that, objects can be detected in several disconnected
components and due to that it may result with high number
of false positive detection.

Some other methods from the literature are out of focus of
this paper since the tasks and/or data acquisition methods are
not comparable [26], [27], [28], [29], [30], [31], [32], [33],
[34], [35], [36].

In brief, despite the significance of automated quantification
of collagen bundles, current methods in the literature are
insufficient to detect local properties of 3-dimensional of these
structures. This paper aims to introduce a directional analysis-
based quantification method to detect collagen bundles in the
3-dimensional SHG microscopy images. Through that, the 3-
dimensional structure of collagen bundles will be preserved,
and local geometrical properties of bundles will be possible to
be collected.

II. METHOD

All numerical analysis was performed in MATLAB 2023a.
The proposed method is specified for the analysis of 3-
dimensional SHG images of collagen distribution. All pre-
sented numerical results are for healthy data. However, the
proposed method can be applied for diseased samples as well
through optimizing the parameters accordingly.

The analysis steps and associated sub-steps can be seen in
Fig. 1. The proposed method can be grouped into two main
steps:
A. Preprocessing.
B. Collagen bundle detection.

A. Preprocessing step

Preprocessing is designed to take full advantage of the
capabilities of instrumentation by reducing sources of image
degradation such as blurring and noise. However, SHG
images of collagen bundles require more than that. The
collagen bundles in SHG images seem like a cluster of noise,
and even by eye, it is very difficult to determine the exact
boundaries of bundle regions. Hence, before the application of

Fig. 1. The framework of the proposed method: The 3-dimensional input is firstly pre-processed by Windowed Maximum intensity projection (MIP), denoising
and pixel intensity normalization. Then the pre-processed image is proceed to next step for collagen bundle detection. The output of this step is segmented
regions which correspond to a part of collagen bundle. These segmentation are not guaranteed to be an accurate segmentation of bundles. However, they can
be safely used for detection purpose. Hence, for next step, to form a better visualization of detected bundles, new output image is generated where detected
bundles are represented with rectangular markers.
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Fig. 2. The partition of a 3-dimensional bundle structure in the subsequent
slices. As it is seen the bundle (marked with a yellow arrow) is oriented in
the X-Z direction, as a result, it is not possible to detect the bundle in any
2-dimensional slice. However, by maximum filtering, it is possible to increase
the visibility of bundles in individual slices (see Fig.3).

Fig. 3. After pre-processing of the slices in Fig. 2. As a result of maximum
filtering on a certain window size, it is possible to visualize the 3-dimensional
structure of collagen bundles more clearly in 2-dimensional slices. The bundle
is marked with the yellow arrow as in Fig. 2.

noise reduction, an additional step to strengthen the pixel
intensities on bundle regions is necessary. The 3-dimensional
structure of collagen bundles helps to distinguish bundle
regions from artifacts. Through that lead, as the first step of
preprocessing, a maximum filter is applied in the X-Z-direction
of input volume with a scale depending on the X-Z-direction
resolution of the input. This process can be considered as a
windowed maximum projection of the input volume. Through
this strategy, the pixel brightness in bundle regions increases,
and as a result, noise and blurring artifacts get fader. Besides,
images are compressed in the X-Z-direction which benefits
reducing the cost of the remaining computational analysis (see
Fig. 2&3).

Through increased contrast of bundle regions, artifacts can
be distinguished from collagen bundles. Thus, pre-processing
continues with a denoising step. One of the most common
denoising routines is Gaussian smoothing [37], which is based
on convolving the input image with a Gaussian function. While

Fig. 4. Pixel normalization for each slice individually affects the visual quality
significantly. The top images (a-b) are from the deeper, and the bottom images
(c-d) are from surface regions. The first column (a-c) shows the volume-
based normalization results, while the second column (b-d) shows slice-
based normalization results. As seen slice-based normalization is significantly
improving the contrast for deeper regions, while it has minimal effect on
surface slices.

Gaussian smoothing is computationally highly efficient, it also
has disadvantages such as edge surpassing due to the nature
of the Gaussian function. However, since the SHG images of
collagen bundles have weak edge information, and edges are
not critical for the proposed method, that disadvantage is not
a significant issue for the current task. Besides, due to the
large image size, the low computational expense is a critical
advantage. Hence 3-dimensional small-scale Gaussian filtering
is used to smooth and denoise the images. As the last step of
the pre-processing, the pixel intensity normalization is applied
on each slice of the input volume, individually. Intensity
normalization is significantly important when a threshold-
based analysis or data clustering is included. In our analysis,
besides its necessity for further steps, normalization is used
to increase the contrast and have a more obvious view of
bundles. The whole volume normalization is not efficient in
SHG images since the pixel intensity constantly decreases
while going deeper slices (while Z values are increasing).
As a result, in the deeper regions, the detection of bundles
is difficult even by eye (see Fig. 10). In order to handle that
drawback and extract all possible information from each depth,
the introduced method applies pixel-normalization for each 2-
dimensional slice separately.

B. Collagen bundle detection

The proposed method is designed to detect and quantify
the bundles only in a certain shape and visual condition.
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Fig. 5. The oriented rectangular filters evenly distributed into the X-Y plane.

In the SHG images, the collagen bundles are supposed to
be in an anisotropic shape due to their structural nature.
Hence, the proposed method ignores the isotropic high pixel
intensity regions by accepting them as an artifact. Hence,
the pixel intensity is not enough to detect bundles, but the
intensity properties must be supported by geometric features.
Since the images are noisy, and not all bundle regions are
distinguishable, individual detection of each bundle is a
challenging task. The proposed method is based on measuring
the similarity of pixels based on their spatial and direction
features. For that purpose, orientable unit filters are used to
extract those geometrics features. Orientable unit filters are
rectangular in shape and rotated in multiple orientations (see
Fig. 5); thus, they can determine the dominant orientation of
a close neighborhood of a point. Collagen bundle detection
will be done in three steps:

B1. Determination of dominant orientation for pixels in bun-
dle region

B2. Orientation similarity based Connected Component Anal-
ysis

B3. Shape-constrained Pruning
Now, these three main steps will be explained in detail.

B.1. Dominant orientation determination of pixels in the
bundle region: For that purpose, the input image is firstly con-
volved with the 3-dimensional rectangular prism directional
filters. These filters are rotated in X-Y and X-Z plane with user
determined angles (see Fig. 5 for rectangular filters rotated in
X-Y plane.). The filter has size a x b x c, where a is the length,
b is the height and c is the width. The filter size must be
optimized according to the input image. After convolving the
input image with filters in different orientations, the method
determines the dominant orientation of the local neighborhood
of each pixel by determining the direction of the maximum
filtering response. As seen in Fig. 6, points have the maximum
filtering response while the filter direction is close to the
dominant orientation of the close neighborhood of the point.
As a result, the orientation of a region can be determined by
finding the general maxima of the filtering response. This idea
is successfully used before for neurite orientation detection
[38]. However, due to the high level of noise and complexity
of the collagen images, further steps will be needed to use a
similar idea for the current task. There are two major problems
1) intersecting bundle regions, and 2) large bundle regions
which would give maximum filtering response at consecutive

Fig. 6. The bundle orientation detection method on a synthetic image. (Top) A
synthetic image where the collagen bundle is shown as the yellow anisotropic
region on black background. Orange rectangular regions are the unit filters
in four different orientations. (Bottom) The filtering response for each of the
four filtering by (orange) oriented filters. The maximum filtering response is
measured at the angle which is closest to the bundle direction (pi/4). That
angle gives the dominant orientation of the close neighborhood (circle with
white dashed boundary) of the pixel in the center.

directions.
In the case of intersecting bundles, which is a common

situation for SHG images of collagen structures, the pixels
in the overlapping region have multiple dominant orientations
(see Fig. 7). Subsequently, determining the general maxima of
the filtering response would be misleading for such cases. By
considering these problems, the proposed method is designed
to detect at most up to two intersecting bundles. For that
purpose, instead of detecting one direction as a dominant
orientation, the method collects two directions with the largest
filtering responses. If the angle between two dominant direc-
tions is larger than a certain threshold value, then that pixel is
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Fig. 7. The bundle orientation detection method on a synthetic image in the
case of intersecting bundles or large bundle regions. (Top) A synthetic image
where the collagen bundles are shown as the yellow anisotropic region on
black background. Orange rectangular regions are the unit filters in different
orientations. (Bottom) The filtering response of the centroid of the intersection
of the bundles for ten oriented filters. As it is seen, the intersection point
has two dominant orientations through two bundles at the angles 2pi/10 and
7pi/10. Besides the filtering response at angle 3pi/10 is close to the maximum
although it is misleading due to the wide bundle region.

recorded with two dominant orientations. Otherwise, only one
direction with the largest response is kept as the orientation
of the neighborhood of the pixel. By examining the images in
the dataset, more crowded intersection scenarios are neglected.
The aim of using a lower threshold for the angle distance
is to distinguish intersecting bundles from the single extra
wide bundles. The extra wide bundles might have maximum
filtering response in two consecutive angles even though they
have a single dominant orientation (see Fig. 7). To avoid such
problems, the algorithm assigns multiple dominant orientations
to a pixel only if these orientations are distant from each other.

Fig. 8. Detection and segmentation of collagen bundles on a 2-dimensional
synthetic image. Heat maps are showing the directions which yield maximum
(a) and second maximum (b) filtering responses. These values show the
dominant orientation of points in their local neighborhood. Due to the
intersection of two bundles, there is a problem with assigning dominant
orientations in their intersecting region. However, by considering these two
filtering responses together and getting the connected components merged,
both bundles are segmented with minimum error on boundaries (c-d).

B.2. Connected Component Analysis based on dominant
orientation similarity: After the dominant orientation of each
pixel is determined, pixels with the same dominant orientation
are connected as being part of a collagen bundle. Through
this process, the points with multiple dominant orientations
are preserved in their nature and all possible connection paths
are examined. As a result of this process, even the intersecting
bundles are segmented separately by the proposed algorithm
(Fig. 8).

B.3. Pruning: Since the nature of the collagen bundles is
anisotropic, the post-processing step starts with determining
the anisotropy level of segmented bundle regions through the
Directional Ratio (DR). DR is a multiscale geometric descrip-
tor to measure the isotropy level of the close neighborhood
of a pixel. DR is calculated as the proportion of minimum
to maximum filtering responses of a pixel over filters in
multiple orientations [39]. DR approaches 1 while regions get
more isotropic, and it approaches 0 while regions get more
anisotropic [40], [41], [42]. It is used in previous studies
to distinguish blob-like objects from vessel-like objects [40],
[38], [39], [41]. For pruning, the algorithm calculates the DR
of each connected component as the average DR of each pixel
contained in the inner part of the region. For any region, even
if the region is perfectly isotropic, the DR values of pixels will
approach 0 while getting closer to the boundary [42]. Hence,
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Fig. 9. Sample outputs of the intermediate steps in collagen bundle detection:
a) Preprocessed image, b) Output of step B1. Dominant orientation determi-
nation of pixels in the bundle region. Since the orientations are enumarated
as 1-32, this image has pixel intensities between 1-32. c) Output of step B2.
Connected Component Analysis based on dominant orientation similarity. d)
output of step B3. Pruning: Components in c) are eliminated if detections
are isotropic and smaller than a certain volume threshold. Please note that
these outputs are actually 3-dimensional images, however for visualization
2dimensional projections are given.

pixels close to the boundary are misleading to calculate the
isotropy level of a region. Therefore, these misleading pixels
are eliminated through removing the close-boundary parts of
regions by morphological erosion. The remaining pixels’ DR
values are averaged to assign a DR value for each connected
component. This DR value shows the anisotropy level of the
whole region. To eliminate the isotropic regions a lower DR
value threshold is applied. If the DR value is larger than the
threshold that means the component is more isotropic than a
usual collagen bundle. Hence, it will be accepted as an artifact
and eliminated. As a result, the output image contains the
segmented anisotropic collagen bundles. The computational
cost of this part is neglectable since the filtering responses
were already calculated in part B.1. for Dominant orientation
determination of pixels.

III. RESULTS

The performance of the proposed method is measured on a
publicly available dataset of SHG volume collected from three
healthy rats [43]. The dataset contains around 4000 scans, but
some of these images do not show the orientated nature of
collagen bundles. Such images are eliminated and as a result,
four volumes are selected to measure the performance of the
method. A few slices of the samples which are ignored for
the analysis can be seen in Fig. 10. As it is seen in the figure,
these slices do not have oriented anisotropic patterns. Hence,
such images are out of the scope of the presented method.

Fig. 10. Example images from the dataset that cannot be processed by the
proposed method. These images do not have orientation information, bundles
are not detectable by the eye and there are artifacts. Such images are ignored
for sample selection for analysis.

The ground truth of the dataset was for semantic segmen-
tation of similarly oriented regions. The pixels in the ground-
truth images are in three categories as similar orientation,
dissimilar orientation, and not interest. There was no label for
direction or bundle detection. The presented method generates
more local information as the pattern and orientation detection.
Hence, the given ground truth was not useful for measuring
the performance of the method. For that purpose, the detection
and orientation labels are determined by the experts at Istanbul
Medipol University, and the performance of the method is
measured according to that.

The method has several parameters to be tuned for the given
input. For the presented results, those parameters are optimized
through the whole dataset, and these values are set as Default
in the method. Filter size is set as 40x4x4 (with respect to
x,y,z coordinates) pixels to catch the large anisotropic bundles
efficiently. The analysis is performed in 8 directions in the
X-Y-plane and 4 directions in the X-Z-plane, a total of 32
orientations. Since the images are so crowded and the same
collagen bundle is visible in multiple slices, ground truth was
collected for random 80 slices from samples by considering
their 3-dimensional environment. The connected components
whose volume is smaller than 3000 pixels are accepted as
artifacts and eliminated. For each of the remaining connected
components, the DR value is calculated, as explained in the
Method section. The components with DR larger than 0.9
are eliminated since they are more isotropic than an accepted
bundle. Then, the centroid of each connected component is
calculated and detection results are demonstrated with a line
that is oriented with the same angle of the bundle and centered
at the centroid of the segmented region. As a result, large and
vessel-like detections are collected as collagen bundles. The
results of a few slices can be seen in Fig. 11, 14 and 15.

To measure the performance of the method Recall, Preci-
sion, and F1 score are used. Recall shows the performance of
avoiding False negative detections, Precision shows the perfor-
mance of avoiding False positive detections; while the F1 score
shows the overall performance considering False Positives and
Negatives. All these measurements range between 0 and 1,
where 1 is the perfect score for each [44].

The method correctly detected 42 collagen bundles, out of
51 (Table I). The Recall score of the method is measured as
0.82. The Precision rate is measured low due to high False
Positive detections. However, about half of the False detections
were due to multiple detections of wide bundles. If such
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Fig. 11. Results of proposed method for collagen bundle detection. The raw
image slices are shown in the right column (a, c, e), and associated detection
results are given on the left (b, d, f) as an overlay on the original slices.
Detected bundles are visualized with blue lines. The orientation of these lines
indicates the dominant orientation of the detected collagen region.

TP FP FN
multiple detections are included 42 19 9
multiple detections are excluded 42 11 9

TABLE I
DETECTION RESULTS OF THE METHOD WITH AND WITHOUT THE

ELIMINATION OF FALSE POSITIVES DUE TO MULTIPLE DETECTIONS OF
WIDE BUNDLES. TP STANDS FOR TRUE POSITIVE, FP STANDS FOR FALSE

POSITIVE, AND FN STANDS FOR FALSE NEGATIVE DETECTIONS.

false detections were eliminated the Precision rate increased
to 0.79 from 0.69 (Table II). Since orientation is the core of
the proposed detection method, the accuracy of orientation
detection for detected bundles was 100%.

IV. DISCUSSION

The SHG images of collagen bundles are highly complex
and low-contrasted. Since the edge information is almost

P R F1
multiple detections are included 0.69 0.82 0.75
multiple detections are excluded 0.79 0.82 0.81

TABLE II
PERFORMANCE RESULTS OF THE METHOD WITH AND WITHOUT

ELIMINATION OF FALSE POSITIVES DUE TO MULTIPLE DETECTIONS OF
WIDE BUNDLES. P STANDS FOR PRECISION, R STANDS FOR RECALL, AND

F1 STANDS FOR F1 SCORE.

missing, collagen bundles seem like regions with uncertain
boundaries. As a result, most detection methods fail for such
cases. However, the presented method gives promising results
through its advantage of using a connected component analysis
through orientation similarity. This idea skips the edge or
boundary information and focuses on local texture, which
results in successful detection performance for the current
task. As it is seen in Table II, the method has a high
Recall score. False Positive detections are high despite low
False Negative detections, which results in a lower Precision
score (Table I & II). It is observed that some of the False
Positives are due to multiple detections of one wide collagen
bundle region. For example, in Fig. 11 (b), the rightmost two
vertical detections are indicating the same region. Although
this is not a significant error of the method, it could cause
a problem if the detected bundle number is in focus since it
will be overcalculated. In order to handle that an additional
post-processing step can be included. When these multiple
detections of wide bundles are ignored, the False Positive
count reduces by almost 50% (Table I) and the F1 score
increases from 0.75 to 0.81 (Table II).

On the other hand, False Positive detections are higher
for the images where bundles are crossing each other wildly
(Fig. 14). In such images, patterns are formed by short
anisotropic regions, and large-scale filters cause the mixing
of the information of multiple bundles. As a result, high False
Positive detections occur. In order to handle that, a small-scale
filter or multi-scale analysis could be used. By using multi-
scale filters, short patterns can be detected as well as longer
patterns.

The collagen bundles close to each other may have different
orientations. As a result, in the SHG images, multiple collagen
bundles crossing each other can be seen. Since this is a
common issue, the proposed method is specifically designed
to handle such cases. For that purpose, the method always
examines if the points have two dominant orientations, as
explained in detail in Section II. However, this may be
misleading in some cases. For example, when the contrast is
critically low, the method can be faulted to see noisy regions
as if they are intersection regions of multiple bundles. This
causes False Positive detections (Fig. 14 (d)). In order to
handle that, a lower threshold for pixel intensity can be used.
If the determined bundle region has an average pixel intensity
lower than the threshold, it can be considered a noisy region
instead of a bundle.

Another important aspect of the method is that not all bundle
regions are targeted by the presented method. The bundles
with certain shape and intensity properties can be detected.
However, the method gives a consistent highly local texture
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measurement. As a result, the number of detections as well
as the orientation of detections can be significant indicators of
multiple disorders.

The proposed method has multiple steps and for each step
there are parameters to be adjusted for the input. Throughout
the analysis it is observed the method’s sensitivity to the
selection of these parameters are different (see Table III).
In the pre-processing step the method is sensitive to one
parameter which is ”Maximum filtering projection (MIP)
window scale”. That parameter must be adjusted according
to the X-Z direction resolution of the input image. If the
resolution is high default value can be increased to optimize
the computational cost. But, the detection result is not highly
sensitive to that parameter. Similarly, method is sensitive or
highly sensitive to the several threshold values. When the input
image has wildly crossing and thin bundle regions, ”Threshold
to determine intersecting bundles” in step B1 can be reduced.
Otherwise multiple distinct bundles in close orientation can
be detected as a whole (This would be a risk as well if
the number of orientations is increased. So this threshold
parameter is closely related with the user-determined number
of orientation.). ”The threshold to eliminate small regions” in
step B2 can be decreased if the input image is highly noisy.
”Threshold to eliminate isotropic regions” must be adjusted
by observing the results. The complete list of these parameters
and their default values are given in Table III.

During the analysis, it is observed that the method is highly
sensitive to the number of orientations of the analysis and the
scale of the filters. This is due to high noise and uncertain
boundaries of collagen bundles. It is observed that when the
number of orientations are increased the method tends to
detect the same bundle multiple times with slightly different
orientations. As a result of that, False Positives increase
and the Precision rate decreases; or bundles are detected
with incorrect orientation (see Fig. 12 (a)). On the other
hand, when the number of orientations is increased a highly
sensitive analysis results with one bundle region detected in
several disconnected and differently oriented partitions. These
partitions with different orientations can not be attached to
each other by the connected component analysis (step B2). As
a result of that, some large bundle regions can not be detected.
As it is seen in (Fig. 12 (c) two bundle regions are skipped
by the method when the number of X-Y plane orientation is
set to 20. For the current dataset, 8-10 orientations in the X-Y
plane and 4 orientation on the X-Z plane was optimal.

Similarly, it was observed that method is sensitive to the
selection of filter scale. When the filter scale is small the case
of multiple detection of the same bundle is more probable. As
a result of that, the number of False Positives increase and the
Precision rate decreases. However, when the bundles are cross-
ing with each other widely smaller-scale filters would work
better. In order to measure the proposed method’s sensitivity
to the filter scale selection, 40 slices from two volumes are
selected to reduce the computational burdan. These samples
were chosen carefully to cover all different situations to be fair
on the sensitivity analysis. These two volumes were analysed
with varying filter scales and the performance metrics are
compared with each other. As it is seen in Fig. 13, for any

Fig. 12. Detected collagen bundles outputs when the proposed method is
performed with different number of orientations. A) X-Y plane orientation is
4, B) X-Y plane orientation is 8 and C) X-Y plane orientation is 20. For all
cases X-Z plane orientation number was fixed to 4. Since the resolution of
volumes in X-Z plane is smaller than X-Y, the parameter sensitivity analysis
on X-Z plane is ignored. Errors are shown by yellow ellipses.

Method Step Parameter Sensitivity of method
to the selection Default

Preprocessing MIP window size Sensitive 3 pixels in
XZ direction

Denoising filter scale Low sensitivity 1
Collagen Bundle

Detection B1
Threshold to determine

intersecting bundles Highly sensitive Pi/8

Filter scale Highly sensitive 40 x 4 x 4
Orientation number Sensitive 8 x 4

Connected Component
Analysis B2

Threshold to eliminate
small regions Sensitive 5000 pixels

Collagen Bundle
Detection B3

Threshold to eliminate
isotropic regions Sensitive 0.93

Erosion filter scale Low sensitivity 4 pixels

TABLE III
LIST OF PARAMETERS TO BE ADJUSTED FOR INPUT

Fig. 13. The change in F1 score with the analysis with different filter scales.
X-Z plane analysis is ignored since the resolution in X-Z direction is small.
Given filter scales are for the length and width respectively. For each case
height was set as same with width. As it is seen the average F1 score is
maximized when 40x4 scale filters are used. However, for volume 1 the
performance is maximized with the smallest scale 20x2.

filter scale the variation of F1 scores between the analysis
of different volumes were critically high. Besides, the results
show that the accuracy of the method is highly sensitive to
the selection of filter scale. As it is seen in Fig. 13, in Volume
1 the maximum performance is obtained with smallest scale
filter, while that scale yielded the worst performance result
in the Volume 2. As a result, in order to show the overall
performance of the method with optimal effort, parameters are
numerically optimized and set to a one value for the whole
dataset. Hence, the reported numerical results can be improved
by optimizing parameters individually for each input volume.
For the further studies, an automated parameter optimization
step could be included.

The dataset originally had ground-truth labels for semantic
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Fig. 14. Some examples for False Positive detection: Raw images are given in
(a), (b), and the corresponding detection are given (c), (d). True Positives are
represented with blue lines while False Positives are represented with yellow.

segmentation. Since the proposed method has no application
for pixel segmentation, the given labels could not be used.
However, they can still be used to show the consistency of
the presented method. As it is seen in Fig. 15 (e-f), the
correctly detected bundles in the green region, which indicates
the ground-truth label for similarly oriented regions, are in
highly close orientations.

In order to compare the performance of the proposed
method with the state of the art methods, CT-FIRE is selected
as a reference. CT-FIRE is the best candidate since it has
the similar objectives with the presented method. Besides CT-
FIRE has applications in the literature of collagen bundle
analysis [22]. Since the CT-FIRE is analyzing volumes slice by
slice the 3-dimensional analysis was computationally highly
expensive. As a result, instead of analyzing the whole dataset,
the performance comparison is done only on the half of the
dataset. For that purpose, 40 slices from each volume is
collected instead of 80. By observing the results, it can be
said that comparison is fair due to the consistent behavior
of CT-FIRE based on errors and successes. To have a fair
comparison, parameters of CT-FIRE are optimized numerically
for the all test samples. When we compared the performance
of CT-FIRE with the proposed method, it is observed that
CT-FIRE tends to have high False Positive detections (see
Table IV). One major reason is that CT-FIRE fails to detect
regions close to the image boundaries as a bundle due to high
contrast change (Fig. 16 (a), (c)). As a result, for all test
images, CT-FIRE yield a very large False Positive detection
value when it is compared with the proposed method. Besides,
CT-FIRE detected some bundle regions with wrong angle.

Fig. 15. Comparison of detection results with the ground-truth pixel-wise
orientation similarity labels. a-b) original raw images, c-d) overlay of the
presented method’s detections in blue with the raw images. There is only 1
False Positive detection, which is represented with the orange line. e-f) overlay
of ground-truth labels for similarly oriented regions in the green channel,
detected bundles in blue, and bundle regions in red.

These detections were counted as False Positive again, since
the bundle orientation is a significant morphological feature.
As it is seen in the Table IV the proposed method has F1
score 94 % while CT-FIRE reaches 44 %. Although CT-FIRE
is successful to detect vessel-like structures, this method is so
sensitive to contrast change. As a result, in the noisy images
such as SHG images of collagen bundles, it could not reach
the performance of proposed method.

The performance analysis of the method is done on samples
from healthy rats. This could be a limitation since the method
has not been applied to any sample with an abnormality. The
structural properties of fibrilar collagen bundles tend to vary
due to countless diseases and abnormalities. One of these
properties is known as the curvature of the bundle both on
small and large scales [45], [46]. Although the presented
method is designed only to detect linear bundles, it is observed
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Filter scale TP FN FP P R F1
CT-FIRE 11 11 17 0.39 0.5 0.44

Presented Method 21 2 1 0.96 0.91 0.94
TABLE IV

COMPARISON OF PERFORMANCE METRICS RESULT FOR CT-FIRE AND
PRESENTED METHOD.

Fig. 16. Comparison of outputs of CT-FIRE and presented algorithm:a-
b outputs of CT-FIRE and presented method respectively; c-d a better
visualization of detections results with representative rectangular markers.
Correct detections are represented with blue and wrong detections represented
with orange rectangular marker.

that the method can also detect curvatures on a large scale (Fig.
17). This leads to the idea that by adjusting the filter scale the
presented method would be able to determine curvy collagen
bundles which are seen as a sign of multiple abnormalities
[45], [46]. Hence, even if the method is only validated with
healthy collagen bundles, it still has the ability to detect abnor-
malities in morphology by tuning the parameters. As a result,
the presented method can be used for classification purposes
to distinguish healthy samples from diseased samples.

V. CONCLUSION

Due to the advantages of SHG and the critical importance of
collagen bundles, several studies in the literature focus on SHG
images of collagen bundles. However, most of these studies
are designed to detect non-local statistical properties of col-
lagen distribution. This led to the loss of local morphological
information collagen bundles which are known to be highly
significant indicators of multiple abnormalities. The introduced
method uses the orientation information to detect individual
collagen bundles in 3-dimensional SHG images even if they
intersect each other. Hence, the presented method gives deeper

Fig. 17. Curvature detection: (a) raw image, (b) corresponding detected
bundles given in white lines, (c) curvy regions path is shown with red arrow.
As it is seen through multiple detections of bundles the large curvatures can
be determined by the method. This led to the idea that by using small-scale
filters it would be possible to detect curvy collagen bundles’ structures.

and more detailed information about the distribution and
structure of collagen bundles in SHG images. That would lead
to more accurate data analysis methods for collagen analysis,
which finally lead to better diagnosis methods for collagen-
related abnormalities such as cornea diseases and some cancer
types.
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